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1 Linguistic Model of Production 

Process  

 
By production process we understand the 

transformation action of resources (material, energy) 

in final products according of a fabrication recipe. 

     The model that we will show has the purpose to 

determine the set of actions strings that represents 

right evolutions of process with the help of linguistic 

mechanism. 

     A production system is defined as a 7-tuple: 

  

Σ = (O, R, M, A, T, I, S) 

 

where 

a) O= a finite and non empty set of finite products. 

b) R= a finite and non empty set of resources. 

c) M= set of materials. 

d) A= set of activities (phases) set 1,2,..,qi that must 

be executed for the fabrication of each other of ai∈O 

products. 

e) T= deliver plan 

f)  I= economical indicators 

g) S= set of fabrication processes 

 

     Between the phases from A exists a series of 

precedence established relations, that can be 

represented through many graphs: 

  

Γi = ({1, 2,.., qi },Ui).  

 

     These graphs don’t have circuits and always qi is 

the last activity from the respective graph. We note 

with Ui the arcs of graph Γi . There are one graph Γi  

for each product ai∈O. By linear the graphs Γi 

results Zi sets for all products. By successive 

applications of Shuffle operation results the plan set 

of fabrication: 

 

 

 

 

     where p= number of products or sets of products. 

  

     We note with Shuf
*
 the transitive closure for Shuf 

defined in 2.1 

 

2 Shuffle Operation 
 

 Definition 

For V a vocabulary and two strings x,y∈V
*
 the 

shuffle operation is defined:  

 

Shuf(x,y)={x1y1 x2y2… xpyp : ii yx , ∈V
*
,  x=x1x2…xp , 

y=y1y2…yp , p≥1 }                             (1) 

 

     The note xi,yi∈V
* 

 means that xi and yi can be any 

symbols sequences (substrings) from the two strings 

x and y. 

 

2.2   Computational formula 

 The Shuffle operation for two characters set x 

and y of different lengths has two phases: the 

two strings division in substrings sequences xi 

and yi and then the mixing of all sequences xi 

and yi that result from the first phase. 
 

2.2.1   The string division 

Note a string with s=a1 a2... an and |s|=n.  We note 

by  f(i,s) the function for first  i string symbols: 









=

=

∗
∪

P

i

iZShufW
1

WSEAS TRANSACTIONS on COMPUTER RESEARCH


 

Adalbert Golomety, Alina Pitic, Iulia Golomety, Antoniu Pitic

ISSN: 1991-8755
1

Issue 1, Volume 3, January 2008



  ( ) 1,1 asf =  

  21),2( aasf =  

........................ 

........................ 

  naaasnf ...),( 21=                (2) 

      

     Note s
i
 the characters beginning from i position 

from s string. One results the next substrings : 

 

  naaass ...21

1 ==  

  naas ....2

2 =  

  naas ....3

3 =  

  .................. 

  n

n as = .  

 

     For example if we have s= abc  string it can be 

divided in substrings this way: 

 

cba , bca  , cab   , abc  . 

 

The first string cba  is obtained by : 

 

( )sf ,1   ( )2,1 sf   ( )3,1 sf  that’s equivalent with 

( )abcf ,1  ( )bcf ,1   ( )cf ,1  

 

The second string bca  is obtained by: 

 

( )sf ,1  ( )2,2 sf    that’s equivalent with 

  ( )abcf ,1  ( )bcf ,2    

 

The third string cab  is obtained by : 

 

( )sf ,2   ( )3,1 sf   that’s equivalent with  

    ( )abcf ,2  ( )cf ,1    

 

The last string abc  is: 

 

( )sf ,3  that’s equivalent with ( )abcf ,3  

 

We can make the next notes for the recurrence 

formula: 

 

 ( ) =sf 3
{ ( )sf 2

,  ( )sf ,3  f 
0
(0) } (3) 

 

With ( )sf 3
we have noted the third order of the 

function  f .  With  f 
0
(0) we have noted the  order 0 

of the f function.  Function f 
0
(0)   is applied to the 

empty string and returns the null string, and  

performs an write in the exit file of the function 

before it, namely  ( )sf ,3 . 

 

( )sf 2
={ ( )sf 1

,  ( )sf ,2  f 
1
(s 

3
) }        (4) 

  ( )sf 1
={ ( )sf 0

,  ( )sf ,1  f 
2
(s 

2
) }         (5) 

 

 

2.2.2 Return from the mixing of strings 

The ( )sf 0
 function returns null string, it is being 

used just for the returning of recursive function for 

( )sf 1
. 

