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Abstract: Ferroresonance is a highly destructive power quality phenomenon caused by complex oscillations gener-

ated by nonlinear magnetizing inductances in ferromagnetic materials and capacitive elements in power systems.

In an effort to better understand ferroresonance and predict bifurcations and responses, an improved nonlinear

transformer model for dynamic and steady-state operating conditions is developed which includes magnetic hys-

teresis nonlinearities of the transformer core. The model expands on Tellinen’s scalar hysteresis approach which

includes major and minor hysteresis loop effects. This paper carries out an investigation into single-phase trans-

former ferroresonance initiated by switching transients using the developed model. A range of ferroresonance

modes (e.g., subharmonic and chaotic) initiated by switching transients is identified with the transformer core

model. The model is used to compute time-domain waveforms of transformer flux, voltage and magnetizing cur-

rent for several ferroresonance modes. Furthermore, Poincaré and phase-plane portraits are used to examine the

stability domain of observed ferroresonance modes. The main contribution of this work is a new analysis into

ferroresonance through an improved transformer model which incorporates magnetic hysteresis effects.
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1 Introduction

Ferroresonance in power networks involving nonlin-

ear transformers and capacitors has been well re-

searched for nearly a century. However, it is only in

recent years that nonlinear transformer modeling tech-

niques have begun to approach the level of sophis-

tication required for accurate ferroresonance studies

which was mainly driven by developments in mod-

ern computing and simulation software. To that end,

the importance of hysteresis nonlinearities in dynamic

and transient simulation studies and its impact on the

stability domain of ferroresonance modes has recently

been demonstrated [1–4].

Ferroresonance can be understood as a com-

plex oscillatory energy exchange between magnetic

field energy of nonlinear magnetizing inductances of

transformer/reactor cores and electric field energy of

nearby capacitances (e.g., series compensated lines

or circuit breaker grading capacitors). Without ade-

quate dissipation through normal loads and losses, a

substantial amount of energy sloshes back and forth

within a power system and manifests as over-voltages

and currents exhibiting high levels of distortion. The

distortions can cause large losses in power systems

and increase thermal stresses in transformers [5]. Sev-

eral cases where significant equipment damage has

occurred due to ferroresonance have been documented

and continues to be a large safety hazard [6–8].

Over the years, research in ferroresonance has

concentrated into three main areas: (1) improving

analytical methods and transformer models, (2) de-

velopment of transformer protection and mitigation

strategies and (3) case studies of system level im-

pacts [9,10]. Despite the extensive literature available

in this area, ferroresonance continues to be a chal-

lenging problem to analyze, predict and understand

due to its highly nonlinear and dynamic behavior. Re-

searchers must adopt complex mathematical notions

such as chaos theory to gain insight into this phe-

nomenon [11–13].

The four generally accepted ferroresonance

modes which can occur are (1) fundamental ferrores-

onance (period-1), (2) subharmomic ferroresonance

(e.g., period-3), (3) quasi-periodic ferroresonance and

(4) chaotic ferroresonance. The last two are non-

periodic modes. There is also the possibility of mixed

modes or unstable modes where gradual system vari-

ations or perturbations cause sudden jumps (known as

bifurcations [14]) from one mode to another [15, 16].

From a purely mathematical standpoint, these modes
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are due to multiple competing solutions (known as at-

tractors) to a system of nonlinear differential equa-

tions of an electromagnetic circuit. The nonlinear-

ity is due to the magnetic properties of ferromagnetic

material. Therefore, it is imperative to develop accu-

rate nonlinear electromagnetic models for transformer

cores to fully depict dynamic disturbances such as fer-

roresonance.

In this paper, a single-phase transformer model

including hysteresis nonlinearities is developed to

study possible ferroresonance behavior (e.g., subhar-

monic and chaotic modes). The model is used to

generate ferroresonance conditions and plot resulting

time-domain waveforms including flux, voltages and

magnetizing currents, as well as Poincaré and phase-

plane diagrams for selected values of series and shunt

capacitors initiated by switching. Section II discusses

the importance of hysteresis modeling and past contri-

butions in this area. Section III provides an overview

of some of the applied analytical techniques for study-

ing dynamic and chaotic phenomena such as ferrores-

onance. The development of the transformer model

with nonlinear magnetic hysteresis implementation is

discussed in Section IV. Simulations results with dis-

cussion and the conclusions of this paper are provided

in Sections V and VI.

