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Abstract: This paper seeks to investigate the application of mathematical programming, considering it as a tool 
for optimal electrical power generation and management. Nowadays, observing signals of crisis in various 
countries, electrical power emerges not only as a commodity but as a valuable, renewable and sometimes rare 
resource. Modeling and studying electrical power systems with application of mathematical programming can 
produce alternatives for optimal management of resources and allow better consumer satisfaction, impacting 
positively as a typical marketing indicator. 
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1. Introduction 
Energy markets are facing tough challenges in 
actual globalized economic scenarios. Increase of 
competition, transnational competitive participation 
of enterprises, growth of technology-based 
industries such computing and communications and 
many other business solutions need excellence for 
infrastructure support. As an indispensable 
infrastructure component, energy turns out to be a 
major concern when its supplying restrictions are 
observed.  

Some facts, frequently noticed and analyzed by 
independent organizations, reflect such problematic 
market situation: 

Unbalanced availability of generation, transmission 
and distribution systems result in new market 
problems, evolving to discussions about regulatory 
and legal aspects. This can be noticed from 
negotiations – some of them long and complex – 
involving countries, agencies and firms which have 
the ownership or legal rights of at least one of these 
industries. [4], [12], [6]. 

Increase on environmental worries, remarkably 
pointed out by arguments about use of some energy 
sources. Nuclear, gas, coal based and many others 
sources have been questioned over its efficiency, 
polluting potential and costs, resulting in a 
challenging problem of energy provision and 
consumption.[12], [9]. 

Integration of electrical systems, as an answer to 
strategic government or firms’ needs.[6] 

Search of renewable sources, due also to 
environmental and costs problems, as a repercussion 
of the above, resulting in a demand for research 
funding and market needs. [4], [11]. 

New marketing approach for energy: new economic 
models, adopted by many countries, transferred 
energy supply and provision to private enterprises, 
changing from original state-controlled model, 
modifying expressively this service for customer’s 
point of view. [4], [11], [12], [6]. 

Emergence of new markets, as national economics 
arise, such as BRIC – Brazil, Russia, India and 
China – and local markets, with additional energy 
demands as basic infrastructure demand for its 
affirmation and growth. Some of these economic 
systems shows unexpected performance rates, 
causing various disturbances as environmental and 
social issues (migration, racial disputes, etc.) [15] 

Factors like these changed energy supply from a 
technical problem to a business oriented (marketing) 
engineering problem, as market aspects are 
increasingly being taken into account by economic 
players such as those which deal with supply, 
distribution, commerce and regulation. Energy 
markets change from a government owned, centered 
and geographically constrained models to 
transnational, flexible, fragmented and open types, 
showing high level of complexity, as long as is 
considered critical, for reasons such as affirmed 
above.  

In a previous work [5], we analyzed mathematical 
alternatives to address mathematical programming 
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algorithms applied in order to optimize power flow 
in regular systems, concluding with demonstration 
of results that confirm algorithms efficiency for 
energy supply and dispatch to consumers. In this 
article, we reintroduce this evaluation, aiming now 
to observe it from customer’s point of view, 
analyzing such mathematical programming 
application as an answer to real energy supply 
problems, constrained by the economical scenario 
discussed above.  

 2. Operational Research 
2.1. Initial Considerations 
According to [8], during the Second World War, a 
group of scientists were united in England to study 
strategy problems and the tactics associated to the 
country’s defence. The objective was to decide 
about the most efficient use of the limited military 
resources. The call of this group’s meeting is 
identified as the first operational research formal 
activity.  

The positive results that were obtained by the 
British operational research team motivated the 
Americans to initiate similar activities. Even 
though the origin of the Operational Research is 
accounted to England, its propagation is due mainly 
to a group of scientists leaded by George B. 
Dantzig from the United States of America, drafted 
during the Second World War. The result of the 
effort involved in this research, which was 
concluded in 1947, was named Simplex Method. 

A very important characteristic of operational 
research and which made the process of analysis 
and of decision easier was the usage of models. 
They allow the experimentation of the proposed 
solution. This means that, before a decision is 
implemented, it can be better evaluated and tested. 
The obtained economy and the experience that is 
acquired by this experimentation, justifies it usage.   

