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Abstract: - This paper provides a comparison of the performance and the design steps for four robust static 
output feedback Proportional-Integral-Derivative (PID) controllers. The first one presents an Iterative PID 
(IPID) that guarantees the stability of the closed-loop system. In the second and the third controllers, Iterative 
PID based on H2 (IPIDH2) and H∞ (IPIDHI) performances, respectively, are investigated. The role of H∞ is to 
minimize the disturbance effect whereas H2 is used to improve the transients of the system output. The last one 
is an Iterative PID that is characterized by the Maximum (IPIDM) regulated output of the closed loop system 
with its command input being bounded. The Iterative Linear Matrix Inequality (ILMI) technique is developed 
to find the feedback gains of the designed PID controllers. The proposed design technique is applied to the 
Load Frequency Control (LFC) problem of a single-area power system. The effects of ILMI tuning variables on 
the system dynamic response are given and discussed. To test and compare the effectiveness of the controllers, 
diverse simulation tests are carried out under diverse disturbances and parameters change with the presence of 
the Generation Rate Constraint (GRC), inherent system nonlinearity. The results prove that the proposed 
iterative PID controllers are very useful for LFC power system. 
 
 
Key-Words: - Load frequency control, Iterative PID, Linear matrix inequalities, H-infinity norm, H-2 norm, 
maximum power output control.
  
1 Introduction 
Even though the wide popularity of the 
Proportional-Integral-Derivative (PID) controller 
in the industrial world, its parameters are usually 
tuned manually or using trial-and-error approach 
or by conventional control methods. Therefore, it 
is incapable of obtaining good dynamical 
performance to capture all design objectives and 
specifications for a wide range of operating 
conditions and disturbances [1-3].      

In the literature, many design criteria are based 
on optimization techniques; starting from classical 
to intelligent ones such as genetic algorithm, 
evolutionary programming, particle swarm and 
simulated annealing. They have been applied to the 

Load Frequency Control (LFC) problem of a 
power system [4-7].    

Iterative Linear Matrix Inequality (ILMI) 
method, proposed in [8-10] and later employed to 
design Static Output Feedback (SOF) controller 
[11-13], represents a new tool that attracted 
considerable attention and played an important role 
in control applications [14-16]. It is used to 
calculate the PID controller gains.  

Unlike the state feedback case, SOF gains, 
which stabilize the system, are not easily found  
[8-13]. Linear Matrix Inequality (LMI) is one of 
the most effective and efficient tool in control 
design [17-19]. The conjunction between LMI and 
SOF represents a new technique in designing 
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Iterative PID controller fulfilling some desired 
constraints such as: 
• Guaranty of the system stability  (IPID),   
• Improvement of the system transients response 

through H2-specification (IPIDH2) 
• Reduction of the system disturbance effect 

through H∞-specification  (IPIDHI)   
• Limitation of the system output through 

Maximum Output Control, MOC, (IPIDM).   
In addition, the iterative PID controllers are 

provided with tuning variables that have an 
important influence on the system dynamics that 
are not usually found in every controller. 
Moreover, its superiority resides in its simplicity: 
no need for unmeasurable states or observers, no 
telemetry problems, and suitability for on-line 
applications since only measured outputs are used.  

Based on the above, this paper  provides design 
steps and presents a comparison between the 
performances of four robust iterative PID 
controllers. The first one, IPID, guarantees the 
closed-loop system stability with possibility of 
dominant eigenvalue shift to the left hand-side of 
Laplace plane. The second, IPIDH2, improves the 
system transient response while the third, IPIDHI, 
minimizes the disturbance effect on the system 
output. The fourth one, IPIDM, forces the system 
output to be less than a specific value for a 
bounded input signal [9,10]. The proposed 
controllers are applied to a LFC of a power system 
comprising a single area. A comparative study of 
the controlled system driven by the each of the 
proposed controllers are carried out  and the results 
compared to the system with the presence of the 
Generation Rate Constraint (GRC), inherent 
nonlinearity, and wide range of parameters 
variation [20]. The obtained results are very 
encouraging to pursue further investigation.  
 
 
2 Power System Modelling 
Figure 1 shows the transfer function model of the 
LFC for a single area power system controlled by a 
PID controller. 

 
Fig.1 Block Diagram of a single area LFC. 