2 Hysteresis Core Modeling

The modeling of hysteresis has evolved significantly

since the 1970s when digital nonlinear core models

were first being developed. Early modeling attempts

indirectly incorporated hysteresis by the use of single-

value nonlinear inductors in parallel with a resistor

representing eddy-current and hysteretic losses. Mod-

els evolved to use families of ascending and descend-

ing curve functions for the inclusion of major and

minor loop effects of ferromagnetic material. Some

authors ignore minor loops and focus only on major

loops or make use of scaling factors on major hystere-

sis loops to derive the minor loops. These nonlinear

approximations are typically based on piece-wise, hy-

perbolic, trigonometric or differential equations. Ref-

erences [17, 18] provide a thorough historical review

of progress in hysteresis modeling.

In addition to the mathematical complexity usu-

ally accompanying most hysteresis models, charac-

terizing the core behavior from measurements can be

quite challenging. For example, the well renowned

Preisach-based hysteresis model [19] requires a set

of first order descending curves of minor hysteresis

loops to be measured. Another popular model by

Jiles-Atherton [20] requires five fitting parameters to

be determined by tedious and often imprecise mea-

surements. The approach shown in this paper greatly

simplifies core identification by adopting Tellinen’s

hysteresis model [21] which requires only the major

hysteresis loop to be measured. The minor loops are

dynamically estimated through mathematical relation-

ships derived in Section IV.

Despite the existence of hysteresis models, there

is still a tendency for transformer power quality stud-

ies to ignore hysteresis and use anhysteretic approx-

imations of the B − H characteristic because of the

modeling complexity and computational burden asso-

ciated with hysteresis nonlinearities. This simplifica-

tion can be justified for some studies because trans-

former design has improved over the years and hys-

teresis loop widths have narrowed significantly to ap-

pear almost anhysteretic. Therefore, for steady-state

power quality studies such as harmonic power flow

in nonlinear transformers, single-valued anhysteretic

functions are considered acceptable [22–26].

On the other hand, for the study of dynamic,

transient and nonsinusoidal power system behavior,

the representation of minor hysteresis loop trajecto-

ries becomes important as additional operating points

are created by the dynamic disturbances imposed on

a nonlinear hysteretic core model. This is especially

true in ferroresonance where major and minor loop

trajectories can potentially generate more ferroreso-

nant operating points expanding the stability domain

[3]. For this paper, a suitable nonlinear hysteretic core

model of a single-phase transformer is developed to

study ferroresonance.

3 Nonlinear Dynamical Systems

It is important to understand that many oscillatory

modes of operation are possible for the same set of

system parameters due to sensitivity to initial condi-

tions and transients [27]. This can excite a system

with transformer magnetizing inductances and capac-

itances into many different steady-state and chaotic

ferroresonance oscillatory modes. This fact is true

for modern power systems because variations in cir-

cuit breaker operating times on the point of wave in

ac cycle, random switching events and residual fluxes

are all variable initial conditions impacting how and

which ferroresonance mode(s) occur. In lieu of these

complexities, new mathematical analytical techniques

have been developed to understand this behavior.

Kieny and Mork first proposed the connection be-

tween ferroresonance and nonlinear dynamical sys-

tems and chaos theory in subsequent publications

originating from the late 1980’s [11–13]. Since then,

this approach is now considered the most appropriate

mathematical framework for studying the many com-
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plex ferroresonance modes that can exist in a power

system. Performing time and frequency-domain anal-

ysis alone does not provide adequate insight into

this phenomenon. Phase-plane portraits and Poincaré

mapping are two popular analytical approaches.

Phase-plane diagrams are most useful for charac-

terizing the time evolution of ferroresonance modes.