In the beginning of the 50s, several areas began to 
appear, which are today collectively known as 
mathematical programming. With the linear 
programming the mathematical programming sub-
areas grew rapidly, having a fundamental 
performance in this development. Among these 
sub-areas are the non-linear programming, which 
started around 1951 with the famous Karush-Kuhn-
Tucker condition, commercial utilization, network 
flows, linear programming, integer programming, 
dynamic programming and stocking programming. 

The linear programming is used to analyze models 
where the restrictions and the objective function are 
linear; the integer programming is applied in 
models that have integer variables (or discreet); the 
dynamic programming is used in models where the 
entire problem can be decomposed into smaller 

sub-problems; the stocking programming is applied 
in a special class of models where the parameters are 
described by probability functions; finally, the non-
linear programming is used in models containing 
non-linear functions. 

A characteristic that is present in almost of all the 
mathematical programming is that the optimum 
solution of the problem can not be obtained with 
only one step, having to be obtained iteratively. An 
initial solution is chosen (which usually is not an 
optimum solution). One algorithm is specified to 
determine, starting from it, a new solution that 
normally is superior to the preceding one. This step 
is repeated until the optimum solution is achieved 
(supposing it does exist). 

 

2.2. Marketing 
It is possible to use marketing theory to analyze this 
new competitive scenario in which energy supplying 
is a complex infrastructure problem, using 
mathematical programming algorithms analysis, 
proposing it as a tool for market problems. 
 
As defined in [13] and [10] marketing is a 
managerial discipline which aims to add perceived 
value to a product or service. Perceived value is 
detailed in those same works as the set of benefits 
which a costumer identify in a product or service 
minus its apparent cost, which comprise every 
element he faces in order to receive such benefits.  
 
Energy, by its turn, is classically considered as a 
commodity, items where price and distribution are 
mandatory criteria for purchase [4], [13], [10]. 
Thinking by this way, and even disregarding some 
discussions as continuity and quality of service 
(parameters used for supply quality measurement), 
the complex scenario stated in the introduction of 
this article is enough to show a special marketing 
application opportunity, as one could perceive 
energy cost and distribution as a complex issues 
related to its services, which are offered to a 
costumer after elaborate negotiations involving 
questions over source types, transmission, 
distribution and many others questions. If those 
specific parameters, as quality of service, are also 
observed, such complexity would result in a genuine 
marketing problem. But for the purpose of this 
article, marketing is an opportune evaluation 
discipline, if energy is just considered as a 
commodity. 
 
Such competitive situations conform opportunities to 
see mathematical programming techniques, specially 
optimization algorithms, as it was marketing tools, 
where application could be done to calculate optimal 
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conditions for overall costs components, resulting 
in marketing value study, as stated before. 
 

2.3. Linear Programming  
The general problem of the linear programming, 
according to [3], is used to optimize (maximize or 
minimize) a linear function of variables, called 
“objective function”, which is subject to a 
succession of linear equations or inequalities, called 
restrictions. The formulation of the problem to be 
solved by linear programming follows some basic 
steps, as described below: 

1. The basic objective of the problem should be 
defined, in other words, the optimization to be 
reached. For example, the profit’s 
maximization, or performance, or social 
welfare, cost, loss, time minimization. This 
objective will be represented by an objective 
function, to be maximized or minimized.  

2. For this function to be mathematically 
specified, the variables of decision involved 
should be defined. For example, number of 
machines, the area to be explored, and the 
classes of investment that are available, etc. 
Normally, it is expected that all these variables 
can assume only positive values. 

3. These variables normally are subjected to a 
series of restrictions, usually represented by 
equations. For example, quantity of equipment 
that is available, size of the area to be explored, 
the capacity of a reservoir, nutritional 
requirements of a determined diet, etc. 

All these expressions, however, should be 
according to the main hypotheses of the linear 
programming, in other words, all the relations 
between the variables should be linear. This implies 
in the proportionality of the quantities involved. 
This linearity characteristic can be interesting as for 
simplifying the mathematical structure involved, 
but prejudicial when representing non-linear 
phenomenon (for example, cost functions that are 
typically quadratic). 

The canonical form of a linear programming 
problem is presented as followed: 
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where  represents a linear 

objective function to be maximized and can be 
expressed or represented by z. The coefficients 

 represent costs (known values) 

and  represent the decision variables; 

their values should be obtained by the solution, if the 
solution of the problem exists. The inequality 
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2.4. The Simplex Method 
According to [8], a procedure is a finite sequence of 
instructions and algorithm is a procedure that ends in 
a finite number of operations. 

