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Abstract: - QRS and ventricular beat detection is a basic procedure for electrocardiogram (ECG) processing 
and analysis. Large variety of methods have been proposed and used, featuring high percentages of correct 
detection. Nevertheless, the problem remains open especially with respect to higher detection accuracy in 
noisy ECGs. LabVIEW ( Laboratory Virtual Instrument Engineering Workbench) is a graphical programming 
language that uses icons instead of lines of text to create programs.  We developed in LabVIEW the filtering 
for removal of artifacts in biomedical signals and the Pan-Tompkins algorithm. We have investigated 
problems posed by artifact, noise and interference of various forms in the acquisition and analysis of several 
biomedical signals. We have also established links between the characteristics of certain epochs in a number 
of biomedical signals and the corresponding physiological or pathological events in the biomedical systems of 
concern. Event detection is an important step that is required before we may attempt to analyze the 
corresponding waves in more detail. A real-time detection method is proposed, based on comparison between 
absolute values of summed differentiated electrocardiograms of one of more ECG leads and adaptive 
threshold. Also, a cardiac beat recognition based on continuous wavelet transform is presented. 
 
Key-Words: - biomedical signal, database, electrocardiogram ECG, artifact, noise, graphical programming 
language LabVIEW, filtering, notch filter, event detection, Pan-Tompkins algorithm, adaptive threshold.  
 
1. Introduction 
   Biomedical signals are fundamental observations 
for analyzing the body function and for diagnosing a 
wide spectrum of diseases.  
   The problems caused by artifacts in biomedical 
signals are vast in scope and variety; their potential 
for degrading the performance of the most 
sophisticated signal processing algorithms is high. 
    An ECG signal [1] can be disturbed by a high-
frequency noise. The noise could be due to the 
instrumentation amplifiers, the recording system, 
and pickup of ambient electromagnetic signals by 
the cables. The signal illustrated has also been 
corrupted by power-line interference at 60Hz and its 
harmonics, which may also be considered as a part 
of high-frequency noise relative to the low-
frequency nature of the ECG signal. 
    Low-frequency artifacts and base-line drift may 
be caused in chest-lead ECG signals by coughing or 
breathing with large movement of the chest. Poor 
contact and polarization of the electrodes may also 
cause low-frequency artifacts. Base line drift may 
sometimes be caused by variations in temperature 
and bias in the instrumentation and amplifiers as 
well. 

   The most commonly encountered periodic artifact 
in biomedical signals is the power-line interference 
at 50Hz or 60Hz. If the power-line waveform is not 
a pure sinusoid due to distortions or clipping, 
harmonics of the fundamental frequency could also 
appear. Harmonics will also appear if the 
interference is a periodic waveform that is not a 
sinusoid. Power-line interference may be difficult to 
detect visually in signals being non-specific 
waveforms; however, the interference is easily 
visible if present on well-defined signal waveforms 
such as the ECG or carotid pulse signals. In either 
case, the power spectrum of the signal should 
provide a clear indication of the presence of power-
line interference as an impulse or spike at 50Hz or 
60 Hz; harmonics will appear as additional spikes at 
integral multiples of the fundamental frequency. 
    If we have an ECG signal recorded from the 
abdomen of a pregnant woman and simultaneously a 
recorded ECG from the woman’s chest; and we 
compare these, we see that the abdominal ECG 
demonstrates multiple peaks corresponding to the 
maternal ECG as well as several others at weaker 
levels and higher repetition rate [1]. 
   The non-maternal QRS complexes represent the 
ECG of the fetus. Observe that the QRS complex 
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shapes of the maternal ECG from the chest and 
abdominal leads have different shapes due to the 
projection of the cardiac electrical vector onto 
different axes. 
     The QRS complexes and ventricular beats in an 
electrocardiogram represent the depolarization 
phenomenon of the ventricles and yield useful 
information about their behavior. Beat detection is a 
procedure preceding any kind of ECG processing 
and analysis. For morphological analysis this is the 
reference for detection of other ECG waves and 
parameter measurements. Rhythm analysis requires 
classification of QRS and other ventricular beat 
complexes as normal and abnormal. Real-time 
ventricular beat detection is essential for monitoring 
of patients in critical heart condition [1], [3]. 
 