     Next for  f 
1
(s 

3
) results : 

 

f 
1
(s 

3
)= { ( )30 sf ,  ( )3,1 sf  f 

0
(0) } for 13 =s     (6) 

 

     For f 
2
(s 

2
) : 

 

f 
2
(s 

2
)= { ( )21 sf ,  ( )2,2 sf  f 

0
(0) }                      (7) 

f 
1
(s 

2
)= { ( )20 sf ,  ( )2,1 sf  f 

0
(0) } for 22 =s    (8) 

 

     Making the replacements for s= abc  results : 

 

( ) =abcf 3
{ ( )abcf 2

,  ( )abcf ,3  f 
0
(0) }  

   exit for ( )abcf ,3  f 
0
(0)= abc  

 

( )abcf 2
={ ( )abcf 1

,  ( )abcf ,2  f 
1
(c) } 

( )abcf ,2  f 
1
(c)= ab   f 

1
(c)= ab { ( )cf 0

,  ( )cf ,1  

f 
0
(0) }= ab ( )cf ,1  f 

0
(0)= cab  

    exit= cab  

 

( )abcf 1
={ ( )abcf 0

, ( )abcf ,1  f 
2
(bc) }= 

= a  f 
2
(bc) 

 

f 
2
(bc)={ ( )bcf 1

, ( )bcf ,2  f 
0
(0) } 

a f
2
(bc)= a { ( )bcf 1

, bc f
0
(0)}= 

   ={ a ( )bcf 1
, a bc  f 

0
(0) }  

      exit = bca  
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 a f 
1
(bc)= a  { ( )bcf 0

,  ( )bcf ,1  f 
0
(0) }  

      exit= cba . 

 
2.2.3 General formula of division 

In general for ns =  we have: 

 

( )sf n
= { ( )sf n 1−

 ,  ( )snf ,  f 
0
(0) }                    (9) 

( )sf n 1−
=  { ( )sf n 2−

 , ( )snf ,1−  ( )nsf 1
 } 

( )sf n 2−
=  {  ( )sf n 3−

 ,  ( )snf ,2−  ( )12 −nsf } 

...... 

...... 

( ) =sf 3
{ ( )sf 2

,  ( )sf ,3  f 
n-3

(s
3+1

) } 

( )sf 2
={ ( )sf 1

,  ( )sf ,2  f 
n-2

(s 
3
) } 

( )sf 1
={ ( )sf 0

,  ( )sf ,1  f 
n-1

(s 
2
) } 

 

For any  x between  n and 1 we have the general 

formula : 

 

( ) ( ) ( ) ( ){ }11
,,

+−−= xxnxx
sfsxfsfsf        (10) 

 

    with  ns = . 

 

2.2.3  Strings mixture formula 

For two strings: 

 

    naaas ....211 =    

     nbbbs ....212 =     

 

and notes: 

 

( ) mn bbbaaassssx ........, 21212121

0 ==             (10) 

( ) mnn bbabaaassx ........, 2112121

1

−=  

 ( ) mnnn bbababaaassx ........, 321122121

2

−−=  

 ... 

( ) mkknknkn

k bbbababaaassx ............., 212112121 ++−−−=

 k <m 

 

     For k=n-1  on achieve the start of string s1 

 

⇒  n-k=n-(n-1)=1 and an-k=a1 

  k+1=n-1+1=n and bk+1= b n    

     Later we have the cases: 

 

 ( ) mnnn

n bbbababassx ........, 1221121

1

+
− = for  n<m 

 ( ) nn

n bababassx ...., 221121

1 =−  for n=m 

 ( ) nnmn

n aabababassx ........, 1221121

1

+
− =  for n>m 

 ....................................................................... 

 ( ) mnmnnm

n bbabababssx ........, 1221121 −−−=  for n<m 

 ( ) nmnm

n aaabababssx ........, 1221121 +=  for n>m 

 ....................................................................... 

 ( ) mnnnm

n bbabababbssx ........, 12312121

1

−−
+ =  

....................................................................... 

 ( ) nm

mn aaabbbssx ........, 212121

1 =−+  

 

2.2.4 General formula for shuffle 

By generalization of the two phases of shuffle 

formula (10) and (11) we obtain the final 

formula of shuffle.              
          shuffle   

     For string naaas ....211 = =====> ( )1sf n =S1 

                    shuffle  

                    mbbbs ....212 = =====> ( ) 22 Ssf m =  

     

     We note with  

 

       ( ) ( ){ }21021

0 ,,, SsSsssxSSX jiji ∈∈=  (12)  

 

the mixture of all substrings from 1S  and 2S  

obtained by function x0 . Also we extend the 

notation to X
1
,X

2
,...,X

n+m-1
 and we obtain the 

final formula : 

 

 SHUFFLE( 21 , ss )= 

{ ( ) ( )( ) ( ) ( )( ) ( ) ( )( )21

1

21

1

21

0 ,....,,, sfsfxsfsfxsfsfx mnmnmnmn −+ } 

 

or a shorter notation  

  

SHUFFLE( 21 , ss )={ ( ) ( )( ) 1,...,2,1,0, 21 −+= mnksfsfx mnk
} 

 

The last formula is the computational formula 

for Shuffle with two strings s1 and s2. 