The continuous linear dynamic open-loop model, 
in state-space form, can be written as [4-7, 21]: 

⎩
⎨
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++=

DuCxy
FdBuAxx&

     (1)    

Where,   
x     state vector (3x1),  
y   output   (3x1) 
u     disturbance and control vector (1x1) 
F3x1 disturbance matrix  
A3x3, B3x1, C1x3, D1x1  constant matrices 
d disturbance vector (ΔPd) 
In the block diagram illustrated by Fig. 1:   

Tp  plant model time constant 
Tt  turbine time constant 
Tg  governor time constant 
Kp  plant gain 
R  speed regulation due to governor action 
x1  change in system frequency 
x2 incremental changes in generator output 
x3 governor valve position 

  F1, F2, F3 gains of the PID controller.  
The control objective in the LFC problem is to 

keep the change in the frequency (ΔF= x1) as close 
to zero as possible when the system is subjected to a 
load disturbance (d=ΔPd) by manipulating the 
controlled input (u). The system matrices have the 
following form [4-7, 18]. 
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The system parameters are: 
Kp = 120 pu   
Tp = 20 s 
Tt  = 0.3 s 
Tg  = 0.08 s  

  R   = 2.4 Hz/pu.MW 
 
3 Iterative PID (IPID) 
In Fig. 2, a transformation form of the PID to a SOF 
controller is performed by considering the linear 
time-invariant system given by (1) and rewritten as 
follows [9,10]: 
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                                        (2) 

With the following PID controller  
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∫ ++=
t

dt
dyFydtFyFu

0
321                     (3) 

Where x∈Rn is the state variables, u(t)∈Rl is the 
control inputs, y∈Rm is the outputs, A, B and C are 
matrices with appropriate dimensions, and F1, F2 
and F3∈Rlxm are matrices to be designed (PID 
gains).  

 
Fig. 2 Multivariable PID reorganized as a SOF 

controller 
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Or, in compact form,  
uBzAz +=&                                                           (5) 

where 
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Combining (2) and (5) yields 

[ ] [ ]zIydtzCy
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+= 0 . 

And 
3,2,1          , == izCy ii  

 
332211 yFyFyFyFu ++==                (6) 

yFy =  
where 

[ ] [ ] [ ]0,0  ,0 321 CACICCC === , 

[ ]TTTT CCCC 321=  
 

And if )( 3CBFI − is invertible, then 

)31(            )( 1
1

3 −=−= − iFCBFIF ii  (7) 

Thus, the problem of a PID controller design 
reduces to that of a SOF controller design for the 
following system [9-10]: 
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Once [ ]321 FFFF =  is found, the original PID 
gains can be recovered from 

1)3(33
−+= FCBIFF  

2)3(2 FCBFIF −=   (9) 

1)3(1 FCBFIF −=  
 
 
3.1 IPID Algorithm: 
Step 0:  Initial data: System's state space realization 
(A, B, C) then compute CBA ,,  
Step 1:  Choose Q0 > 0 and solve P for the Riccati 
equation 

0O,    PQPBB-PAPPA 0
TT >=++  

Set i= 1 and X1 =P. 
Step 2:  Solve the following optimization problem 

for Pi, F  and αi. 
OP1:  Minimize αI subject to the following LMI 

constraints 
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1i
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Where  

i1 Pi- αiXTBBi X iXTBBi - PiP
TBBi -XAi P iP

TAi ++=∑

 Denote by αi* the minimized value of αi. 
Step 3:  If αi*≤0, the matrix pair (Pi, F ) solves SOF 

problem. Stop. Otherwise go to Step 4. 
Step 4:  Solve the following optimization problem 

for Pi and F . 
OP2:  Minimize tr(Pi) subject to LMI constraints 

(10) with αi = αi*, where tr stands for the 
trace of a square matrix. It is equal to the 
sum of its diagonal elements and also the 
sum of its eigenvalues.  
Denote by Pi* the optimal Pi.  

Step 5:  If ε<− |||| BPBX ii , where ε is a 
prescribed `tolerance. Go to Step 6;  
Otherwise, i= i+1, Xi=Pi*, and go to Step 2. 

Step 6:  It cannot be decided by this algorithm 
whether SOF problem is solvable. Stop. 

 
   The initial data for the IPID algorithm is given by 
steps 0 and 1 and are only used in the starting. The 
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optimization problem OP1, in Step 2, is a 
generalized eigenvalue minimization problem. This 
step guarantees the progressive reduction of αi 
whereas Step 3 guarantees the convergence of the 
algorithm. If the later fails to arrive to a stabilizing 
solution, then select another value for Q and execute 
the algorithm. The optimization problems OP1 and 
OP2 in step 2 and step 4 are performed, 
respectively, using  gevp and mincx routines in 
Matlab LMI toolbox [19]. 
 
