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Abstract: - This paper presents a model for calculating the transient space-time current distributions in vertical 

electrodes and to the surrounding ground. The model is based on the electromagnetic field theory for 

calculations of the step function wave-pair response. The method takes into account the parameters of the 

electrode, such as: the radius and the length of the electrode. Furthermore, the conductivity, permittivity and the 

propagation velocity of the currents in the ground are also considered. In the analysis, the electrode is divided 

into finite sections. Thereafter, the "Compensating Currents", ground leakage currents and the current in the 

electrode in each section are calculated at all times.  

The model is applied by a MATLAB code for the calculations of the above-mentioned currents' distributions. 

The results show that for soils of high conductivity values, relative short electrodes are needed for dissipating 

transient currents such as lightning currents. Furthermore, soil conductivity is a more sensitive parameter 

compared to the radius of the electrode and the permittivity of the ground. 

 

 

Key-Words: - Current distribution, Grounding electrodes Lightning, Transient response, vertical electrodes. 

 

1 Introduction 
The most important element in lightning protection 

systems is the grounding system. A good grounding 

system is the one which dissipates the lightning 

current efficiently into the ground [1]. For the 

design of optimal and effective grounding systems, 

better understanding of the behaviour of grounding 

systems under transient currents is essential. An 

optimal design is important for achieving 

Electromagnetic Compatibility (EMC) 

requirements, as well as good protection against 

high currents and voltage hazards [2]. 

Since the early twenties, researchers have dealt with 

various phenomena related to the response of 

grounding systems to transients with high amplitude 

currents and short rise times, such as the lightning 

phenomenon. Earlier, researchers with no available 

computers, made an effort to find analytical models 

only,  [3-7]. Since the late seventies or early eighties, 

computers became more powerful and models tend 

to become numerical,  [8-12]. Furthermore, some of 

the analytical formulations led to unsolvable 

equations, such as differential or integral equations, 

 [13,14]. In recent years, such equations can be 

evaluated by numerical methods. 

The majority of the papers in this field concentrate 

on the determination of either the Ground Potential 

Rise (GPR), or the transient impedance of the 

lightning current (see for example Grcev and Popov 

(2005),  [15]). The measurements and calculations of 

these parameters are an important factor for the 

design of substations in which equipment is located 

over the grounding grid. The information about the 

above mentioned GPR or the transient impedance is 

essential for the design of grounding electrodes and 

grids. The experiments for measuring these 

parameters are relatively simple, due to the fact that 

the measuring point is above ground level.  

The knowledge of the current distributions in buried 

electrodes and the resulting leakage currents into the 

ground is essential for a better design of grounding 

systems. This analysis can improve the design of the 

electrodes shapes, grounding systems topologies, 

etc. There are only a few published papers which 

involve analysis of the current distribution and 

ground leakage currents in buried vertical 

electrodes.  

In this paper, a model for calculating the response of 

a vertical electrode to a transient current is 

presented. The model is based on electromagnetic 

field theory, which is considered to be the most 

rigorous method for approaching the problem. The 

model takes into account the radius of the electrode 

and the conductivity and permittivity of the ground. 

The electrode is divided into finite sections. 

Thereafter, the "Compensating Currents", ground 
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leakage currents and the current in the electrode in 

each section are calculated at all times. The space-

time distribution is also presented by taking into 

account the mutual effects of each segment.  

Descretizing the electrode makes it natural to 

convert the analytical equations to computer based 

numerical expressions. The model is applied by a 

MATLAB code for the calculation of the above-

mentioned current distributions. Studying the results 

of the simulation, yields to the conclusion that for 

soils of high conductivity values, relative short 

electrodes are required for the dissipation of the 

lightning current. Moreover, in low conductive soils 

there is no practical justification for the use of 

vertical electrodes. In this case, long horizontal 

electrodes are more efficient and recommended. 

Another observation is that soil conductivity is a 

more sensitive parameter compared to the radius of 

the electrode and the permittivity of the ground. 

This presented work offers an engineering tool for 

the assessment of the effective lengths of electrodes 

for various types of soils.  