 
 

3   Shuffle Implementation 
The source code in Visual FoxPro for 

implementation of the function ( )sf n
 is show 

below. First we suppose that an element of a 

string s has one char length: 
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FUNCTION fn  

PARAMETERS sir_f,x,p   

* sir_f=string created before 

* elements of string sir_f are separated by "|" 

* x= function order 

* p = position in initial string to be process 

 PRIVATE sir_ramas,n 

   sir_ramas=SUBSTR(sir_ini,p,x1-p+1) 

   n=LEN(sir_ramas) && length of remaining 

string 

   IF x=0.and.LEN(sir_ramas)=0 && f[0](0) 

exit from recursive function  

       SELECT sir_gen && exit file  

       APPEND BLANK 

       replace string_gen WITH sir_f+"|" 

       RETURN "" 

    ENDIF  

    IF x=0 && f[0](s) = "" 

               RETURN ""    

     ENDIF  

 

* generation of expression: f[x-1](s) 

    =fn(sir_f,x-1,p) 

 

*generation of expression:  f(x,s) f[n-x](s[x+1]) 

     sir_f2=sir_f+"|"+substr(sir_ini,p,x) &&=  

f(x,s) = string created before 

     =fn(sir_f2,n-x,p+x) 

 

RETURN 

    

     For the mixture of two strings with one char 

per symbol we use the code below. 

 

PROCEDURE mixt_2strings 

 SELECT 1 

 USE sir_shuffle excl 

 ZAP 

 sir_1="abcd" && test string 1 

 sir_2="wuxyz"  && test string 2 

 n=LEN(sir_1)  

 m=LEN(sir_2) 

 FOR i=0 TO n+m-1  

  sir_f="" 

  n1=n-i 

  m1=ABS(n1)+1 

  IF n1>0 then 

     ** 1 - n1 = sir_1 

     sir_f=sir_f+left(sir_1,n1) 

     c=MIN(n,m+n1) 

     FOR j=n1+1 TO c  

       sir_f=sir_f+SUBSTR(sir_2,j-n1,1)+ 

SUBSTR(sir_1,j,1) 

      ENDFOR       

      IF c>=n && remaining sir_2 

        sir_f=sir_f+substr(sir_2,c-n1+1,m-(c-n1)) 

       ELSE && remaining sir_1 

     sir_f=sir_f+SUBSTR(sir_1,c+1,m-c) 

  ENDIF   

   ELSE 

     ** 1 - m1 = sir_2 

     sir_f=sir_f+left(sir_2,m1) 

     c=MIN(m,n+m1) 

     FOR j=m1+1 TO c && n1+1-c=sir_2+ sir_1 

       sir_f=sir_f+SUBSTR(sir_1,j-m1,1) 

+SUBSTR(sir_2,j,1) 

      ENDFOR       

      IF c>=m && remaining  sir_1 

           sir_f=sir_f+substr(sir_1,c-m1+1,n-(c-1)) 

        ELSE && remaining sir_2 

           sir_f=sir_f+substr(sir_2,c+1,m-c) 

      ENDIF   

  ENDIF   

  SELECT sir_shuffle 

  APPEND BLANK 

  replace string_gen WITH sir_f 

ENDFOR  

RETURN 

 

     In production planning each symbol of  

strings is an execution phase of manufacturing 

process. Each symbol contain information about 

product (product code), operation to be 

performed in this phase (operation code) and the 

manufacturing series  

     In our implementation each symbol is a 32 

characters length. 

     A product may have many execution phases. 

The execution phases will be done in a 

sequential manner. Execution phases of one 

product make a string for shuffle operation.  

     We have a number of strings equally with 

the number of products (for different products) 

or equally with the numbers of manufacturing 

sets (for one product manufactured in many 

sets). Each set have a unique number, a series 

number.   

     Each execution phase have a unique 

execution time and will be done on one type of 

manufacturing post.  Each post type may have 
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one or many work places. Moreover each work 

place has its own start time for effective 

execution.    