 
4 Iterative PID with H∞ (IPIDHI) 
The design problem of a IPID controller under     
H∞-performance specification is presented by 
considering the system (1), with a disturbance w, 
written as [9,10] 
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uBwBAxx 21&

                              (11) 

 
Fig. 3 Closed-loop system via IPIDHI  Controller 

With the PID controller defined as 

∫ ++=
t

dt
sdy

FdtsyFsyFu
0

3 21               (12) 

As before, x is state variable, w is the disturbance 
and other external input vector, u is the control 
inputs, yr is the controlled output vector and ys is the 
measured output vector. A, B1, B2 , Cr, and Cs are 
matrices with appropriate dimensions, and F1, F2, F3 
are matrices to be designed.  

The output feedback H∞-control problem is to 
find a controller of the form  

sFyu =                  (13) 
such that the infinite norm of the closed-loop 
transfer function from w to yr is stable and 

γ<∞|||| wyrT                                  (14) 
Using similar transformation as before, one ends 

up to the following set of equations where the 
problem of a PID is reduced to a SOF control 
system: 
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Once F  is found using the following algorithm 
and assuming that (I-F3CsB1) is invertible then the 
original PID gains can be recovered from (9). 
 
 
4.1 IPIDHI Algorithm: 
Step 0:  Initial data: System's state space realization 

(A, B1, B2, Cs, Cr, D) and performance index 
γ then compute rCsCBBA ,,2,1,  defined 
in  (15).  

Step 1:  Choose Q0 > 0 and solve P for the Riccati 
equation 

0O,    P0QPTBB-PAPPTA >=++ 22  

Set i= 1 and X1 =P. 
Step 2:  Solve the following optimization problem 

for Pi, F  and αi. 
OP1:  Minimize αI subject to the following LMI 

constraints 
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Where  

i2222223 Pi- αiXTBBi X iXTBBi - PiPTBBi -XAi P iPTAi ++=∑

 Denote by αi* the minimized value of αi. 
Step 3:  If αi*≤0, the matrix pair (Pi, F ) solves the 

problem. Stop. Otherwise go to Step 4. 
Step 4:  Solve the following optimization problem 

for Pi and F . 
OP2:  Minimize tr(Pi) subject to LMI constraints 

(16) with αi = αi*. Denote by Pi* the 
optimal Pi. 

Step 5:  If ε<− |||| *BPBX ii . Where ε is a 
prescribed tolerance, go to Step 6; otherwise 
set i:= i + 1, Xi=Pi*,  
go to Step 2. 
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Step 6:  It cannot be decided by this algorithm 
whether SOF problem is solvable. Stop. 

 
In short, Steps 0 and 1, from the algorithm, 

represent the initial data for the algorithm that are 
used only during the starting. The optimization 
problem OP1 in Step 2 is a generalized eigenvalue 
minimization problem (gevp in Matlab LMI 
toolbox). This step guarantees the progressive 
reduction of α and leads to a stable system. In 
addition, minimization of the disturbance effect on 
the selected outputs is obtained. Step 3 guarantees 
the convergence of the algorithm. If the algorithm 
fails to arrive to the stabilizing solution, OP2 in step 
4 is performed to minimize the trace of P using 
mincx (in Matlab LMI toolbox). In this case, the real 
value of the dominant eigenvalue is shifted to the 
left side. If a solution cannot be decided from the 
iterative process, used another value for Q0 and 
possibly γ  then rerun the algorithm. If no stabilizing 
solution is obtained, then it cannot be decided by 
this algorithm whether PIDHI   problem is solvable. 
 
 
5 Iterative PID with H2 (IPIDH2) 
The design problem of PID controller under H2 
performance specification is investigated, first, by 
studying the static output feedback (SOF) case and 
then extending the result to the PID case. As before, 
consider the system [9,10]: 

⎩
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=
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Cxy
BuAxx

sP
&

:)(                 (17) 

Assuming that A is stable then for the system 
closed-loop transfer function 

DBAsICsG +−−= 1)()(               (18) 
the classical result within Lyapunov approach gives 

)(2
2|||| TCPCTraceG =                 (19) 

where P is a solution of the following Lyapunov 
equation:  

0=++ TBBTPAAP                (20) 
The Static Output Feedback with H2 performance 

control (SOFH2) problem is to find a control of the 
form 
 sFyu =                             (21) 
such that the closed-loop transfer function, from w to 
yr, is stable and 
||Gwyr||2 < γ                 (22) 
with γ >0 and ||.||2 denotes the 2-norm of the system 
transfer matrix. 
 

