
Shuffle from Sequential to Parallel in Production Planning

ADALBERT GOLOMETY, ALINA PITIC, IULIA GOLOMETY, ANTONIU PITIC

Department of Computer Science

Hermman Oberth Faculty of Engineering
Lucian Blaga University of Sibiu

4 Emil Cioran Street, 550025 Sibiu

ROMANIA

adalbert.golomety@ulbsibiu.ro, alinap29@yahoo.com, iulia_golomety@yahoo.co.uk, antoniu.pitic@ulbsibiu.ro

Abstract: - This paper presents an implementation of shuffle operation in production planning. We present a

computational formula for shuffle and some optimizations to reduce the sets of shuffle strings. Our idea is to

combine shuffle with parallelism for a planning of production phases.

Key-Words: - shuffle, production phases, production planning, linguistic model, execution time.

1 Linguistic Model of Production

Process

By production process we understand the

transformation action of resources (material, energy)

in final products according of a fabrication recipe.

 The model that we will show has the purpose to

determine the set of actions strings that represents

right evolutions of process with the help of linguistic

mechanism.

 A production system is defined as a 7-tuple:

Σ = (O, R, M, A, T, I, S)

where

a) O= a finite and non empty set of finite products.

b) R= a finite and non empty set of resources.

c) M= set of materials.

d) A= set of activities (phases) set 1,2,..,qi that must

be executed for the fabrication of each other of ai∈O

products.

e) T= deliver plan

f) I= economical indicators

g) S= set of fabrication processes

 Between the phases from A exists a series of

precedence established relations, that can be

represented through many graphs:

Γi = ({1, 2,.., qi },Ui).

 These graphs don’t have circuits and always qi is

the last activity from the respective graph. We note

with Ui the arcs of graph Γi . There are one graph Γi

for each product ai∈O. By linear the graphs Γi

results Zi sets for all products. By successive

applications of Shuffle operation results the plan set

of fabrication:

 where p= number of products or sets of products.

 We note with Shuf
*
 the transitive closure for Shuf

defined in 2.1

2 Shuffle Operation

 Definition

For V a vocabulary and two strings x,y∈V
*
 the

shuffle operation is defined:

Shuf(x,y)={x1y1 x2y2… xpyp : ii yx , ∈V
*
, x=x1x2…xp ,

y=y1y2…yp , p≥1 } (1)

 The note xi,yi∈V
*

 means that xi and yi can be any

symbols sequences (substrings) from the two strings

x and y.

2.2 Computational formula

 The Shuffle operation for two characters set x

and y of different lengths has two phases: the

two strings division in substrings sequences xi

and yi and then the mixing of all sequences xi

and yi that result from the first phase.

2.2.1 The string division

Note a string with s=a1 a2... an and |s|=n. We note

by f(i,s) the function for first i string symbols:









=

=

∗
∪

P

i

iZShufW
1

WSEAS TRANSACTIONS on COMPUTER RESEARCH

Adalbert Golomety, Alina Pitic, Iulia Golomety, Antoniu Pitic

ISSN: 1991-8755
1

Issue 1, Volume 3, January 2008

 () 1,1 asf =

 21),2(aasf =

........................

........................

 naaasnf ...),(21= (2)

 Note s
i
 the characters beginning from i position

from s string. One results the next substrings :

 naaass ...21

1 ==

 naas2

2 =

 naas3

3 =

 n

n as = .

 For example if we have s= abc string it can be

divided in substrings this way:

cba , bca , cab , abc .

The first string cba is obtained by :

()sf ,1 ()2,1 sf ()3,1 sf that’s equivalent with

()abcf ,1 ()bcf ,1 ()cf ,1

The second string bca is obtained by:

()sf ,1 ()2,2 sf that’s equivalent with

 ()abcf ,1 ()bcf ,2

The third string cab is obtained by :

()sf ,2 ()3,1 sf that’s equivalent with

 ()abcf ,2 ()cf ,1

The last string abc is:

()sf ,3 that’s equivalent with ()abcf ,3

We can make the next notes for the recurrence

formula:

 () =sf 3
{ ()sf 2

, ()sf ,3 f
0
(0) } (3)

With ()sf 3
we have noted the third order of the

function f . With f
0
(0) we have noted the order 0

of the f function. Function f
0
(0) is applied to the

empty string and returns the null string, and

performs an write in the exit file of the function

before it, namely ()sf ,3 .