 
2. Filtering for Removal of Artifacts 
    Information provided by bioelectric signals is 
generally time-varying, nonstationary, sometimes 
transient, and usually corrupted by noise.  Fourier 
transform has been the unique tool to face such 
situations, even if the discrepancy between 
theoretical considerations and signal properties has 
been emphasized for a long time. These issues can 
be now nicely addressed by time-scale and time-
frequency analysis [3]. 
   One of the major areas where new insights can be 
expected is the cardiovascular domain. For diagnosis 
purpose, the noninvasive electrocardiogram ECG is 
of great value in clinical practice. The ECG is 
composed of a set of waveforms resulting from 
atrial and ventricular depolarization and 
repolarization. The first step towards ECG analysis 
is the inspection of P, QRS and T waves Fig.1; each 
one of these elementary components is a series of 
onset, offset, peak, valley and inflection points. 
Ideally, the waves exhibit local symmetry properties 
with respect to a particular point, peak and inflection 
points locations of the considered wave. Based on 
these properties, one can extract significant points to 
study the wave shapes and heart rate variability. 

 
Fig.1. Example of a normal ECG beat. 

   In our paper we have gained an understanding of a 
few sources of artifacts in biomedical signals and 
their nature and we are prepared to look at specific 
problems and develop effective filtering techniques 
to solve them. The proposed solution provides the 
details of an appropriate filtering technique. Certain 
types of noise may be filtered directly in the time 
domain using signal processing techniques or digital 
filters. An advantage of time-domain filtering is that 
spectral characterization of the signal and noise may 
not be required. Linear filters fail to perform when 
the signal and noise spectra overlap. Synchronized 
signal averaging can separate a repetitive signal 
from noise without distorting the signal [1]. A 
synchronized averaging is a type of ensemble 
averaging. An algorithmic description of 
synchronized averaging is as follows: a) obtain a 
number of realizations of the signal or event of 
interest; b) determine a reference point for each 
realization of the signal; c) extract parts of the signal 
corresponding to the events and add them to the 
buffer, it is possible that the different parts are of 
different durations; d) divide the result in the buffer 
by the number of events added. 
   Let ( )nyk  represent one realization of a signal, 
with k = 1, 2,…, L representing the ensemble index, 
and n = 1, 2,…, N representing the time-sample 
index. The observed signal is 

( ) ( ) ( ,nnxny kkk η+ )=   (1) 
where ( )nxk represents the original uncorrupted 
signal and ( )nkη represents the noise in the kith copy 
of the observed signal. If for each instant of time n 
we add L copies of the signal, we get 
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If the repetitions of the signal are identical and 

aligned,  If the noise is random 

and has zero mean and variance  will 

tend to zero as L increases, with a variance of 
The RMS value of the noise in the averaged 

signal is 

( ) ( ).
1

∑
=

=
L

k
k nLxnx

( )∑
=

η ησ
L

k
k n

1
2 ,

.2
ησM

.ησM Thus the SNR of the signal will 

increase by a factor of 
L

L or L . The larger the 

number of epochs or realizations that are averaged, 
the better will be the SNR of the result.  
   Fig.2 illustrates two ECG cycles extracted using 
the trigger points obtained by thresholding the cross-
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correlation function [1], as well as the result of 
averaging the first 11 cycles in the signal. 

 
Fig.2. The upper two traces - two cycles of the ECG 

extracted from an ECG signal with noise. The 
bottom trace – the result of synchronized averaging 

of 11 cycles from the same ECG signal. 
 