The simplex method through its iterative algorithm 
searches for the solution, if it exists, by the vertices 
of a viable region until it finds a solution which does 
not have better neighbors than itself. This is an 
optimum solution. The optimum solution may not 
exist in two cases: when a viable solution does not 
exist, due to incompatible restrictions; or when the 
maximum does not exist (or minimum), in other 
words, one or more variables can incline to the 
infinitive and the restrictions continue to be satisfied 
which gives a value without limits to an objective 
function. 

The simplex algorithm stands out as one of the 
greatest contributions to the mathematical 
programming of the twentieth century. It is an 
extremely efficient general algorithm, as mentioned 
by [8], for the solution of linear systems and 
adaptable for computational calculus. Its functional 
comprehension will give a base for several other 
methods. Refuting this statement, Latoree quoting 
[1], declares that even though the simplex method is 
in practice very efficient, it presents exponential 
complexity, in other words, the number of iterations 
grows exponentially with the number of the 
problem’s variables. 

 

      2.5. The Interior Points Methods (IPM) 
The interior points methods had their recognition in 
1984, when Karmarkar proposed an polynomial 
algorithm that requires (n3,5L) arithmetic operations 
and (nL) iterations in the worse cases, assuring that 
the iterative process is of an order of 50 times more 
rapid than the simplex method [18]. Initially the 
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performance of this method was very criticized by 
the scientific community, but the results present by 
(ADLER, 1989) quoted in [16], gave a new 
impulse to the development of this class of 
methods. The revolution of the interior points’ 
methods, as many other revolutions, includes 
earlier ideas which are rediscovered or seen in a 
different way, together with genuine new ideas 
[18]. 

Given a solution’s feasible region of a linear (or 
non-linear) programming problem, a interior point 
is that in which all the variables (coordinates) meet 
inside this region, named region of viable solutions. 

The Karmarkar algorithm is significantly different 
from George Danzig’s simplex method, which 
solves a Linear Programming Problem (LPP) 
starting from an extreme point along its limit to, 
finally, reach an optimum extreme point. The 
method that was projected by Karmarkar rarely 
visits the extreme points before the optimum point 
is reached, in other words, the algorithm finds 
viable solutions in the interior of the solution. 

The IPM tries to find a solution in the center of the 
polygon, finding a better direction for the next 
move, in the direction to find an optimum solution 
for the problem. Choosing the correct steps, an 
optimum solution is reached after a few iterations. 

Even though to find a direction of movement, the 
IPM approach requires a longer computing time 
than the traditional simplex method and a smaller 
number of iterations will be required by the IPM to 
reach an optimum solution. In this manner, the IPM 
approach has become a competitive tool with the 
simplex method and, for this reason, has attracted 
the attention of the optimization community.  

Fig.1 illustrates how the two methods approach the 
optimum solution. In this example, the IPM 
algorithm requires approximately the same quantity 
of iterations than the simplex method. How ever, 
for a bigger problem, this method requires only a 
fraction of the numbers of repetitions demanded by 
the simplex method and, the IPM also works 
perfectly with non-linear problems.  

 

 
Fig.1 – Simplex Method  X  Interior Points Method 

3. Optimum Power Flow 
Electric energy has an important role in the society, 
from domestic, commercial usage to industrial 
usage. Knowing this, it is impossible conceive the 
lack of this important input in any kind of activity. 
That is the reason of the importance of these studies 
related to the improvement of the generation and 
transmission of this energy.  

According to [14], up to the year of 1970, the final 
energy consumed from electrical energy in Brazil 
had less than 20% of participation of the final 
consumption. After the first petroleum crises in 
1975, the percentage of the final consumption of 
electrical energy reached 22% and in 1999 it reached 
a percentage of 40%. It is important to remember 
that the hydroelectric plants are responsible for about 
80% of the generation of electrical energy, as 
declared by Oliveira (1999), quoted in [14].    