For a given system state variable x (e.g., transformer

voltage), the time derivate of this variable ẋ (t) is plot-

ted against the variable magnitude x (t) and traced out

in time. Resulting trajectories can be interpreted for

useful insight into the time evolutionary behavior of

a nonlinear dynamical system. The phase-plane rep-

resentation can be simplified to what is known as a

Poincaré map. This is achieved by sampling the state

variable at the power system frequency (e.g., 50 Hz)

and plotting the phase-plane diagram ‘stroboscopi-

cally’ in phase space. These visual representations are

very useful in classifying and distinguishing different

ferroresonance modes and features. Reference [15]

provides a good introduction to interpreting these dia-

grams. In this paper, these techniques are applied with

the proposed nonlinear transformer model to demon-

strate different ferroresonance conditions.

4 Proposed Single-Phase Trans-

former Core Model with Hystere-

sis Nonlinearity

A PSPICE computer model was developed for a

single-phase transformer with hysteresis nonlineari-

ties (Fig. 2). A scalar hysteresis model based on [21]

is implemented for this work due to its simplicity in

implementation for circuit simulation. The magnetic

flux density b and field intensity h are the main pa-

rameters for this model. However, for this paper, the

hysteresis equations are modified such that flux link-

ages and magnetizing currents are computed instead

of b and h (i.e., b → λ and h → im). These param-

eters are more accessible in PSPICE and easily mea-

sured from laboratory measurements. The modified

hysteresis equations are as follows:

dim

dt
=

dλ

dt
·

1

L0 + λ−(im)−λ(im)
λ−(im)−λ+(im)

(

dλ+(im)
dim

− L0

)

if
dλ

dt
≥ 0

dim

dt
=

dλ

dt
·

1

L0 + λ(im)−λ+(im)
λ−(im)−λ+(im)

(

dλ−(im)
dim

− L0

)

if
dλ

dt
< 0 (1)

where λ+, λ− and λ are the limiting ascend-

ing and descending curve functions and instantaneous

flux linkages, respectively, dependent on magnetizing

current im. L0 is the inductance or slope in the satu-

rated region along the limiting hysteresis curves. As

noted from (1), the basis for this model is the use of

slope functions for λ+ and λ− to compute magneti-

zation processes. This is derived directly from mag-

netics theory with the assumption that domain wall

motion density (Barkhausen jumps) are proportional

to the growth of domain regions which increase with

magnetic field strength [21].

The flux linkage and current relationships for the

hysteresis model are

e (t) =
dλ (t)

dt
(2)

i (t) = im (t) + ic (t) (3)

Before equation (1) can be computed, the ascend-

ing and descending limiting hysteresis loop segments

must be specified. This paper proposes nonlinear ana-

lytical expressions to describe the ascending (λ+) and

descending (λ−) limiting hysteresis loop segments.

The proposed nonlinear function (4) can accurately be

fitted to measured λ − i characteristics of a real non-

linear transformer.

f (im) = sgn (im) · α loge (β |im| + 1) (4)

The fitting parameters α and β control the vertical

and horizontal scaling. The ascending limiting loop

segment is derived from (4) by shifting the function

f (im) to the right by an increment of σ and similarly

the descending loop function is obtained by shifting

the function to the left by σ (eqs. (5)-(6), Fig. 1).

Effectively, σ controls the width of the limiting hys-

teresis loop.

λ+ (im) = f (im − σ) (5)

λ− (im) = f (im + σ) (6)

The slope of the above ascending and descending

functions must be computed before the modified hys-

teresis equations (1) can be computed. The ascending

and descending slope functions
dλ±(im)

dim
are derived

through differentiation of (5)-(6) with respect to mag-

netizing current.

dλ± (im)

dim
=

αβ

β |im ∓ σ| + 1
(7)

Equation (1) is then computed from substitution of

(2), (5), (6) and (7). The next step is for the program
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Figure 1: The developed hysteresis model is shown

under ramped sinusoidal excitation to demonstrate the

capability of the model to form major and minor hys-

teresis loops constrained by ascending (λ+) and de-

scending (λ−) limiting hysteresis curve functions.

to select one of the two equations (1) for dim

dt
based on

whether the magnetization is increasing or decreasing.