The H2-performance index, for system (17) 
rewritten as  
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can be achieved by a SOF controller if the matrix 
inequalities: 
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have solutions for (P,F). 

The PID design with H2 specifications converts 
to a SOF control for the dynamics of the newly 
obtained system: 
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Thus, once the feedback matrices 
)3,2,1( FFFF = are obtained using the following 

iterative LMI algorithm for solving H2-SOF control, 
the original PID gains ),,( 321 FFFF = can be 
recovered from (9). In the algorithm, use the 
following:  

FFrCrCsCsCBBBBAA ======  , , ,22 ,11 ,
 

 
5.1 IPIDH2 Algorithm: 
Step 0: Form the system state space realization:  

(A,B1, B2 ,Cs ,Cr) and select the performance 
index γ  

Step 1:  Choose Q0 > 0 and solve P for the Riccati 
equation: 

0O,    P0QPSCT
S-PCTPAAP >=++  

Set i= 1 and X =P 
Step 2:  Solve the following optimization problem 

for Pi, F and αi. 
OP1:  Minimize α subject to the following LMI 

constraints 
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sXCXsCT
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s -XCTBBTPAAP .112 +++=∑

 Denote by α* the minimized value of α. 
Step 3:  If α*≤0, the matrix pair (P,F) solves the 

problem. Stop. Otherwise go to Step 4. 
Step 4:  Solve the following optimization problem 

for P and F. 
OP2:    Minimize trace(P) subject to LMI  

constraints  (26) with α = α*. Denote by P* 
the optimal P. 

Step 5:  If ||XB-P*B||<ε. where ε is a prescribed 
tolerance, go to Step 6;  
Otherwise set i= i+1, X=P*, go to Step 2. 

Step 6:  It cannot be decided by this algorithm 
whether the problem is solvable. Stop. 

 
 
6 Maximum Power Control (IPIDM) 
The design problem of a PID controller under the 
performance requirement that the system output yr is 
smaller than a specified value σ when the input 
signal w is bounded, is known as Maximum Output 
Control (MOC) problem. To handle such problem, 
consider the system [9,10]  
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With x(0)=0.  
The Static Output Feedback Maximum Output 

Control (SOFMOC) problem is to find a control of 
the form (22) such that the maximum regulated 
output Yr,max, from w to yr, of the closed-loop sys-
tem, under the command input w,  satisfies 

0)(   ,         >≤≥= σσ(t)||r||y0tsupr,max Y       (28) 
This is fulfilled if there exist matrices P>0 and F, 
and numbers τ2≥0, η>0, such that the following 
linear matrix inequalities hold [9,10]: 
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sFCBA 2)2()2(3 τ++++=∑ . 

 
The PID design with MOC specifications converts 
to a SOFMOC for the dynamics of the newly 
obtained system  
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So, the following algorithm can be applied to (30) 
using 
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As before, to recover the original PID gains 
)3,2,1( FFFF = from the feedback matrices 

)3,2,1( FFFF = , the relations in (9) can be 
applied.  

An iterative LMI algorithm (Algorithm 3) for 
solving SOFMOC is developed in [9,10] as follows: 
 
 
6.1 IPIDM Algorithm: 
Step 0: Let the system state space realization         

(A, B1, B2, Cs ,Cr, D), a performance index 
σ, and a given number η>0 be given 

Step 1:  Choose Q0 > 0 and solve P for the Riccati 
equation: 

0O,    PQPBPA-PBPA 0
TT >=++ 22  

Set i= 1 and X =P 
Step 2:  Solve the following optimization problem 

for P, F and α. 
OP1:  Minimize α subject to the following LMI 

constraints 
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PP- XTBXBXTBP -PBTBXBPAPTA ατ22222224 ++++=∑

 Denote by α* the minimized value of α. 
Step 3:   If α*≤0, the matrix F solves the problem.  

Stop. Otherwise go to Step 4. 
Step 4:  Solve the following optimization problem 

for P, F. 
OP2:  Minimize trace(P) subject to LMI 

constraints (31) with α = α*. Denote by P* 
the optimal P. 