()sf 2
={ ()sf 1

, ()sf ,2 f
1
(s

3
) } (4)

 ()sf 1
={ ()sf 0

, ()sf ,1 f
2
(s

2
) } (5)

2.2.2 Return from the mixing of strings

The ()sf 0
 function returns null string, it is being

used just for the returning of recursive function for

()sf 1
.

 Next for f
1
(s

3
) results :

f
1
(s

3
)= { ()30 sf , ()3,1 sf f

0
(0) } for 13 =s (6)

 For f
2
(s

2
) :

f
2
(s

2
)= { ()21 sf , ()2,2 sf f

0
(0) } (7)

f
1
(s

2
)= { ()20 sf , ()2,1 sf f

0
(0) } for 22 =s (8)

 Making the replacements for s= abc results :

() =abcf 3
{ ()abcf 2

, ()abcf ,3 f
0
(0) }

 exit for ()abcf ,3 f
0
(0)= abc

()abcf 2
={ ()abcf 1

, ()abcf ,2 f
1
(c) }

()abcf ,2 f
1
(c)= ab f

1
(c)= ab { ()cf 0

, ()cf ,1

f
0
(0) }= ab ()cf ,1 f

0
(0)= cab

 exit= cab

()abcf 1
={ ()abcf 0

, ()abcf ,1 f
2
(bc) }=

= a f
2
(bc)

f
2
(bc)={ ()bcf 1

, ()bcf ,2 f
0
(0) }

a f
2
(bc)= a { ()bcf 1

, bc f
0
(0)}=

 ={ a ()bcf 1
, a bc f

0
(0) }

 exit = bca

WSEAS TRANSACTIONS on COMPUTER RESEARCH Adalbert Golomety, Alina Pitic, Iulia Golomety, Antoniu Pitic

ISSN: 1991-8755
2

Issue 1, Volume 3, January 2008

 a f
1
(bc)= a { ()bcf 0

, ()bcf ,1 f
0
(0) }

 exit= cba .

2.2.3 General formula of division

In general for ns = we have:

()sf n
= { ()sf n 1−

 , ()snf , f
0
(0) } (9)

()sf n 1−
= { ()sf n 2−

 , ()snf ,1− ()nsf 1
 }

()sf n 2−
= { ()sf n 3−

 , ()snf ,2− ()12 −nsf }

......

......

() =sf 3
{ ()sf 2

, ()sf ,3 f
n-3

(s
3+1

) }

()sf 2
={ ()sf 1

, ()sf ,2 f
n-2

(s
3
) }

()sf 1
={ ()sf 0

, ()sf ,1 f
n-1

(s
2
) }

For any x between n and 1 we have the general

formula :

() () () (){ }11
,,

+−−= xxnxx
sfsxfsfsf (10)

 with ns = .

2.2.3 Strings mixture formula

For two strings:

 naaas211 =

 nbbbs212 =

and notes:

() mn bbbaaassssx, 21212121

0 == (10)

() mnn bbabaaassx, 2112121

1

−=

 () mnnn bbababaaassx, 321122121

2

−−=

 ...

() mkknknkn

k bbbababaaassx, 212112121 ++−−−=

 k <m

 For k=n-1 on achieve the start of string s1

⇒ n-k=n-(n-1)=1 and an-k=a1

 k+1=n-1+1=n and bk+1= b n

 Later we have the cases:

 () mnnn

n bbbababassx, 1221121

1

+
− = for n<m

 () nn

n bababassx, 221121

1 =− for n=m

 () nnmn

n aabababassx, 1221121

1

+
− = for n>m

 ...

 () mnmnnm

n bbabababssx, 1221121 −−−= for n<m

 () nmnm

n aaabababssx, 1221121 += for n>m

 ...

 () mnnnm

n bbabababbssx, 12312121

1

−−
+ =

...