An IF statement in PSPICE is used to select one of the

two equations in (1) based on the sign of the induced

voltage (2). The magnetizing current im is evaluated

by integrating (1).

There are two approaches to realize the above ex-

pressions in a PSPICE circuit. The first method is to

implement a controlled voltage source for the induced

voltage (2) based on (1). The second approach is more

abstract but more numerically stable and is thus the

favored approach. Equation (1) is realized by imple-

menting a circuit loop consisting of an arbitrary ca-

pacitor with inherent current and voltage relationship

together with a controlled current source (Fig. 2).

i = C
dV

dt
= 1 ·

dλ

dt
(8)

The capacitor voltage is in fact the flux linkage

and its current is governed by the controlled current

source based on (1). A large resistance (1012 Ω) is

placed in parallel with the capacitor to suppress nu-

merical convergence and floating node problems. The

developed hysteresis model can form major and minor

hysteresis loops based on specified λ+ and λ− func-

tions. This is demonstrated in Fig. 1 for linearly in-

creasing sinusoidal excitation. The completed electric

circuit transformer model with hysteresis equations is

processed in time-domain through PSPICE’s variable

step Newton-Raphson algorithm and nonlinear equa-

tions are solved iteratively.

5 Simulation Results

This section applies the developed nonlinear trans-

former core model with hysteresis to identify possible

ferroresonance modes generated by series switching

(e.g., circuit breaker action) with different shunt and

series capacitances. The transformer model is based

on a real single-phase 440/55 V 50 Hz laboratory

transformer. The winding and core-loss impedances

have been determined by open and short circuit tests

(Rs = 9.4 Ω, Ls = 6.34 mH, Rc = 14 k Ω). The

magnetization hysteresis loop characteristic (λ − im)

has been measured by exciting the transformer pri-

mary with twice the rated excitation voltage and inte-

grating the corresponding induced secondary voltages

to estimate core flux. The hysteresis model parameters

have been adjusted to match the measured hysteresis

loop using curve fitting techniques (see Appendix).

The scenario under investigation is an unloaded

single-phase transformer operating under steady-state

conditions interrupted by a switch which is opened at

t = 0.1s. This case is representative of single-phase

fuse or circuit breaker action resulting in a series fer-

roresonance circuit as shown in Fig 2. This can also

occur for three-phase transformer banks (i.e., 3 single-

phase transformers) where one of the phases has de-

veloped a fault and the circuit breaker has opened. In

a generalized way, to account for various capacitance

sources as previously mentioned, the impact of dif-

ferent combinations of series and shunt capacitances

(Cseries, Cshunt ) are investigated.

5.1 Subharmonic Ferroresonance Modes

Fig. 3 demonstrates period-3 type ferroresonance ini-

tiated by the opening of the switch at t = 0.1s when

Cseries and Cshunt are set to 10 and 38 µF , respec-

tively. The flux and voltage waveforms indicate the

transformer becoming highly saturated with excessive

magnetizing currents and sustained harmonic distor-

tions. The phase-plane and Poincaré diagrams in-

dicate the system settling to a stable attracting (and

distorted) limit cycle. To demonstrate the different

wave shapes that are possible for the same type of

ferroresonance mode, another type of period-3 fer-

roresonance is shown for Cseries = 18.2µF and

Cshunt = 29.1µF (Fig. 4). The resulting oscillations

for this case result in asymmetrical core saturation as

indicated by the magnetizing currents and computed

hysteresis loop (Fig.4c).

For Cseries and Cshunt set to 10 and 22 µF , har-

monic distortions have increased for flux and voltage

waveforms (Fig. 5). Furthermore, the transient pe-

riod from normal operation to ferroresonance has a

longer duration compared to the previous case. The
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Figure 2: Ferroresonance circuit in a nonlinear trans-

former with dynamic magnetic hysteresis core model

group of five dots in the Poincaré map indicate this is

to be period-5 type ferroresonance. The phase-plane

diagram suggests the presence of competing cyclical

attractors in the stability domain.