The Brazilian electrical energy generation system 
has characteristics that make it unique in the world: 

1. Hydroelectric predominance; 

2. Great geographic extensions and great distances 
between the generation sources and the main 
consumer centers.  

3. Several potentials to be utilized in the same 
river; 

4. Diversity of hydrologic and pluviometric 
regimes; 

5. Relative high degree of interconnection between 
the systems (south/southeast/centre-west 
regions), in comparison with other countries; 

6. Great unexplored hydroelectric potential. 

With these characteristics, it is possible to notice the 
importance of integrated expansion planning e usage 
of the generation and transmission system, so that it 
can work in an optimized manner. 

 

3.1 The Optimum Power Flow Problem 

There are, according to [1], several feasible points 
for the correct performance of the electric power 
system (EPS), but some of the operational points are 
more advantageous than others, depending in the 
aspects in which they are evaluated. For example, to 
diminish the system’s losses, it is possible to 
distribute uniformly the generation by the generation 
systems; on the other hand, to minimize the 
generation costs, it is advantageous that this 
distribution stops being uniform and starts to being 
concentrated in generators with lower costs.  

To solve this problem, it is common to use the 
optimum power flow (OPF) where, by means of an 

Optimum 
Point 

Optimum 
Point 

Simplex Method Interior Points Method  
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objective function, it is possible to find an optimum 
performance point to satisfy one or more 
objectives, being the system subjected to physical, 
performance, reliability restrictions, among others. 

According to [2] maintains that OPF problem was 
proposed by Carpentier in the beginning of the 60s, 
starting from the economic dispatch (ED) problem. 
Historically, the ED problem, solved by equal 
incremental costs, was the predecessor of the 
optimum power flow problem, which marked the 
end of the ED classical period, which had been 
studied and developed during 30 years. Thus, the 
ED problem started to be approached as an OPF 
private case. 

According to [17], the methods for the solution of 
the OPF can be united in four big families: Linear 
Programming (LP), Kuhn-Tucker (KT), Gradiente 
(GR) and metric variables (MV). During the last 
three decades, the problem’s solutions used theses 
different mathematical programming techniques. 

According to [16],  the OPF can be applied in 
several analysis problems and power operational 
systems, such as generation and transmission 
reliability, security analysis, generation and 
transmission expansion planning and short term 
generation programming. 

In most of these applications, the linearized 
representation (DC) of the power flow has been 
adopted, due to its bigger simplicity and the degree 
of satisfactory precision of its results. In the Fig.2 
the functional structure of the EPSs are presented. 

       

 

 

 

 

 

       Fig. 2 – The EPSs’ Functional Structure 

According to [7], the functional structural 
components which are presented in the Fig.2 are: 

• Generation: formed by generating plants or 
powerhouses. These powerhouses can be 
hydroelectric, thermal (coal, oil or natural gas) 
or nuclear. The hydroelectric powerhouses, 
generally, are located far from the consuming 
centers, making it necessary to have complex 
transmission systems and high tension. 

• Transmission: constituted by the transmission 
auxiliary equipments which are needed to 
transmit the power produced in the generating 
powerhouses to the consumers’ centers. The 

transmission systems can be of alternate current 
(AC) or continuous current (CC). 

• Distribution: constituted by the substations and 
feeders which are responsible for the electric 
power distribution to the industrial, commercial 
and residence consumers. 

The mathematical model of the OPF problem is 
represented by an optimizing problem formulated in 
the next section.  

 

3.2 Formulation of the Optimum Power Flow 
Problem 

The optimum power flow problem, as seen before, 
consists in determining the state of an electric 
network. It maximizes or minimizes an objective 
function while it satisfies a group of physical and 
operational restrictions. 

The restrictions of equality correspond to the active 
and reactive power balance equations in each 
network’s bus bar. The inequalities are functional 
restrictions, such as flow monitoring in lines and 
physical and operational limits of the system. 

The Optimum Power Flow problem can be 
formulated mathematically and, generically, by: 

( )
( )
( )

maxminmaxmin ,

,...,1,0,,

,...,1,0,,..

,,.min

uuuxxx

rjpuxh
mipuxgas

puxf

j

i

≤≤≤≤

=≤
==

 (2)               

where: ( )pux ,,  ∈  Rn represents the state, control 
and disturbance variables respectively; f(x,u,p) 
represents the performance index of the system; 
( ) 0,, =puxg  represents power flow equations; 

( ) 0,, ≤puxh  represents functional restrictions, in 
other words, active and reactive power limits in the 
transmission lines and transformers, reactive power 
injection limits in the controlling tension bars and 
injection of active power in the reference bar; 

maxminmaxmin uuuexxx ≤≤≤≤  represent limits 

on the state and controlling variables, respectively.  