   Structured noise such as power-line interference 
may be suppressed by synchronized averaging if the 
phase of the interference in each realization is 
different. 
   When an ensemble of several realizations of an 
event is not available, synchronized averaging will 
not be possible. In this case we consider temporal 
averaging for noise removal, with the assumption 
that the processes involved are ergodic, that is, 
temporal statistics may be used instead of ensemble 
statistics. 
   The biomedical signals, that have been processed, 
are from Online Biomedical Signals Databases: 
ftp://ftp.ieee.org/uploads/press/rangayyan, 
www.ecgdatabase.com, www.ecglibrary.com.  
 
2.1 High frequency noise in the ECG. 
   The Butterworth filter is perhaps the most 
commonly used frequency domain filter due to its 
simplicity and the property of a maximally flat 
magnitude response in the pass-band [2]. 
   The basic Butterworth lowpass filter function is: 

( ) aN

c
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where is the analog filter frequency response, 
 is the cutoff frequency in radians/s and N is the 

order of the filter. As the order N increases, the filter 
response becomes more flat in the pass-band, and 

the transition to the stop-band becomes faster or 
sharper. 

aH

cΩ

   Changing to the Laplace variable s, we get: 
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   Using the bilinear transformation, that means, by 
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simplified transfer function: 
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where ak, k=0, 1, 2,…, N, are the filter coefficients 
and G’ is the gain factor at z=1. The filter is now in 
the familiar form of an IIR filter. A form of 
realization of a generic IIR filter is illustrated as 
signal-flow diagram in Fig.3. 
 

x(n) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. Signal-flow diagram of a direct realization 
generic infinite impulse response filter. 

 
Following LabVIEW program based on the IIR filter 
for eliminating the high frequency noises was 
realized and the graphs concerning the input signal 
and the output signal processed with the IIR filter 
are presented in Fig.4. 
 
2.2 Low frequency noise in the ECG 
       Low-frequency artifacts and base-line drift may 
be caused in chest-lead ECG signals by coughing or 
breathing with large movement of the chest. Poor 
contact and polarization of the electrodes may also 
cause low-frequency artifacts. Base line drift may 
sometimes be caused by variations in temperature 
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and bias in the instrumentation and amplifiers as 
well.  
 

 
 

          Fig.4.LabVIEW program based on IIR filter, 
           high frequency noise signal upper graph and 
                       filtered signal lower graph 
                      (x-samples, y-amplitude). 

 
The drawback of the first-order difference and the 
three-point central-difference operators [1] lies in 
the fact that their magnitude responses remain low 
for a significant range of frequencies well beyond 
the band related to base-line wander. We would like 
to maintain the levels of the components present in 
the signal beyond about 0.5-1Hz, that is, we would 
like the gain of the filter to be close to unity after 
about 0.5Hz. The gain of a filter at specific 
frequencies may be boosted by placing poles at 
related locations around the unit circle in the        
z-plane. For the sake of stability of the filter, the 
poles should be placed within the unit circle. Since 
we are interested in maintaining a high gain at very 
low frequencies, we could place a pole on the real 
axis (zero frequency), at say z=0.995 [2]. The 

transfer function of the modified first-order 
difference filter is then 

   

]
995.01

1[1)( 1

1

−

−

−

−
=

z
z

T
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z
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The time-domain input-output relationship is given 
as: 

( ) ( ) ( )[ ] ( 1995,011
−+−−= nynxnx )

T
ny  (8) 

LabVIEW program and the obtained waveforms are 
the following, represented in Fig.5: 

          Fig.5.LabVIEW program based on the  
          derivative operator, low frequency noise  
signal upper graph and filtered signal lower graph 
                     (x-samples, y-amplitude). 

 

 

  

 

 

  

 

 
2.3 Power-line interference in ECG signals 
   The simplest method to remove periodic artifacts 
is to compute the Fourier transform of the signal, 
delete the undesired components from the spectrum, 
and then compute the inverse Fourier transform. The 
undesired components could be set to zero, or better, 
to the average level of the signal components over a 
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few frequency samples around the component that is 
to be removed. 
   Periodic interference may also be removed by 
notch filters [1] with zeros on the unit circle in the z-
domain at the specific frequencies to be rejected. 
Applying the LabVIEW program we obtain Fig.5: 

 
Fig. 5. Random noise elimination using notch 

filter and Hanning filter. 
 