Step 5:  If ||XB-P*B||<ε. where ε is a prescribed 
tolerance, go to Step 6; otherwise set i= i+1, 
X=P*,  

)*(  

)*
11

*(

2 Ptr

PTBBPtrace

η
τ =  

and go to Step 2. 
Step 6:  It cannot be decided by this algorithm 

whether the SOFMOC problem is solvable. 
Stop. 

 
 
7 Simulation Results 
The simulation results are obtained using the 
MATLAB package and the LMI Toolbox. Firstly, 
the simulation is started by illustrating the effect of 
the tuning variables, used in the algorithms 
described above, on the dynamic response for the 
LFC of a single-area power system driven by each 
of the proposed PID controllers: IPID, IPIDHI , 
IPIDH2 and  IPIDM, as follows:   
 
 
7.1 Effect of Q on IPID  
The tuning variables of the PID designed using 
iterative LMI are Q, α and of the iteration number i.  
The most affecting parameter is Q (coefficient of 
positive definite starting matrix). Figure 4 shows the 
influence of Q on ΔF when the area is subjected to a 
ΔPd =+0.5 % (load change) while fixing the other 
tuning variables. On the basis of the simulation 
results, it is clearly seen that Q has an important 
influence on the responses when the system is 
driven by the controller designed with different 
values of Q under constant value of i=50 and α =-
0.1. Table 1 illustrates the influence of Q and α on 
the gains of the IPID controller and the system 
damping. The system eigenvalues and the damping 
ratio ζ are also shown in the same Table. 

 
Fig. 4   Effect of different values of Q  

(1:Q1, 2:Q2, 3:Q3, 4:Q4, 5:Q5) 
 
 
7.2 Effect of γ on IPIDHI 
The tuning variables of the PID designed with H∞-
norm using iterative LMI are Q, γ, α and the 
algorithm convergence (iteration) number. It is 
noticed that γ has the largest effect. The effect of Q 
is similar to that mentioned in the IPID.  So, Q  is 
fixed while α is varied as shown in Fig. 5. From the 
figure, it is clearly shown that γ has a great influence 
on the system frequency ΔF for a step change 
ΔPd=0.5 %. The other tuning variables are selected 
using the following suitable values: Q = 600, i=50 
and α =-1. 

Table 2 illustrates the influence of γ on the 
desired α, controller gains, system eigenvalues λ 
and its damping ratio ζ . 

 
Fig. 5 Effect of different values of γ 

(1:γ1, 2:γ2, 3:γ3, 4:γ4, 5:γ5) 
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7.3 Effect of γ on IPIDH2 
Similar disturbance is applied to the controlled 
system with IPIDH2 to illustrate the effect of the 
tuning variables. Here, the number of iterations i of 
the algorithm represents an important tuning 
variable. Besides, γ has an also an important effect 
on the system dynamic response. Figure 6 shows the 
system dynamic response with suitable values:       
Q = 600 and α =-1. It is clear that both γ and i are 
highly system effective as tuning variables. Table 3 
illustrates the effect of these tuning variables on the 
controlled system dynamics together with system 
eigenvalues and damping ratio ζ.   

Fig. 6 Effect of different values of γ   
(1:γ1, 2:γ2, 3:γ3, 4:γ4, 5:γ5) 

 
 
7.4 Effect of γ and σ on IPIDM 
 
 
 7.4.1 Effect of σ   
Beside Q,  α and the iteration number, the algorithm 
for IPIDM uses two other tuning variables denoted 
by γ and σ which have a pronounced effect on the 
system dynamic responses. Figure 7 shows the 
effect σ on ΔF while the other tuning variables are 
held constant and the controlled system is subjected 
to a step change of ΔPd=0.5 %.  Table 4 shows the 
effect of σ with selected suitable values: γ = 50 ,    
Q= 90, i=500, α =-1.  It illustrates also the system 
eigenvalues and damping ratio ζ. 

 
Fig. 7 Effect of  different values of  σ   

(1:σ1, 2:σ2, 3:σ3, 4:σ4, 5:σ5) 
 
 
7.4.2 Effect of γ 
The controlled system driven by IPIDM is simulated 
with different values of γ under the previous 
disturbance (ΔPd=0.5 % ) while holding other tuning 
variables constant: σ= 50 , Q= 90, i=50,      α = -1.  
Figure 8 shows this effect on the system dynamic 
response whereas Table 5 shows the system 
eigenvalues and damping ratio ζ. 