 

4. Mathematical Programming 
Applied in the Optimum Power Flow 
Problem DC 
4.1 Initial Considerations 
An electric power system has a series of controlling 
devices which have a direct influence on the 
operational conditions and, therefore, should be 

Generation Transmission Distribution
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included in the modeling of the system so that it 
can correctly simulate its performance.  

The table 1 lists a synthesis of the case that were 
investigated, the network that was used, the 
problem in question, the objective function, the 
problem’s restrictions and the optimizing method 
that was used. 
 
Table 1 – Synthesis of the case to be investigated 

Case Network Investigated 
Problem 

Objective 
Function 

Restricti
ons 

Optimi
zing 

Method
I 6 bars 

7 lines 
Congestion 

Management 
Minimum 
Load Cut 

Line 
Flowes

MatLab
(LinProg)

Source: [5] 
 
4.2. Congestion Management  – Case I 
This case involves congestion management with 
the minimum of load cut. The limits of the 
controlling variables are described in Table 4. The 
limits of the power flowes were reduced in 50%, 
aiming in creating situations of multiple 
congestions. To solve the problem, the MatLab 
toolbox optimization from LINPROG routine will 
be maintained.  

The Fig.3 shows a unifilar diagram of the 6 bars 
system, being 2 generation bars, 3 of charge and 
one of 3 type, that is, one of reference and 7 lines, 
used to illustrate Case 1.  
 
 
 
 
 
 
 
 
 
  Fig.3 – System of 6 bars and 7 lines. 

The data for the modeling, resolution and analysis 
of the problem, are found in the Tables 2 and 3. In 
the Table 2 the data about the lines are shown. 

Table 2 – Data of the lines /Transformers for the 6 bars 
and 7 lines system 

Lines Initial 
Bar 

Final Bar X 

(pu) 
Flows limits 

(pu) 

L1 1 6 0.518 0.80 

L2 1 4 0.370 0.80 

L3 4 6 0.407 0.30 

L4 5 6 0.300 0.18 

L5 2 5 0.640 0.80 

L6 2 3 1.050 0.90 

L7 3 4 0.133 0.80 

Source: [5] 
 

In Table 3, the bar data are shown. 

Table 3 – Bar Data for the 6 bars and 7 lines system 
Bar Bar Type (+)PG  (pu)

(-)PD (pu)
PG min 

(pu) 
PG max (pu) Unitary Cost 

($ / pu) 

1 3 Ref. - - - - 

2 1 PV 0.55 0 1 0.4798 

3 2 PQ -0.55 - - - 

4 1 PV 0.80 0 1 0.6535 

5 2 PQ -0.30 - - - 

6 2 PQ -0.50 - - - 

Source: [5] 
 
Table 4 – Limits in the Controlling Variables 

Controlling 
Variable  

Inferior Limit 

(pu) 
Superior Limit 

(pu) 
PG2 0.40 0.80 
PD3 -0.55 -0.35 
PG4 0.10 0.55 
PD5 -0.30 -0.25 
PD6 -0.50 -0.40 

Source: [5] 

The problem can be formuladed in an incremetal 
form:  

[ ] [ ] T
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Fig.4 shows the controlling variables before and 
after the solution of the load shedding problem.   

 
Fig.4 – Bar power 
Source: [5] 
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The initial and final flowes are represented in Fig.5. 

 
Fig.5 – Flows in the lines 
Source: [5] 
 

5. Final Considerations 
This paper investigated the mathematic 
programming applications, more precisely, the 
linear programming to the linearlized optimum 
power flow problem. 

Different methods of problem solutions in linear 
programming were presented and discussed. The 
interior points method was reported as being 
indicated for lager problems. The Simplex 
algorithm showed itself to be adequate for smaller 
and medium size networks. 

The optimum power flow problem, in its several 
formulations, was examined and its objective 
functions and typical problems’ restrictions were 
described. 

Formulations of  Network Congestion problems, in 
its linear version, were presented and numerical 
demonstrative examples were also presented. 
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