     By shuffle operation on all the strings results 

a set of string of possible configurations of 

execution phases. For planning we scan the 

configurations set and append the start time, 

final time and execution time for each phase. At 

last we detect the minimum execution time for 

each configuration.    

  

 

4   Optimization 
We implemented our model first for one 

product manufactured in many sets. Each string 

of execution phases has completed with the 

series number of execution set.  

 

4.1   Eliminating duplicate configurations 

After shuffle operation we obtained a large 

number of configurations set. 

     For a product with only 2 execution phases 

we obtained the below number of 

configurations: 

 

Sets number Configurations set 

2        12 

3      768 

4 245760 

      

On a better look of configurations we observed 

duplicate configuration.  

     The first step in our optimization was to 

eliminate all duplicate configurations by a new 

scanning in configuration set. After we 

obtained: 

 

Sets number Configurations set 

2      6 

3     90 

4 2520 

 

 

4.2   Reducing the configurations number 

Even after elimination of duplicate 

configuration the number of configurations is 

high. 

     After the planning step we make a summary 

of configurations that have the same execution 

time. For a set of 90 configurations we obtained 

only 7 different execution times. 

 

 

Fig.1 Summary confuration 3 sets with 2 phases 

     In fig.1 the two execution phases are named 

TAI_BAGH and INDOI_BAGH. There a 3 sets 

(series) of the same product manufacturing. 

     By analyzing the configurations that have the 

same execution time we extract the following 

rule for reduce the configurations set.  

     In a real production planning one execution 

phase may be done on many work places. If 

exits many work place for the same type of 

execution phase, these phases for different 

series will be executed in parallel. So the order 

of these phases in configurations set may be 

anyone. That’s the rule we have extracted. 

    With this rule we obtained the reduction 

below: 

 

Phases Sets  Configurations  

 

Reduced  

configurations  

2 3     90 6 

7 4 3432 9 

 

 

4.3 Fluent allocation of manufacturing posts 

The next steps in planning optimization are 

related to use more parallelism and fluent 

distribution of phases to posts.  

     To increase the use time of work posts is 

useful to have more sequences with different 

series interlaced. For two phases and three 

series 001,002,003 the following sequences 

have long execution times: 

 

003 002 001 001 002 003 

002 001 003 003 001 002 
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     Sequences have the same characteristic, the 

series are embedded: 001 in 002 in 003 or 003 

in 001 in 002. 

     Sequences like 

 

 001 002 003 001 002 003 or 

 002 001 003 002 001 003  

 

have a minimum execution time. The last series 

are interlaced and increase the parallelism in 

distribution of phase to work posts. 

     We changed the code for the mixture of two 

strings: 

 

 naaas ....211 =  and nbbbs ....212 =  .  

 

The new code returns first  

 

  ( ) mnnn

n bbbababassx ........, 1221121

1

+
− =  

and not: 
 

 ( ) mn bbbaaassssx ........, 21212121

0 ==  

      

     In this manner we obtain first configurations 

with a minimum execution time. 

      After the last optimization we observed that 

the same configuration may have different 

execution times. The difference was in the 

distribution step. The high execution times are 

obtained by a distribution of a sequence of two 

phases of the same series with the same type of 

manufacturing post to different work places.  

     The last step in our optimization was to keep 

the same post assigned to a series how long it is 

possible. If the next phase of the same series 

may be executed on the same type of 

manufacturing post, this phase will be executed 

on the same post. This fact increases the fluent 

allocation of manufacturing posts and also the 

use time of work posts. 

 

5 Modeling by matrix grammars 
Modeling production planning by shuffle 

operations generates a high number of 

configurations 

In our point of view the shuffle can’t replace the 

parallelism. The linguistic model with shuffle 

may be replaced by a model with more 

parallelism. A model with  matrix grammar is a 

better solution. 

 

5.1    Classical Grammars 

Grammars generate strings over an alphabet 

symbols. The meaning of symbols involves the 

meaning of strings. If symbols are program 

instructions the stings are lines of program and 

the grammar is used in compilers. If symbols 

are state of cells the strings are the evolutions of 

cells and the grammar is useful in 

bioinformatics. If symbols are actions in a 

fabrication process the strings are the 

fabrication process planning. 

     One use the definition of Chomsky 

grammars: a grammar is a construct  

 

G = (N,T,S,P), 

where: 

           N is the nonterminal alphabet,  

           T is the terminal alphabet,  

           S the initial letter or axiom and 

           P the set of rewriting rules or productions.  

 

      The rewriting rules are on the form: 

 

A→w, A∈N, w∈(N ∪T )
*
 

 

for free-context grammars. 