Similarly, with Cseries and Cshunt are set to 29
and 38 µF , respectively, the switching action causes

the transformer to exhibit extremely distorted period-

7 type ferroresonance voltages (Fig. 6). The impact

on hysteresis loop formation is more pronounced and

is shown in Fig. 6c.

To emphasize the sensitivity of this phenomenon

to a small change in a system parameter, Cseries is var-

ied by a small amount from the previous case to 28 µF
and the simulation is repeated (Fig. 7). The result-

ing waveforms show unstable ferroresonance modes

which appear to be period-3 type lasting for only a

few cycles before dampening out. It is interesting to

observe that due to the flux and voltage relationship

(2), the flux waveform takes a long time to stabilize

compared to the voltage waveform.

In general, it was observed that most of the ob-

served oscillations throughout this study were of the

subharmonic type as shown. This is consistent with

the findings of Lamba et al. [4] which concluded that

hysteresis nonlinearities will lead to expanded subhar-

monic modes in the stability domain. However, in that

that study some bifurcations to fundamental ferrores-

onance (period-1) were observed which was not the

case in this analysis. Even after a rigorous search, no

fundamental ferroresonance could be identified. This

does not necessarily preclude the existence of period-
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Figure 3: Subharmonic ferroresonance (Period-3) oc-

curring at Cseries = 10µF and Cshunt = 38µF ; (a)

time-domain waveforms for flux, magnetizing current

and voltage, (b) Poincaré and phase-plane diagrams,

and (c) steady-state core hysteresis formation.
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Figure 4: Subharmonic ferroresonance (Period-3) oc-

curring at Cseries = 18.2µF and Cshunt = 29.1µF ;

(a) time-domain waveforms for flux, magnetizing cur-

rent and voltage, (b) Poincaré and phase-plane dia-

grams, and (c) steady-state core hysteresis formation.
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Figure 5: Subharmonic ferroresonance (Period-5) oc-

curring at Cseries = 10µF and Cshunt = 22µF ; (a)

time-domain waveforms for flux, magnetizing current

and voltage, (b) Poincaré and phase-plane diagrams,

and (c) steady-state core hysteresis formation.
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Figure 6: Subharmonic ferroresonance (Period-7) oc-

curring at Cseries = 29µF and Cshunt = 38µF ; (a)

time-domain waveforms for flux, magnetizing current

and voltage, (b) Poincaré and phase-plane diagrams,

and (c) steady-state core hysteresis formation.
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forms exhibit Period-3 type ferroresonance for the

first few cycles after switch is opened before damp-

ening out; (a) time-domain waveforms for flux, mag-

netizing current and voltage are shown with (b) phase-

plane portrait.

WSEAS TRANSACTIONS on POWER SYSTEMS Paul Moses, Mohammad Masoum

ISSN: 1790-5060 367 Issue 12, Volume 4, December 2009



0 0.2 0.4 0.6 0.8 1

−1

0

1

v
(t

)
(p

u
)

0 0.2 0.4 0.6 0.8 1
−10

0

10

i m
(t

)
(p

u
)

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

Time (sec)

φ
(t

)
(p

u
)

(a)

−4

−2

0

2

4

−10

−5

0

5

10

0

0.2

0.4

0.6

0.8

1

φ (t) [pu]
dφ(t)

dt

T
im

e
[s

ec
]

Poincare section

(b)

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

im (t) (pu)

φ
(t

)
(p

u
)

(c)

Figure 8: Chaotic ferroresonance occurring at

Cseries = 16 µF and Cshunt = 6.4 µF ; (a) time-

domain waveforms for flux, magnetizing current and

voltage, (b) Poincaré and phase-plane diagrams, and

(c) steady-state core hysteresis formation.
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Figure 9: Temporary ferroresonance condition for

Cseries = 16 µF and Cshunt = 8 µF . The waveforms

exhibit chaotic ferroresonance modes for the first few

cycles after switch is opened before dampening out;

(a) time-domain waveforms for flux, magnetizing cur-

rent and voltage are shown with (b) phase-plane por-

trait.
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1 modes in the simulated scenarios, but because sub-

harmonic modes heavily dominate the stability do-

main, fundamental modes may be difficult to isolate.