3.   The Pan-Tompkins algorithm for 
QRS detection 
   Pan and Tompkins [3], [4], [5] proposed a real-
time QRS detection algorithm based on analysis of 
the slope, amplitude and width of QRS complexes. 
The algorithm includes a series of filters and 
methods that perform lowpass, highpass, derivative, 
squaring, integration, adaptive thresholding and 
search procedures Fig.6. In this paper we 
implemented the Pan-Tompkins algorithm for QRS 
detection [1] in LabVIEW. 

Fig.6. Block diagram of the Pan-Tompkins
Algorithm for QRS detection. 

 
   Lowpass  filter: The recursive lowpass filter used 
in the Pan-Tompkins algorithm has integer 

coefficients for reducing computational complexity, 
with the transfer function defined as: 
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The output y(n) is related to the input x(n) as: 
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Samples 

Signal with 60Hz noise 

With the sampling rate being 200 Hz, the filter has a 
rather low cutoff frequency of  fc=11Hz, and 
introduces a delay of 5 samples or 24ms. The filter 
provides an attenuation greater than 35dB at 60Hz, 
and effectively suppresses power-line interference, 
if present. 

Processed signal 
with notch filter 

   Highpass filter: The highpass filter used in the 
algorithm is implemented as an allpass filter minus a 
lowpass filter. The lowpass component has the 
transfer function Averaged signal 

with Hanning 

1

32

1
1)(

−

−

−

−
=

z
zzH lp   (11) 

the input-output relationship is: 
( ) ( ) ( ) ( ).321 −−+−= nxnxnyny  (12) 

The transfer function Hhp(z) of the highpass filter is 
specified as: 

( ) ( ).
32
116 zHzzH lphp −= −

 (13) 

The output p(n) of the highpass filter is given by the 
difference equation 

( ) ( ) ( ) ( ) ( )[ ],321
32
116 −−+−−−= nxnxnynxnp  (14) 

where x(n) and y(n) being related as in (12). The 
highpass filter has a cutoff frequency of 5Hz and 
introduces a delay of 80ms. 
   Derivative operator: The derivative operation 
used by Pan and Tompkins is specified as: 

( ) ( ) ( ) ( ) ( )[ ],42312
8
1

−−−−−+= nxnxnxnxny (15) 

and approximates the ideal 
dt
d operator up to 30 Hz. 

The derivative procedure suppresses the low-
frequency components of the P and T waves, and 
provides a large gain to the high-frequency 
components arising from the high slopes of the QRS 
complex. 
   Squaring: The squaring operation makes the result 
positive and emphasizes large differences resulting 
from QRS complexes; the small differences arising 
from P and T waves are suppressed. The high-
frequency components in the signal related to the 
QRS complex are further enhanced. 

1 
 

2 3 4 

filter

1: Band pass filter 2: Differentiator 
3: Squaring operation 4: Moving-window integrator 
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   Integration: As observed in the previous 
subsection, the output of a derivative-based 
operation will exhibit multiple peaks within the 
duration of a single QRS complex. The Pan-
Tompkins algorithm performs smoothing of the 
output of the preceding operations through a 
moving-window integration filter as: 

( ) ( )( ) ( )( )[ nxNnxNnx
N

ny ++−−+−−= ...211 ( )].(16) 