In this work the ionization phenomenon is 

neglected. This is justified due to the fact that in 

complicated and multiconductor grounding systems, 

the lightning current is divided between all 

conductors of the system. Thus, in most of the 

conductors and electrodes, ionization phenomenon 

will not occur. 

 

 

2 The Wave Pair Model 
 

2.1 The Horizontal NP Wave Pair Model 
 

A theoretical model describing the incident transient 

current is based on the Wave Pair Model [4]. This 

model describes the lightning stroke based on 

electromagnetic wave propagation concept.  

Deriving the potential wave equation from 

Maxwell's equations yields: 
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When, V and A
�

 are the scalar and vector potentials 

accordingly, ρ is the charge density and J
�

 is the 

current density. These equations are valid only when 

the following condition (Loerenz Gauge condition) 

is fulfilled: 
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Due to symmetrical consideration the charge q, the 

charge per unit length, replaces ρ, and the current I 

replaces J
�

  . The solution for the potentials V and 

A
�

  introduced in Eq.1 is: 
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 These are the well-known "retarded potentials". 

 

The rotational Maxwell's equation for the electric 

field strength E
�

 is: 

 

B
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     (4) 

The vector potential A
�

  is defined as: 
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From Eq. 4 and 5 , it is obtained: 
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(6) is used to calculate the electric field strength 

components at an observation point. 

Calculating the potentials and the electric field 

strength due to a down going step function charge 

wave (see Fig.1) yields: 

 

( )

( )

2 2 2 2

2 2 2 2

30 ln ln(

1 ˆ30 ln ln(

c
V I U U R r

v

A I U U R r
v

ξ ξ

ξ ξ ξ

 = + + − − + +  

 = + + − − + + ⋅  

�

     (7) 

   

Where v is the velocity of the charge wave 

propagation, ξ and r, are the horizontal and vertical 

distances of the observation point from the origin, 

ξ
�

  is a unit vector in the x-direction and the 

following definitions are used: 
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Using (6) and (7) the horizontal and vertical 

components of the electric field strength can be 

obtained: 
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Study, now the electric field strength components at 

an observation point P(ξ,r) due to a single step 

function charge wave, do not satisfy the condition of 

(2), which means that this configuration has no 

physical meaning. That is due to the fact that the 

source of the charge is not defined. Therefore, in 

order to be consistent with charge conservation and 

to avoid the necessity of defining the source. A 

wave pair – model was developed, as seen in Fig.1. 

[4] 

 

 

 

 

 

 

 

 

 

 

Fig.1: The opposite polarity two wave model 

 

This model consists of two step functions. On the 

positive direction of axis x there is a positive 

polarity charge/current wave, traveling to the +x 

direction with velocity v. On the other direction 

there is a negative polarity charge/current wave 

traveling to the -x direction with the same velocity. 

This configuration is called PN (Positive Negative) 

wave-pair. The PN and the NP (Negative Positive, 

which is the complimentary configuration of the 

PN) configurations are the only ones that are with 

total agreement with the condition of (2). 

Solving  the  potential  equations  for  a  NP  or  a  

PN  model  yields  solutions which satisfy (2). 

These potentials are calculated in the same manner 

(7) was derived. Then, the potentials are substituted 

in (6) to obtain the electric field strength E
�

 of an 

NP wave pair and the solutions are: 
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2.2 Asymmetric Orthogonal Current Wave 

Pair 
An orthogonal current wave pair is a wave pair in 

which one current wave travels in one direction, ξ-

axis for example, and the other one travels in a 

perpendicular direction to the first current wave (r-

direction in Fig. 2). These wave pairs are useful for 

representing current waves in corners or dispersion 

of currents. The symmetric orthogonal wave pairs 

were described and dealt in [20]. 

Consider an asymmetric orthogonal current wave 

pair, shown in Fig. 2. 

 
Fig.2: Asymmetric orthogonal current wave pair 

 

This wave pair consists of a positive current wave 

with magnitude I traveling on the positive direction 

of the r-axis. This current travels at the velocity v. 