 
Fig. 8 Effect of different values of γ  

(1: γ1, 2: γ2, 3: γ3, 4: γ4, 5: γ5)  
On the basis of the simulation results, it is clear that 
the tuning variables have a pronounced influence on 
the system dynamics. Through proper manipulation 
of these parameters, an improvement in the control 

design can be obtained. This represents an advantage 
which might not exist in other design methods.  

Comparison between the performances of the 
proposed iterative PID controllers, subjected to 
several tests, is presented next. The tests in sections 
7.5 and 7.7 are done with the system undergoing a 
load step change of ΔPd=5%. 
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7.5 Normal Operating Conditions  
The time response of the system frequency ∆F with 
the system driven by each of the proposed iterative 
PID controllers, is presented in Fig. 9. It can be 
noticed that the controllers satisfy the system 
stability and show acceptable performance (few 
oscillations and relatively short settling time). It is 
clearly shown that the IPID controller has large 
over- and undershoot with a longer settling time. 
This is expected because it was designed to guaranty 
the system stability only. The IPIDHI controller 
shows good performance with a smaller settling time 
and acceptable undershoot but with a relatively 
higher effort as shown in the response of its control 
input response u. IPIDH2 shows better response than 
IPID but not as good as IPIDHI and IPIDM. The last 
controller, PIDM, shows the best response between 
the four controllers. The smallest undershoot and no 
overshoot and short settling time but with the largest 
effort as shown in u.  

 
(a) System frequency, ΔF  

 
(b) Control input, u 

Fig. 9 System response following a load step change 
of ΔPd=5%  

(1:IPID, 2:IPIDH2, 3:IPIDHI, 4:IPIDM) 
 

 
7.6 Tracking-response 
For further comparison study, testing of the 
effectiveness of the proposed controllers when the 
system is subjected to tracking of the power demand 
ΔPd, as shown in Fig. 10, is carried out. The system 
responses are shown in Fig. 11. It is clear that 
IPIDHI and IPIDM show the best performance (no 
overshoot and short drop and increase in ΔF) as 
compared to IPID and IPIDH2. 

 
Fig. 10 Tracking of the power demand ΔPd 

 
Fig.11 Tracking response of power demand ΔPd 

(1:IPID, 2:IPIDH2, 3:IPIDHI, 4:IPIDM) 
 
 
7.7  Parameters Change and Nonlinearity Effect 
The system behaviour, including the effect of 
inherent nonlinearity known as the Generation Rate 
Constraints (GRC) and a change in the parameters, 
is presented in the this test and the responses are 
shown in Fig. 12. GRC represents the physical 
limitation on the operation of the steam in the power 
plant. According to [20], it is evaluated as              
0.1 pu/min or 0.00167 pu/sec. Parameters (Kp, Tp, 
Tt, Tg, R) are increased by 50% of their nominal 
values. It is clear that IPIDM shows the best 
response whereas IPID exhibits the worse one. 
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Oscillations are seen with high overshoots in some 
of the controllers. Fortunately, all controllers 
overcome both parameters change and system 
nonlinearity thus verifying the LFC requirements 
with different levels of robustness.  

 
(a) System frequency (ΔF) 

  
(b) Control input (u) 

Fig. 12 Parameters change and Nonlinearity effects  
(1:IPID, 2:IPIDHI, 3:IPIDM, 4:IPIDH2) 

 
 

8 Conclusion 
This paper has presented a comparison and the 
design steps for four robust iterative PID controllers. 
In the first,  an Iterative PID that guarantees the 
system stability (IPID) was presented. In the second 
and the third ones, iterative PID based on H2 
(IPIDH2) and on H∞ (IPIDHI) performances, 
respectively, were investigated. In the last one, an 
iterative PID designed with maximum output 
(IPIDM) was presented. All these controllers have 
their applications in the industrial area. 

The proposed designed iterative PID was applied 
to the Load Frequency Control (LFC) problem of a 
single-area power system. The effects of the ILMI 
algorithm variables were investigated and shown. 

The effectiveness of these controllers was carried 
out for diverse disturbances and parameters change 
with the presence of the system inherent 
nonlinearity (GRC). The results prove that the 
proposed controllers satisfy the system stability but 
the robustness is given to PIDM that shows the best 
responses in all tests but with an important effort 
being developed by the control input.  
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Table 1 IPID Controller for different values of Q and α 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

No
. 