The choice of the window width N is to be made 
with the following considerations: too large a value 
will result in the outputs due to the QRS and T 
waves being merged, whereas too small a value 
could yield several peaks for a single QRS. A 
window width of N=30 was found to be suitable for 
fs = 200Hz. 
   Adaptive thresholding: The thresholding 
procedure in the Pan-Tompkins algorithm adapts to 
changes in the ECG signal by computing running 
estimates of signal and noise peaks. A peak is said to 
be detected whenever the final output changes 
direction within a specified interval. SPKI represents 
the peak level that the algorithm has learned to be 
that corresponding to QRS peaks and NPKI 
represents the peak level related to non-QRS 
events.THRESHOLDI1 and THRESHOLDI2 are two 
thresholds used to categorize peaks detected as 
signal or noise. Every new peak detected is 
categorized as a signal peak or a noise peak. If a 
peak exceeds THRESHOLDI1 during the first step 
of analysis, it is classified as a QRS peak. Using the 
searchback technique the peak should be above 
THRESHOLDI2 to be called a QRS. The peak levels 
and thresholds are updated after each peak is 
detected and classified as: 
SPKI = 0.125PEAKI + 0.875SPKI  if PEAKI is a 
signal peak; 
NPKI = 0.125PEAKI + 0.875NPKI if PEAKI is a 
noise peak; 
THRESHOLDI1=NPKI + 0.25(SPKI - NPKI); 
THRESHOLDI2=0.5THRESHOLD I1     
The updating formula for SPKI is changed to 
SPKI = 0.25PEAKI + 0.75SPKI 
If a QRS is detected in the searchback procedure [1], 
[3], [4] using THRESHOLDI2. 
 

 
Fig.7.Upper plot-Schematic ECG signal; Lower p

Output of the moving-window integrator. 

Fig.7 illustrates the effect of the window width on 
the output of the integrator and its relationship to the 
QRS width. 
 
4. LabVIEW Pan-Tompkins algorithm 
implementation 
   After implementing the upper equations in 
LabVIEW we obtain following results Fig.8, Fig.9. 
 

Fig.8. Pan-Tompkins algorithm front panel.

Fig.9. Results of the Pan-Tompkins algorithm. 
a) two cycles of a filtered ECG; 

                      b) output after ECG squaring; 
                      c) the result of the final integrator.  

 
 

5. QRS Detection using Adaptive 
Threshold 
   Biomedical signals are fundamental observations 
for analyzing the body function and for diagnosing a 
wide spectrum of diseases. Unfortunately, 
information provided by bioelectric signals is 
generally time-varying, nonstationary, sometimes 
transient, and usually corrupted by noise. One of the 
major areas where new insights can be expected is 
the cardiovascular domain. For diagnosis purpose, 
the noninvasive electrocardiogram is of great value 
in clinical practice. The ECG is composed of a set 
of waveforms resulting from atrial and ventricular 
depolarization and repolarization. The first step 
towards electrocardiogram analysis is the inspection 
of P, QRS, and T waves; each one of these 
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elementary components is a series of onset, offset, 
peak, and valley and inflection points. 
   Detecting QRS complexes in the ECG is one of 
the most important tasks that need to be performed. 
A real-time detection method implemented in 
LabVIEW is proposed, based on comparison 
between absolute values of summed differentiated 
electrocardiograms of one of more ECG leads and 
adaptive threshold. The threshold combines three 
parameters: an adaptive slew-rate value, a second 
value which rises when high-frequency noise occurs, 
and a third one intended to avoid missing of low 
amplitude beats [6], [9]. Two algorithms were 
implemented in LabVIEW: The first algorithm 
detects at the current beat and the second algorithm 
has an RR interval analysis component in addition. 
The algorithms are self-adjusting to the thresholds 
and weighting constants, regardless of resolution 
and sampling frequency used. They operate with any 
number L of ECG leads, selfsynchronize to QRS or 
beat slopes and adapt to beat-to-beat intervals. 
   The algorithm operates with a complex lead Y of 
several primary leads L. In cases of 12-standard 
leads, synthesis of the three quasi-orthogonal Frank 
leads is recommended first, thus determining the 
complex lead as a spatial vector. The complex lead 
is obtained as: 

( ) ( ) ( )( )∑
=

−−+=
L

j

iXjiXjabs
L

iY
1

111
                (16) 

where  is the amplitude value of the sample i 
in lead  j, and  is the current complex lead. This 