The other part of the current wave pair is a negative 

magnitude current wave (-I), which travels in the 

positive direction of the ξ-axis. This wave is 

traveling at the velocity of c. 

It is not yet obvious that the electric field strengths 

calculated at the observation point P(ξ,r) satisfy 

Lorentz’s Gauge condition. Moreover, if the above-

mentioned current wave does not satisfy that 

condition, it is physically unsound for use in the 

analytical model. The Scalar and Vector potentials, 
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due to such an orthogonal asymmetric current wave 

pair, need to be calculated at the observation point 

P(ξ,r). Then the resulting potentials must be 

substituted and checked by the Lorentz Gauge 

Condition (2). 

The scalar potential V and the vector potential A
�

  

for the N type wave traveling at the velocity of light 

c and the P type wave, traveling at constant velocity 

v, are: 

                                                                             (12) 
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Substitution of the resulting potentials given by (12) 

into the Lorentz Gauge Condition (2) yields: 

                (14) 
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Thus, the Lorentz-Gauge condition is satisfied and 

therefore the orthogonal asymmetric current wave 

pair is physically meaningful. 

 

 

3 Description of the Model 
The current distribution in the electrode and the 

ground leakage currents are studied. The model is 

based on the step function wave pairs described 

above. This model is applicable both for the current 

waves inside the electrode (conductor), as well as 

the ground currents (leaking from the surface of the 

electrode). The rectangularity of the current waves 

is kept by using the Compensating Currents theory 

[4].  

For calculation of the currents, the electrode is 

divided into small segments, ∆l. All segments are 

equal in length and considered small enough in a 

manner that the electric field is constant along ∆l. A 

current, which propagates at the velocity of light, 

will cross a segment at t=∆l/c. 

The method presented here is based on some 

assumptions, as follows: 

- All electrode currents have axial components 

only. 

- The net current is assumed to flow on symmetry 

axis of the conductor. Note that the conductor 

thickness is not neglected (the same as in thin 

wire approximation). 

- The grounding electrode is made of a very good 

conducting material (perfect conductor). 

- The radius of the electrode is much smaller than 

the buried length of the electrode. 

- The soil is assumed to be a linear homogenous 

half space with conductivity σ and relative 

permittivity constant εr. 

- The soil is considered to be non magnetic with a 

relative permeability constant µr=1. 

- The current flowing to the ground is 

perpendicular (the field is radial) to the surface 

of the electrode. 

- The losses in the ground are much higher than in 

the conductor. Therefore, the skin effect in the 

conductor is neglected. 

- The electrode is assumed to be a part of an 

effective grounding system. Consequently, the 

currents are low enough so that no ionization 

occurs. 

- The ground leakage current is propagating at a 

constant velocity v. This velocity is determined 

by the ground relative dielectric parameter εgr. 

The velocity is: / grv c ε=  . 

- The current in the electrode propagates at the 

velocity of light c. 

 

 

3.1 Calculations of the Currents in the First 

Segment 
At t=0, an N-P current wave pair is injected into the 

origin of the electrode. This current is propagating 

at the velocity of light. Therefore, at t=t1, the current 

and the following S.O.I (Sphere of Influence) will 

reach point no.1 on the symmetry axis of the 

electrode. In order to compensate for the axial 

electric field strength on the surface of the 

conductor (electrode), a P-N compensating current 

wave pair must be applied in point no.1. This 

compensating current is marked as seen in Fig.3. 
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Fig.3: The electric fields and the compensating 

current at the first segment of the electrode 

The axial electric field strength due to I0 at the point 

no.1', located on the surface of the conductor, is: 
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is: 
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This compensating current compensates the axial 

field resulting from I0. Therefore: 
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yields the expression for the first compensating 

current: 
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The perpendicular field strength at point no.1' is the 

sum of both normal fields at that point, resulting 

from I0 and 
11tI . Since  

11tI   is located on the same ξ 

coordinate as point no.1' its contribution to the 

normal field is zero. Therefore, the resulting electric 

field strength in the r direction is: 
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The surface of the electrode is assumed to be in 

direct contact with the ground. The ground is 

assumed to be homogenous with conductivity σ. 