 () nm

mn aaabbbssx, 212121

1 =−+

2.2.4 General formula for shuffle

By generalization of the two phases of shuffle

formula (10) and (11) we obtain the final

formula of shuffle.
 shuffle

 For string naaas211 = =====> ()1sf n =S1

 shuffle

 mbbbs212 = =====> () 22 Ssf m =

 We note with

 () (){ }21021

0 ,,, SsSsssxSSX jiji ∈∈= (12)

the mixture of all substrings from 1S and 2S

obtained by function x0 . Also we extend the

notation to X
1
,X

2
,...,X

n+m-1
 and we obtain the

final formula :

 SHUFFLE(21 , ss)=

{ () ()() () ()() () ()()21

1

21

1

21

0 ,....,,, sfsfxsfsfxsfsfx mnmnmnmn −+ }

or a shorter notation

SHUFFLE(21 , ss)={ () ()() 1,...,2,1,0, 21 −+= mnksfsfx mnk
}

The last formula is the computational formula

for Shuffle with two strings s1 and s2.

3 Shuffle Implementation
The source code in Visual FoxPro for

implementation of the function ()sf n
 is show

below. First we suppose that an element of a

string s has one char length:

WSEAS TRANSACTIONS on COMPUTER RESEARCH Adalbert Golomety, Alina Pitic, Iulia Golomety, Antoniu Pitic

ISSN: 1991-8755
3

Issue 1, Volume 3, January 2008

FUNCTION fn

PARAMETERS sir_f,x,p

* sir_f=string created before

* elements of string sir_f are separated by "|"

* x= function order

* p = position in initial string to be process

 PRIVATE sir_ramas,n

 sir_ramas=SUBSTR(sir_ini,p,x1-p+1)

 n=LEN(sir_ramas) && length of remaining

string

 IF x=0.and.LEN(sir_ramas)=0 && f0

exit from recursive function

 SELECT sir_gen && exit file

 APPEND BLANK

 replace string_gen WITH sir_f+"|"

 RETURN ""

 ENDIF

 IF x=0 && f[0](s) = ""

 RETURN ""

 ENDIF

* generation of expression: f[x-1](s)

 =fn(sir_f,x-1,p)

*generation of expression: f(x,s) f[n-x](s[x+1])

 sir_f2=sir_f+"|"+substr(sir_ini,p,x) &&=

f(x,s) = string created before

 =fn(sir_f2,n-x,p+x)

RETURN

 For the mixture of two strings with one char

per symbol we use the code below.

PROCEDURE mixt_2strings

 SELECT 1

 USE sir_shuffle excl

 ZAP

 sir_1="abcd" && test string 1

 sir_2="wuxyz" && test string 2

 n=LEN(sir_1)

 m=LEN(sir_2)

 FOR i=0 TO n+m-1

 sir_f=""

 n1=n-i

 m1=ABS(n1)+1

 IF n1>0 then

 ** 1 - n1 = sir_1

 sir_f=sir_f+left(sir_1,n1)

 c=MIN(n,m+n1)

 FOR j=n1+1 TO c

 sir_f=sir_f+SUBSTR(sir_2,j-n1,1)+

SUBSTR(sir_1,j,1)

 ENDFOR

 IF c>=n && remaining sir_2

 sir_f=sir_f+substr(sir_2,c-n1+1,m-(c-n1))

 ELSE && remaining sir_1

 sir_f=sir_f+SUBSTR(sir_1,c+1,m-c)

 ENDIF

 ELSE

 ** 1 - m1 = sir_2

 sir_f=sir_f+left(sir_2,m1)

 c=MIN(m,n+m1)

 FOR j=m1+1 TO c && n1+1-c=sir_2+ sir_1

 sir_f=sir_f+SUBSTR(sir_1,j-m1,1)

+SUBSTR(sir_2,j,1)

 ENDFOR

 IF c>=m && remaining sir_1

 sir_f=sir_f+substr(sir_1,c-m1+1,n-(c-1))

 ELSE && remaining sir_2

 sir_f=sir_f+substr(sir_2,c+1,m-c)

 ENDIF

 ENDIF

 SELECT sir_shuffle

 APPEND BLANK

 replace string_gen WITH sir_f

ENDFOR

RETURN

 In production planning each symbol of

strings is an execution phase of manufacturing

process. Each symbol contain information about

product (product code), operation to be

performed in this phase (operation code) and the

manufacturing series

 In our implementation each symbol is a 32

characters length.