( )iXj
( )iY

formula, except the normalizing coefficient L1  and 
the absolute value, was initially adopted from the 
work of Bakardjian. Operating with unsigned, 
absolute values is convenient when dealing with 
QRSs and extrasystoles having different, for 
example positive in one lead and negative in the 
other lead deflections. 
   Adaptive steep-slope threshold – S 
   Initially S = 0.7*max(Y) is set for the first 5 s of 
the signal, where at least two QRS complexes 
should occur. A buffer with 5 steep-slope threshold 
values is preset: 
            ,                            (17) [ 54321 SSSSSSS = ]
where  are equal to S. QRS or beat complex 
is detected if Yi ≥ SIB, where the differentiated and 
summed signals from L leads are compared to the 
absolute value of a threshold that is SIB=S+I+B, a 
combination of three independent adaptive 
thresholds:  S – Steep slope threshold, I – 
Integrating threshold for high frequency 
components, B – Beat expectation threshold.  

51 SS ÷

   No detection is allowed 300 ms after the current 
one. In the interval QRS ÷ QRS+300ms a new value 
of S5 is calculated: 
                          newS5 = 0.7*max(Yi).                (18) 
The estimated newS5 value can become quite high, 
if steep slope premature ventricular contraction or 
artifact appeared, and for that reason it is limited to 
newS5 = 1.2* S5 if new  S5 > 1.6* S5. The SS  
buffer is refreshed excluding the oldest component, 
and including S5 = newS5. M is calculated as an 
average value of SS. S  is decreased in an interval 
300 to 1300 ms following the last QRS detection at 
a low slope, reaching 70 % of its refreshed value at 
1300 ms. After 1300 ms S  remains unchanged. The 
thresholds definitions are presented in more detail 
with the help of several examples. Two ECG leads 
are shown in Fig.10. Detected QRSs are marked 
with 'red O' on Lead 1. The summary lead and the 
steep-slope threshold are represented in Fig.11. The 
algorithm was implemented using LabVIEW. 

 
Fig.10. Adaptive steep-slope 

threshold with two ECG leads. 
 

 
Fig.11. Adaptive steep-slope 

threshold with summary lead and 
steep-slope threshold. 

   
  Adaptive integrating threshold – I 
   The integrating threshold I  is intended to raise the 
combined threshold if electromyogram noise is 
accompanying the ECG, thus protecting the 
algorithm against erroneous beat detection. Initially 
I is the mean value of the pseudo-spatial velocity Y 
for 350 ms. With every signal sample, I is updated 
adding the maximum of I in the latest 50 ms of the 
350 ms interval and subtracting maxY in the earliest 
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50 ms of the interval. It is possible to represent this 
in equation (19) 
I = I + (max(Yin latest 50 ms in the 350 ms interval) 
- max(Yin earliest 50 ms in the 350 ms 
interval))/150. 
   The way I is updated means that not every sample 
in the interval is integrated, but just the envelope of 
the pseudospatial velocity Y. The weight coefficient 
1/150 is empirically derived. Two ECG leads are 
shown in Fig.12. The pseudo-spatial velocity Y and 
the integrated threshold are presented in Fig.13. The 
correct detection is due to the rise of I with about  
0.2 mV. The beat complex is included in the 
integration process, thus making almost impossible a 
close detection to the previous complex. It is 
possible to observe the high rise of I after any of the 
complexes. The algorithm was implemented using 
LabVIEW. 
 

 
Fig.12. Adaptive integrating 

threshold with two ECG leads. 
 

 
Fig.13. Adaptive integrating threshold with pseudo-

spatial velocity and threshold representation. 
 
 
6. Beat detection algorithms 
   The QRS complexes and ventricular beats in an 
electrocardiogram represent the depolarization 
phenomenon of the ventricles and yield useful 
information about their behavior. Beat detection is a 
procedure preceding any kind of ECG processing 
and analysis.    