The current density at that point is then: 
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This density is equal for all points of the surface of 

the first segment (with length ∆l).  

The resulting leakage current    leaving the electrode 

towards the ground at that point is therefore the 

current density multiplied by the surface of a 

cylinder of length ∆l and radius ρ'. 
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The ground leakage current  
11tgI   is shown in Fig. 4 

as a P-N wave pair (in order to satisfy the Lorentz 

Gauge Condition). The positive current of the wave 

pair is traveling perpendicular to the electrode's 

surface at a constant velocity v. The negative part of 

the wave pair is an axial current wave traveling on 

the symmetry axis of the electrode. In Fig. 4, the 

positive  
11tgI   is shown on the surface of the 

electrode. However, it is assumed that the current 

wave is located at the symmetry axis of the 

conductor (see arrow in Fig. 4). This leakage current 

wave pair is different from I0 and 
11t

I  , as the 

positive current is traveling at a constant speed v 

and the negative current is traveling at the velocity 

of light, c.  

 
Fig.4: The resulting ground leakage current of the 

first segment of the electrode. 

 

The initial current inside the electrode is I0 and it is 

fed at the origin of the electrode. When this current 

and its S.O.I passes point no.1', the current in the 

electrode is the sum of all currents which exist in the 

segment ∆l between point no.1' and the next point 

(See Fig.5). 
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Fig.5: The current inside the electrode after the 

injected current passes point no.1 

 

The sum of all the currents in the highlighted region 

in Fig.3 is: 

 

1 1 11 0 1 1t t tE gI I I I= − −
                           (24) 

 

 

3.2 Calculations of the Currents in the 

Second Segment 
 

At   
2

2t t l c= = ⋅ ∆  the NP current wave pair (I0) and 

its S.O.I reaches point no.2. At this time, again, the 

axial electric field at point no.2' must be equal to 

zero. A new Compensating Current is formed at 

point no.2 

(Fig.6).

 
 

(a) 

 
(b) 

 

Fig.6: a) The electric fields, the compensating 

currents and ground currents, when the S.O.I due to 

I0 passed the second segment. b) All current waves 

distribution existing when the S.O.I of I0 passed 

over the second segment 

 

At point no.2', in addition to the second 

compensating current’s axial field on the surface of 

the electrode, there is another axial field resulting 

from the new ground leakage current, 
11tgI   . The 

field of the injected current I0, calculated at the point 

no.2' located at distance of 2∆l from the origin, is: 
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The field of the first Compensating Current, located 

at distance of ∆l from the point no.2, is: 
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Another axial field originated from the ground 

leakage current is 
11tgI . The axial field resulting 

from this current is: 

                 (27) 
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The axial field in the equation, which balances the 

total axial field, is the axial field due to 

compensating current  
22t

I  at point no.2'. This field 

strength component is: 

2 2 1
1

1
60

'I tt

E Iξ ρ
=                (29) 

Now the total axial components field equation can 

be written as: 
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The compensating current  
22t

I   , derived from (30) 

is: 
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The vertical (r-direction) electric field can be 

calculated by the summing up of all electric fields in 

the r direction due to all abovementioned currents. 

The expression for this field is: 

 

            (32) 

( ) ( )

( ) ( ) ( )

1

0 1 1

1

1 1

2 0 1
2 22 2

1
2 2 2 2

1 2 1
60 60

' '2 ' '

'
1

30
' '

t

rI rI t

t

rIg t

rT

E E

g
t t

E

l l
E I I

l l

c v v
l

c vc cI
v c lU R

ρ ρρ ρ

ρ

ρ ρ

⋅ ∆ ∆ 
= − +

⋅ ∆ + ∆ + 




 − + ∆  
+ − −  

 ∆ + +
   




����������� �����������

���������������������

 

 

Note that the perpendicular electric field strength of 

22t
I   at point no.2' is zero, as it was explained above 

for point no.1'. This perpendicular electric field will 

cause a ground leakage current whose magnitude is: 