Desired 
values 

Obtained 
values SOFPID GAINS Eigenvalues Damping 

ratio 

Q α F1 F2 F3 λ ζ 

1 0.001 -0.148 -1.055 -3.064 -0.441 
 

-1.24±j2.29 
-6.71±j8.23 0.47 

2 0.1 -1.143 -1.427 -3.561 -0.484 -6.36±j8.67 
-1.58±j2.28 0.57 

3 0.12 -1.214 -1.516 -3.913 -0.471 -6.22±j8.35 
-1.72±j2.46 0.58 

4 1 -1.833 -3.238 -7.408 -0.726 -5.45±j11.3 
-2.50±j2.35 0.73 

5 5 -1.981 -5.698 -6.711 -1.598 -6.06±j18.9 
-1.89±j0.80 0.91 
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Table 2 IPIDHI design for different values of  γ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3 IPIDH2 with different values of γ  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

No 
Desired 
values 

Obtained 
values SOFPID Gains Eigenvalues Damping 

ratio 

γ α F1 F2 F3 λ ζ 

1 0.4 -6.014 -0.139 -0.580 -0.204 
 

-7.13±j4.19 
-0.81±j1.21 0.56 

2 5 -0.389 -1.665 -0.916 -0.462 -5.50±j8.47 
-4.37, -0.52 0.55 

3 6 -0.671 -1.697 -1.472 -0.448 -5.38 ±j8.16 
-4.21, -0.92 0.57 

4 9 -1.052 -2.191 -2.329 -0.570 -5.58±j9.82 
-3.38, -1.35 0.49 

5 90 - 6.014 -3.472 -7.817 -0.655 -4.76±j10.4 
-3.18±2.2 0.83 

No 

 
Desired 
values 

 

Obtained 
values 

Number 
of 

Iteration 
SOFPID GAINS Eigenvalues Damping 

ratio 

γ α i F1 F2 F3 λ ζ 

1 15 -0.946 50 -0.997 -0.869 -0.372 -6.09±j7.13 
-0.873,-2.828 0.64 

2 25 -1.266 70 -1.059 -1.147 -0.369 -5.99±j6.99 
-1.30, -2.60 0.65 

3 35 -1.349 90 -1.082 -1.273 -0.354 -5.81±j6.59 
-1.49, -2.77 0.67 

4 60 -1.702 100 -1.242 -1.564 -0.386 -5.80±j7.15 
-2.14±0.14 0.98 

5 100 -1.588 150 -1.222 -1.657 -0.379 -5.80±j6.99 
-2.14±j0.65 0.95 
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Table 4 IPIDM Controller of different values of γ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5 IPIDM Controller of different values of γ 
 

No 

 
Desired 
values 

 

Obtaine
d values SOFPID Gains Eigenvalues Damping 

ratio 

σ α F1 F2 F3 λ ζ 

1 1 -0.389 -27.171 -596.63 -30.938 -0.43±j4.37 
-7.52±j87.7 0.09 

2 4 -1.022 -6.069 -17.046 -1.069 -4.82±j14.4 
-3.13±j2.94 0.73 

3 15 -1.276 -2.899 -6.202 -0.587 -3.00±j2.07 
-4.94±j9.61 0.82 

4 35 -3.581 -2.246 -4.512 -0.4701 -4.82±j7.97 
-3.13±j1.80 0.87 

5 180 -1.018 -2.299 -4.599 -0.474 -4..76±j8.04 
-3.18±j1.74 0.89 

No
. 

 
Desired 
values 

Obtaine
d values SOFPID GAINS Eigenvalues Damping 

ratio 

γ α F1 F2 F3 λ ζ 

1 0.2 -1.76 -0.177 -0.428 -0.076 -1.60±j2.50 
-11.64, -1.044 0.54 

2 0.3 -1.67 -0.219 -0.544 -0.092 -1.63±j2.46 
-11.231, -1.39 0.60 

3 0.5 -1.35 -0.397 -1.148 -0.1505 -1.41±j2.49 
-9.279, -3.79 0.50 

4 0.7 -1.56 -0.352 -1.042 -0.135 -1.36±j2.50 
-9.913, -3.25 0.48 

5 0.85 -0.411 -0.661 -2.014 -0.254 -1.31±j2.50 
-6.63±j4.38 0.47 
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