 A product may have many execution phases.

The execution phases will be done in a

sequential manner. Execution phases of one

product make a string for shuffle operation.

 We have a number of strings equally with

the number of products (for different products)

or equally with the numbers of manufacturing

sets (for one product manufactured in many

sets). Each set have a unique number, a series

number.

 Each execution phase have a unique

execution time and will be done on one type of

manufacturing post. Each post type may have

WSEAS TRANSACTIONS on COMPUTER RESEARCH Adalbert Golomety, Alina Pitic, Iulia Golomety, Antoniu Pitic

ISSN: 1991-8755
4

Issue 1, Volume 3, January 2008

one or many work places. Moreover each work

place has its own start time for effective

execution.

 By shuffle operation on all the strings results

a set of string of possible configurations of

execution phases. For planning we scan the

configurations set and append the start time,

final time and execution time for each phase. At

last we detect the minimum execution time for

each configuration.

4 Optimization
We implemented our model first for one

product manufactured in many sets. Each string

of execution phases has completed with the

series number of execution set.

4.1 Eliminating duplicate configurations

After shuffle operation we obtained a large

number of configurations set.

 For a product with only 2 execution phases

we obtained the below number of

configurations:

Sets number Configurations set

2 12

3 768

4 245760

On a better look of configurations we observed

duplicate configuration.

 The first step in our optimization was to

eliminate all duplicate configurations by a new

scanning in configuration set. After we

obtained:

Sets number Configurations set

2 6

3 90

4 2520

4.2 Reducing the configurations number

Even after elimination of duplicate

configuration the number of configurations is

high.

 After the planning step we make a summary

of configurations that have the same execution

time. For a set of 90 configurations we obtained

only 7 different execution times.

Fig.1 Summary confuration 3 sets with 2 phases

 In fig.1 the two execution phases are named

TAI_BAGH and INDOI_BAGH. There a 3 sets

(series) of the same product manufacturing.

 By analyzing the configurations that have the

same execution time we extract the following

rule for reduce the configurations set.

 In a real production planning one execution

phase may be done on many work places. If

exits many work place for the same type of

execution phase, these phases for different

series will be executed in parallel. So the order

of these phases in configurations set may be

anyone. That’s the rule we have extracted.

 With this rule we obtained the reduction

below:

Phases Sets Configurations

Reduced

configurations

2 3 90 6

7 4 3432 9

4.3 Fluent allocation of manufacturing posts

The next steps in planning optimization are

related to use more parallelism and fluent

distribution of phases to posts.

 To increase the use time of work posts is

useful to have more sequences with different

series interlaced. For two phases and three

series 001,002,003 the following sequences

have long execution times:

003 002 001 001 002 003

002 001 003 003 001 002

WSEAS TRANSACTIONS on COMPUTER RESEARCH Adalbert Golomety, Alina Pitic, Iulia Golomety, Antoniu Pitic

ISSN: 1991-8755
5

Issue 1, Volume 3, January 2008

 Sequences have the same characteristic, the

series are embedded: 001 in 002 in 003 or 003

in 001 in 002.

 Sequences like

 001 002 003 001 002 003 or

 002 001 003 002 001 003

have a minimum execution time. The last series

are interlaced and increase the parallelism in

distribution of phase to work posts.

 We changed the code for the mixture of two

strings:

 naaas211 = and nbbbs212 = .

The new code returns first

 () mnnn

n bbbababassx, 1221121

1

+
− =

and not:

 () mn bbbaaassssx, 21212121

0 ==

 In this manner we obtain first configurations

with a minimum execution time.

 After the last optimization we observed that

the same configuration may have different

execution times. The difference was in the

distribution step. The high execution times are

obtained by a distribution of a sequence of two

phases of the same series with the same type of

manufacturing post to different work places.