 

2
2

22 '
t

g rTI l Eπρ σ= ⋅ ∆ ⋅ ⋅               (33) 

All current waves existing at this time are shown 

Fig.6-(b) 

At t=t2, the part of the PN compensating wave pair 

current 
11t

I  that flows to the left, reaches the end of 

the electrode and reflection occurs. The reflection is 

defined by the appearance of a new NP wave pair 

current with the same magnitude as 
11t

I   starting at 

the origin  [4]. The left going part of the 

compensating current continues undisturbed on the 

symmetry axis of the electrode to its left side (see 

Fig.7). 

 
Fig.7: The currents of the model for a reflection at 

the origin of the electrode 

 

The left going current wave of reflected 

Compensating Current is of a negative magnitude. 

Therefore it cancels the positive magnitude 

compensating current occupying the same fictitious 

conductor. Consequently, no current exists on the 

left of the electrode's origin.  The currents on the 

right side of the origin do exist. Thus, the left going 

compensating current and the right going reflected 

compensating current continue as wave pairs. This 

procedure describes full reflection, without 

distortion of the wave pair model. 

The current inside the electrode in the various 

sections can thus be calculated. The current of each 

section can be determined from the highlighted parts 

of Fig.8. 

 
Fig.8: The currents inside the electrode after point 

no.2 

At the origin, the electrode's current of the reflected 

compensating current is added to the injected 

current I0. Thus the current is: 

2 10 0 1t tEI I I= +
                           (34) 

At the second segment after point no.2, the 

electrode's current is: 

2 1 11 0 1 1t t tE gI I I I= − −
                          (35) 

and at the third segment after point no.2, the current 

is: 

2 1 2 1 22 0 1 2 1 2t t t t tE g gI I I I I I= − − − −
             (36) 
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3.3 Calculations of the Currents in the Third 

Segment 
The same calculations are going to be repeated for 

the third segment (Fig.9). The reason for repeating 

the calculations is to underline the influence of the 

reflection phenomena which occurs at time t=t2. The 

waves at t=t3 have reached point no.1 and the 

changes in the induced electric fields must be 

calculated. Therefore the currents  
11t

I   and  
11tgI   

must be re-valued. 

 
Fig.9: The currents at time t=t3 at points 1,2 and 3 

31t
I   can be derived from the axial field equilibrium 

as in (17) and (30) taking into account all the axial 

field influencing point 1'. Moreover, the 

perpendicular electric field at that point at time t=t3 

yields the expression for the ground leakage current,
 

31tgI . The re-evaluated currents at the end of the 

first segment at time t=t3  are then: 
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          (37) 

and: 

1 3
3

12 '
t

g r t TI l Eπρ σ= ⋅ ∆ ⋅ ⋅               (38) 

where: 
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The Compensating Current, the ground leakage 

current and the current inside the electrode at points 

3 and 3' are calculated in the same manner, as 

described in the previous sections. 

 

 

3.4. The Total Expressions for the Currents 

in all Sections at All Times 
In the former sections, the various compensating 

ground leakage and conductor currents were 

studied. The Compensating Currents are the source 

for elimination of the axial electric field strengths on 

the surface of the electrode. The resulting 

Compensating Currents are used for calculation of 

the perpendicular electric field strengths directed 

towards the ground. After evaluating this field, the 

ground leakage currents were calculated, and then 

the current inside the electrode was also evaluated. 

This procedure has been done for three segments 

only in the electrode. Obviously, when the injected 

current propagates in the electrode, many more 

segments are involved and the amount of currents 

becomes enormous. Therefore, based on the currents 

calculated in the previous sections, it is possible to 

extend the calculations and define general 

expressions, which give the currents at any point in 

the electrode at any given time. 