 

     Given w,v∈(N∪T)
*
,an immediate or direct 

derivation (in 1 step) denoted: 

 

                w ⇒G v  

holds if and only if there exist u1,u2∈(N∪T)
* 

such that w=u1αu2 and v=u1βu2  

          and there exist α→β∈P.  

⇒*
G denotes the reflexive transitive closure and 

⇒+
G the transitive closure, respectively of ⇒G . 

      

     The language generated by a grammar is 

defined by: 

 

L(G)={w : S ⇒*
G w and w∈T

*
} 

      

     In other words L(G) is the set of terminal 

strings generated by a process of sequential 

derivations starting from S. 
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Example 1.1 

Let G = ( N,T,S,P ) be a grammar such that: 

   N = { S, A, C } 

   T = { a, b, c } 

   P={S→abc, S→aAbC, A→aAb, A→ab, 

C→cC, C→ c}  

     The language generated by G is the 

language: 

     

            L={a
n
b

n
c

k
: n≥1 and k≥1}                    (1) 

  
1.4   Matrix grammars 

In the previous grammars types (Chomsky 

grammars) derivation steps are made sequential 

(one occurrence of a nonterminal is rewritten) 

and in leftmost /rightmost fashion (extreme 

left/right derivation rule: the leftmost/rightmost 

nonterminal of string is rewritten first). In 

matrix grammars the derivations are made 

sequential or parallel, in one step many 

occurrences of the nonterminals are rewritten. A 

(simple) matrix grammar is a construct 

GM=(N,T,S,M) where N,T,S are the same as in 

Chomsky grammars and M is a finite set of 

nonempty sequences(matrices) 

 

mi : [ r1 , r2,, … , rni ] , ni≥1 

 

 with context free rewriting rules: 

 

Ak → wk , Ak ∈ N , wk∈ (N ∪T )* 

 

     A derivation in a matrix grammar is as 

follows:for every x,y∈(N ∪T)
*
, 

 

x ⇒GM  y 

       

if and only if there exist strings x0,x1,…,xni∈ 

(N∪T)
* 

(intermediate sentential forms) such that 

x0=x, xni=y,  

     and for 1≤i≤ni : 

  xi-1=ui-1Aiu
’
i-1 ,xi=ui-1 wi u

’
i-1 , ui-1, u

’
i-1∈(N ∪T)

*
 

and there exist mi:[A1→wk ,A2→w2,…,Ani→wni ] 

 

     In a derivation step all the rules from matrix 

m are done and in a sequential manner, each 

rule has to be performed in leftmost fashion. 

The language generated by the matrix grammar 

GM is defined usual as: 

L(GM)={w : S ⇒*
GM w  and w∈T

*
 } 

 

     Despite of context-free rewriting rules the 

matrix grammars may generate context-

sensitive languages 

     One notes with LM the languages generated 

by matrix grammars with context-free rules 

without λ productions. LM family includes 

context-free (CF) languages (every CF grammar 

is a matrix grammar with one single rule in 

every matrix m) and it is included in context-

sensitive languages: 

 

L2 ⊆ LM ⊆ L1 

 

Example 1.2 

 

GM=(N,T,S,M) is a matrix grammar such that: 

  N={ S,A,B,C } 

  T={ a,b,c }    S={S} 

  M={ m1, m2,  m3 } 

        m1 : [S → ABC ] 

        m2 : [A → aA, B → bB, C→ cC ] 

       m3 : [A → a, B → b, C→ c ] 

 

     GM generates the language: 

 

L(GM) = { a
n
b

n
c

n
 : n ≥ 1 } 

 

5.2   Vertical parallelism 

For the grammar GM the derivation tree for the 

string a
2
b

2
c

2
 is shown in figure 2. The vertical 

dash lines show the vertical parallelism from the 

matrix grammar GM 

 
S 

 

 

A            B             C 

 

 

             

 a       A      b      B       c     C 

 

 

                                

         a               b               c 
 

 

Fig 2. Derivation tree for a
2
b

2
c

2
 in GM of 

example 1.2 
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This derivation tree is like a tree structure of 

a product  P with three subansamble A, B and C 

The vertical parallelism between A, B and C 

is useful in modeling the parallel structure of 

the product P.  

 

 

5   Conclusion 
Modeling production planning by shuffle 

operations generates a high number of 

configurations.  

     Introduction of parallelism in production 

planning minimizes the execution times.  

     Our final conclusion is that the shuffle can’t 

replace the parallelism. The linguistic model 

with shuffle may be replaced by a model with 

more parallelism. 

     One must reconsider parallelism between the 

product parts and between the different series of 

the same product. In our point of view a model 

with  matrix grammar is a better solution 
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