 The last step in our optimization was to keep

the same post assigned to a series how long it is

possible. If the next phase of the same series

may be executed on the same type of

manufacturing post, this phase will be executed

on the same post. This fact increases the fluent

allocation of manufacturing posts and also the

use time of work posts.

5 Modeling by matrix grammars
Modeling production planning by shuffle

operations generates a high number of

configurations

In our point of view the shuffle can’t replace the

parallelism. The linguistic model with shuffle

may be replaced by a model with more

parallelism. A model with matrix grammar is a

better solution.

5.1 Classical Grammars

Grammars generate strings over an alphabet

symbols. The meaning of symbols involves the

meaning of strings. If symbols are program

instructions the stings are lines of program and

the grammar is used in compilers. If symbols

are state of cells the strings are the evolutions of

cells and the grammar is useful in

bioinformatics. If symbols are actions in a

fabrication process the strings are the

fabrication process planning.

 One use the definition of Chomsky

grammars: a grammar is a construct

G = (N,T,S,P),

where:

 N is the nonterminal alphabet,

 T is the terminal alphabet,

 S the initial letter or axiom and

 P the set of rewriting rules or productions.

 The rewriting rules are on the form:

A→w, A∈N, w∈(N ∪T)
*

for free-context grammars.

 Given w,v∈(N∪T)
*
,an immediate or direct

derivation (in 1 step) denoted:

 w ⇒G v

holds if and only if there exist u1,u2∈(N∪T)
*

such that w=u1αu2 and v=u1βu2

 and there exist α→β∈P.

⇒*
G denotes the reflexive transitive closure and

⇒+
G the transitive closure, respectively of ⇒G .

 The language generated by a grammar is

defined by:

L(G)={w : S ⇒*
G w and w∈T

*
}

 In other words L(G) is the set of terminal

strings generated by a process of sequential

derivations starting from S.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Adalbert Golomety, Alina Pitic, Iulia Golomety, Antoniu Pitic

ISSN: 1991-8755
6

Issue 1, Volume 3, January 2008

Example 1.1

Let G = (N,T,S,P) be a grammar such that:

 N = { S, A, C }

 T = { a, b, c }

 P={S→abc, S→aAbC, A→aAb, A→ab,

C→cC, C→ c}

 The language generated by G is the

language:

 L={a
n
b

n
c

k
: n≥1 and k≥1} (1)

1.4 Matrix grammars

In the previous grammars types (Chomsky

grammars) derivation steps are made sequential

(one occurrence of a nonterminal is rewritten)

and in leftmost /rightmost fashion (extreme

left/right derivation rule: the leftmost/rightmost

nonterminal of string is rewritten first). In

matrix grammars the derivations are made

sequential or parallel, in one step many

occurrences of the nonterminals are rewritten. A

(simple) matrix grammar is a construct

GM=(N,T,S,M) where N,T,S are the same as in

Chomsky grammars and M is a finite set of

nonempty sequences(matrices)

mi : [r1 , r2,, … , rni] , ni≥1

 with context free rewriting rules:

Ak → wk , Ak ∈ N , wk∈ (N ∪T)*

 A derivation in a matrix grammar is as

follows:for every x,y∈(N ∪T)
*
,

x ⇒GM y

if and only if there exist strings x0,x1,…,xni∈

(N∪T)
*

(intermediate sentential forms) such that

x0=x, xni=y,

 and for 1≤i≤ni :

 xi-1=ui-1Aiu
’
i-1 ,xi=ui-1 wi u

’
i-1 , ui-1, u

’
i-1∈(N ∪T)

*

and there exist mi:[A1→wk ,A2→w2,…,Ani→wni]

 In a derivation step all the rules from matrix

m are done and in a sequential manner, each

rule has to be performed in leftmost fashion.