5.2 Chaotic Ferroresonance Modes

The most highly distorted mode of ferroresonance is

the chaotic type which is aperiodic. This mode was

found for Cseries and Cshunt set to 16 and 6.4 µF , re-

spectively (Fig. 8). The chaotic behavior is sustained

indefinitely and is clearly illustrated by the phase-

plane trajectories having non-repeating structure. The

scattered Poincaré mapping also indicates the pres-

ence of a strange attractor. Very large magnetizing

currents (10 pu) and overvoltages (over 1.5 pu) are

observed which can thermally stress transformer core

and windings and cause insulation failure. The impact

on hysteresis formation under chaotic ferroresonance

mode is shown in Fig. 8c where multiple minor loop

trajectories are created.

Unstable chaotic modes are shown in Fig. 9 with

Cseries and Cshunt set to 16 and 8, µF , respectively.

Highly distorted chaotic ferroresonance modes simi-

lar to the previous case are observed but is only sus-

tained for a short time before dampening out. Never-

theless, in this short time, the excessive voltage and

current amplitudes can still cause permanent trans-

former damage.

For the studied switching scenario, generally very

few chaotic ferroresonance modes were identified

compared to subharmonic modes. It was also noted

that under such conditions, PSPICE numerical solver

sometimes failed to converge due to the highly non-

linear hysteresis equations implemented in the trans-

former model. Therefore, extra measures were re-

quired to complete the simulation such as decreasing

the maximum step size and relaxing error tolerances.

6 Conclusion

The goal of this paper was to provide insight and a

better understanding of core hysteresis behavior un-

der dynamic conditions. Therefore, a new analysis

of ferroresonance initiated by single-phase switching

transients has been carried out with an improved time-

domain transformer model which includes dynamic

hysteresis effects of the transformer core. Several

modes of ferroresonance have been identified with the

developed model. A number of useful outputs such

as phase-plane trajectories and Poincaré maps, as well

as, core fluxes, terminal voltages and magnetizing cur-

rent waveforms have been computed. The main con-

clusions are:

• For seemingly innocuous switching action, many

subharmonic and chaotic ferroresonance modes

were observed for different capacitance values

which resulted in large voltage and current dis-

tortions.

• After a rigorous search, no fundamental ferrores-

onance modes could be recreated in this trans-

former model for the given switching condition.

The majority of observed oscillations were sub-

harmonic type ferroresonance modes which is

consistent with the findings of [4] indicating that

hysteresis leads to expanded subharmonic fer-

roresonance modes in the stability domain.

• Some modes of ferroresonance, especially of the

chaotic type, are shown to cause severe trans-

former stress due to excessive terminal voltages,

fluxes and magnetizing currents. Such operation

can degrade winding insulation and reduce trans-

former life.

• The impact on the formation of minor hystere-

sis loops is shown for several different ferroreso-

nance modes.

• A method for defining hysteresis nonlinearities

from measurements is proposed with the use of

limiting ascending and descending curve rela-

tionships and their derivative functions.

• Unlike other methods (e.g., Preisach and Jiles-

Atherton approaches) which require many pa-

rameters for hysteresis to be determined exper-

imentally, the method presented here only re-

quires the major hysteresis loop to be measured.

• The proposed transformer model is general and

can be applied to other dynamic or steady-state

disturbance studies. Furthermore, the model

could possibly be incorporated into large scale

power system simulations to identify situations

where the risk of ferroresonance is high and re-

quire mitigation strategies.

• Although the model performed admirably under

extremely dynamic conditions, the convergence

properties of this model can be problematic due

to discontinuities created by the nonlinear hys-

teresis model. However, this problem is largely

overcome by decreasing the maximum step size

(at the expense of increasing simulation time).
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