   A crucial part of any ECG processing algorithm is 
beat detection. Beat detection algorithms typically 
incorporate a preprocessing filter which decomposes 
the ECG into a signal which maximizes the signal-
to-noise ratio of the QRS complex. A nonlinear 
processing stage and moving window integrator are 
used to compute a signal that emphasizes the energy 
of the QRS complex. Beat detection logic 
incorporates a history of signal peaks which are used 
to establish signal and noise levels, respectively. A 
threshold is then used to decide if an incoming peak 
is due to the QRS complex or noise. If a period of 
time corresponding to the average heartbeat interval 
elapses without a beat detection a back-search 
strategy is used to check the ECG again for the 
presence of a beat. The described algorithm operates 
at the same rate as the input ECG. The used filters 
are designed to optimize the SNR of the QRS 
complex. The information from other frequency 
components of the ECG is filtered out and cannot be 
incorporated into the beat detection logic. Thus, the 
preprocessing filters are not useful to other ECG 
processing tasks. Preprocessing means a moving 
averaging filter for power-line interference 
suppression, that averages samples in one period of 
the power line interference frequency with a first 
zero at this frequency [7], [10]. 
   Adaptive beat expectation threshold – B 
   The beat expectation threshold B is intended to 
deal with heartbeats of normal amplitude followed 
by a beat with very small amplitude and respectively 
with very small slew rate. This can be observed for 
example in cases of electrode artifacts. Conversely 
to the integrating threshold protecting against 
erroneous QRS detection, B is protecting against 
QRS misdetection.  
   The effect of the threshold values and the type of 
features on the beat detection accuracy was studied. 
The beat detection accuracy of a one-channel 
detection block was computed using various 
threshold values, and both the sum-of-square and 
sum of- absolute features discussed above. From this 
analysis the threshold values can be strategically 
chosen to provide beat detection blocks with 
complementary detection rates. A buffer with the     
5 last BB intervals is updated at any new QRS 
detection. Bm is the mean value of the buffer.          
B = 0V in the interval from the last detected QRS to 
2/3 of the expected Bm. In the interval                 
QRS + Bm * 2/3 to QRS + Bm, B decreases           
1.4 times slower then the decrease of the previously 
discussed steep slope threshold (S in the              
300–1300 ms interval). After we obtain QRS + Bm 
the decrease of B is stopped. The time-course of the 
beat expectation threshold B is shown in Fig. 14. 

WSEAS TRANSACTIONS on COMPUTER RESEARCH Mihaela Lascu, Dan Lascu 

ISSN: 1991-8755
16

Issue 1, Volume 3, January 2008



The decrease of B with about 0.2 mV at the fourth 
QRS allows its detection, despite the lack of 
complex in Lead 2, which leads to a two-fold 
decrease of the summary lead amplitude Y as in 
Fig.15. The algorithm was implemented using 
LabVIEW. 
 

 
Fig.14. Adaptive beat expectation 

threshold with two leads. 
 

 
Fig.15. Adaptive beat expectation 
threshold with complex lead and 

threshold representation. 
 
   Fig. 16 gives an overview of the sequential levels 
in the beat detection algorithm. The goal of the 
detection algorithm is to maximize the number of 
true positives, while keeping the number of false 
negatives and false positives to a minimum. Since it 
is not possible to arrive at this goal using one simple 
detector, multiple detectors with complementary 
false negatives and false positives performances are 
simultaneously operated and the results of each 
fused together to arrive at an overall decision.  
   The advantage of this strategy is that multiple 
features which are indicative of the QRS complex 
can be used to detect beats. A nonlinear processing 
stage and moving window integrator (MWI) are used 
to compute a signal that emphasizes the energy of 
the QRS complex. Beat detection logic incorporates 
a history of signal peaks and noise peaks which are 
used to establish signal and noise levels, 
respectively. A threshold is then used to decide if an 
incoming peak is due to the QRS complex or noise. 
The event detector flags an event when a peak 

occurs in the output of a MWI operating on an 
existing feature. The beat detection process occurs at 
a subband rate instead of the input ECG rate. In a 
one-channel beat detection algorithm, the threshold 
value determines the classification of an incoming 
feature as a signal peak or noise peak. A low 
threshold will result in noise peaks being classified 
as a beat, and the feature value updated in the signal 
history. This will result in an inaccurate estimated 
signal level. However the noise history is updated 
accurately since the low threshold does not allow 
signal peaks to be incorrectly detected as noise. 
Similarly a high threshold will incorrectly result in 
some signal peaks being classified as noise and 
updated in the noise history. This will incorrectly 
raise the noise level and affect future beat 
detections. However in this way the signal history is 
updated accurately since beat detections using a high 
threshold are most likely correct. 