The language generated by the matrix grammar

GM is defined usual as:

L(GM)={w : S ⇒*
GM w and w∈T

*
 }

 Despite of context-free rewriting rules the

matrix grammars may generate context-

sensitive languages

 One notes with LM the languages generated

by matrix grammars with context-free rules

without λ productions. LM family includes

context-free (CF) languages (every CF grammar

is a matrix grammar with one single rule in

every matrix m) and it is included in context-

sensitive languages:

L2 ⊆ LM ⊆ L1

Example 1.2

GM=(N,T,S,M) is a matrix grammar such that:

 N={ S,A,B,C }

 T={ a,b,c } S={S}

 M={ m1, m2, m3 }

 m1 : [S → ABC]

 m2 : [A → aA, B → bB, C→ cC]

 m3 : [A → a, B → b, C→ c]

 GM generates the language:

L(GM) = { a
n
b

n
c

n
 : n ≥ 1 }

5.2 Vertical parallelism

For the grammar GM the derivation tree for the

string a
2
b

2
c

2
 is shown in figure 2. The vertical

dash lines show the vertical parallelism from the

matrix grammar GM

S

A B C

 a A b B c C

 a b c

Fig 2. Derivation tree for a
2
b

2
c

2
 in GM of

example 1.2

WSEAS TRANSACTIONS on COMPUTER RESEARCH Adalbert Golomety, Alina Pitic, Iulia Golomety, Antoniu Pitic

ISSN: 1991-8755
7

Issue 1, Volume 3, January 2008

This derivation tree is like a tree structure of

a product P with three subansamble A, B and C

The vertical parallelism between A, B and C

is useful in modeling the parallel structure of

the product P.

5 Conclusion
Modeling production planning by shuffle

operations generates a high number of

configurations.

 Introduction of parallelism in production

planning minimizes the execution times.

 Our final conclusion is that the shuffle can’t

replace the parallelism. The linguistic model

with shuffle may be replaced by a model with

more parallelism.

 One must reconsider parallelism between the

product parts and between the different series of

the same product. In our point of view a model

with matrix grammar is a better solution

References:

[1] Jay Gorsher, Shullfe languges, Petri nets and

context sensitive grammars, Comunications of ACM,

vol.24 isue 9 , 1981, pp. 328-342

[2] S. Ginsburg and A. Greibach, Abstract families

of language, American Math. Society Memoirs,

1969, pp.30-76

[3] Th. Rus, Mecanisme formale pentru specificarea

limbajelor, Ed.Bucharest: Academiei, 1983, pp. 52-

55, 86-96.

[4] Gh. Paun, Mecanisme generative ale proceselor

economice, Ed.Bucharest: Tehnica, 1980, pp. 48-53,

112-116

[5] C. Martin-Vide, Formal languages for linguists:

classical and nonclasical models, in 2001 Proc.

TALN Conf., pp. 26-51

[6] A.Golomety, Horizontal parallel grammars,

Proc of 5
th
Roedunet IEE International Conference,

Sibiu Romania, 2006, pp.300-305

[7] A.Golomety, E.M.Popa, Formal modeling by a

bi-parallel grammar, WEAS Transaction on

Information Science and Application, volume 4

January, 2007, pg.139-144, ISSN:1790-0832

[8] A.Golomety, Alina Pitic,I.Golomety, Antoniu

Pitic, Implementation Of Shuffle Operation In

Manufacturing Process Planning,, Proc of the 3rd

International Conference On Manufacturing Science

And Education - MSE 2007 Sibiu, Romania, July

12-14, 2007 pp. 161-162, ISSN: 1583-7904

[9] Adalbert Golomety, Alina Pitic,Iulia Golomety,

Antoniu Pitic, Production Planning by Shuffle

Operation, Proc of the 11th WSEAS International

Conference on COMPUTERS, Agios Nikolaos,

Crete Island, Greece, July 26-28, 2007 pp. 178-183,

ISSN: 1790-5117,ISBN: 978-960-8457-95-9

 [10] A.Golomety, Alina Pitic,I.Golomety, Antoniu

Pitic, Implementation Of Shuffle Operation In

Manufacturing Process Planning,, Academic Journal

of Manufacturing Engineering Volume 5 Number

2/2007 Timisoara, Romania 2-14, 2007 pp. 161-

162, ISSN: 1843-2522

WSEAS TRANSACTIONS on COMPUTER RESEARCH Adalbert Golomety, Alina Pitic, Iulia Golomety, Antoniu Pitic

ISSN: 1991-8755
8

Issue 1, Volume 3, January 2008