 
Fig. 16. ECG, ECG computed feature, MWI output, 

event detector output. 
 

The effect of the threshold values and the type of 
features on the beat detection accuracy was studied. 
The beat detection accuracy of a one-channel 
detection block was computed using various 
threshold values, and both the sum-of-square and 
sum of-absolute features discussed above. From this 
analysis the threshold values can be strategically 
chosen to provide beat detection blocks with 
complementary detection rates that means one with 
minimal false positives, and the other with minimal 
false negatives. Beat detection performance for a 
one-channel beat detection block was studied using 
different databases for various features and 
threshold values. Based on these preliminary studies 
we noted that, in general, the sum-of-square features 
generate less false positives and more false 
negatives for the same threshold value than the sum-
of-absolute features. This fact may be useful in a 
beat detection algorithm which uses multiple, 
complementary features such as these. 
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7. Cardiac Beat Recognition based on 
Wavelet Transform 
 
   Wavelet transforms [2], [8] have been applied to 
electrocardiogram signals for enhancing late 
potentials, reducing noise, and QRS detection, 
normal and abnormal beat recognition. In this paper 
the continuous wavelet transform CWT based on a 
complex analyzing function is applied to 
characterize local symmetry of signals and it is used 
for ECG arrhythmia analysis. The continuous 
wavelet transform CWT of a signal f belonging to 
L2(R) is defined by: 

( )( ) ( ) dt
a

bttf
a

bafW ∫
+∞

∞−
Ψ ⎟

⎠
⎞

⎜
⎝
⎛ −

Ψ=
1,            (19) 

where is a complex valued function with zero 
mean and satisfying  

Ψ
〈∞ΨC

      ( ) 〈∞Ψ=
−∞+

∞−Ψ ∫ ωωωπ dC
21

ˆ2                (20) 

in effect, if . The analyzed signal 21 LL ∩∈Ψ ( )tf  
is real and supposed to be two times continuously 
differentiable. Basically, hidden Markov models are 
doubly stochastic processes that can characterize 
any discrete sequence of feature vectors { } , 
derived from an input signal f(t) and considered as 
realizations of so-called observable process. The 
modeling technique described here considers the 
observed ECG signal f(t) as being equivalent to a 
sequence of events associated with state changes.   
A CWT technique is proposed to classify normal 
sinus rhythm (NSR) and various cardiac arrhythmias 
including atrial premature contraction (APC), 
premature ventricular contraction (PVC), 
superventricular tachycardia (SVT), ventricular 
tachycardia (VT) and ventricular fibrillation (VF). 
Analyzing the local maxima lines using the CWT 
technique it is possible to diagnose with accuracy 
the above disfunctionalities. 

Tt≤≤1to

 
Fig.17. CWT analysis of an electrocardiogram. 

8.  Conclusion 
   The results obtained using LabVIEW for the 
implementation of the Pan-Tompkins algorithm is 
very fast and useful, because the ECG can be easily 
read and saved in a file and the filtering, squaring, 
integrating, applying the moving window can be 
accurately done. The peak detection is very 
important in diagnostic decision. 
   The proposed algorithms for real-time and pseudo-
real time implementation are adaptive, independent 
of thresholds and constants values. They are self-
synchronized to the QRS steep slope and the heart 
rhythm, regardless of the resolution and sampling 
frequency used. 
   The beat detection accuracy of the algorithm is 
comparable to other algorithms reported in the 
literature. The large variety of QRS detection 
algorithms, and the continuous efforts for their 
enhancement, proves that universally acceptable 
solution has not been found yet. Difficulties arise 
mainly from the huge diversity of the QRS complex 
waveforms and the noise and artifacts 
accompanying the ECG signals. 
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