The general expression for the Compensating 

Currents distribution is: 
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The general expression for the ground leakage 

current distribution is: 

                 (41) 
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and the general expression for the current inside the 

electrode is: 

( 1)tm m tm tmEn E n t n gnI I I I−= − −
  

            (42) 

 

In (42) the current at the origin must take into 

account all reflections. The expression for the edge 

conductor current is then: 

2

0 0

1
tm m p

mp

E pt

p

I I I
−

=

=

= + ∑               (43) 

 

3.5 Matrix Representations of the Various 

Currents for MATLAB Programming 
For calculation and presentation of the various 

currents distributions, a MATLAB Code was 

written. The program is used for the calculation of 

the Compensating Currents, the ground leakage 

currents and the current distribution, as summarized 

in (26)-(28). 

In general, all currents are calculated at any point in 

time and space and a designated matrix is formed. 

Each matrix is a n-by-m matrix. The rows represent 

the position of the current on the axis of the 

electrode, or the position of the S.O.I on the surface 

of the electrode (depending on the type of current). 

Each row is a sequential multiplication of an integer 

n (where n=1,2,3…) with the basic segment unit ∆l. 

Thus, the rows represent the depth of the current 

propagation or the S.O.I propagation with respect to 

the origin of the electrode. 

The columns are a representation of the time. This 

propagation time is calculated from the initial time 

t=t0, at which the injected current wave-pair starts. 

In the numerical process the time is assumed to be a 

discrete parameter, depending on the size of the 

segment unit ∆l. The various currents time 

responses are calculated as discrete samples with a 

sample time, depending on the length of the 

electrode segment. As the currents in the electrode 

travel at a velocity of light, c, the time for the 

current to propagate at a distance of ∆l is t l c= ∆ . 

Therefore each column is a multiplication of an 

integer m (where m=1,2,3…) with the basic time 

sample  l c∆ .  

Thus, in all matrices, each component represents a 

current with space and time index. The general form 

of a matrix for any given current is: 

           (44) 
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where: D represents the type of current 

(Compensating Current, ground leakage current or 

the current in the electrode). 

Study of the matrix of (44) yields that the matrix is 

an upper triangular one. This is due to the fact that 

at a certain depth in the electrode, where the S.O.I 

exists, the currents influence the fields of that point 

and the previous ones only. For example, when the 

S.O.I reaches the third segments ( 3 l⋅ ∆  ) at time 

t=t3, there are currents at the third, second and first 

segments only (see third row in the above matrix). 

For the calculation of the current inside the 

electrode a vector of the current at the injection 

point is added, following expression (43) as follows: 
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3 The Computer Simulation Results 
 

3.1 General 
The Code was tested for many cases of various 

parameters. Each simulation was done for a 

different combination of conductivity σ, relative 

permittivity constant εr and the radius of the 

electrode, ρ'. Since the discussed phenomenon is 

time dependant, it is important to note that each 

result shown in a graph describes a specific time 

only. The length ∆l, is the calculation step of the 

algorithm. For smaller ∆l the results are more 

accurate. The problem is that small calculation steps 

require more computer resources. Testing the codes 

for various values of ∆l yields to the conclusion that 

choosing ∆l, which is equal to the radius of the 

electrode, is sufficient (this result is also mentioned 

in Braunstein (1964)  [4]). 

 

 

3.2 The Simulation Results 
The model used here assumes that the ground is 

homogeneous. Thus the conductivity σ is obtained 

from geological research data  [5]. The values of the 

conductivity vary between σ=0.2 mho/m (resistivity 

of 5Ω/m) for a conductive soil such as clay, up to 

σ=0.001 mho/m for less conductive soil such as 

gravel.  

In Fig. 10-(a) and (b), the resulting distributions of 

the current inside the electrode and the surrounding 

ground are presented. This is for the time in which 

the current propagated a distance of 3m along the 

vertical electrode. The electrode has a radius of 

0.01m and is driven into a soil with a relative 

dielectric constant of 10. The graphs show the 

distributions for five resistivities (5, 

10,100,500,1000Ωm). The injected current is a step 

function with a magnitude of 1A. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 10: Currents distributions for an electrode with 

radius of 0.01m driven into a soil with εr=10 for 
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various resistivities. a) The current distributions in 

the electrode. b) The current distribution in the 

surrounding ground. c) The current distribution in 

the surrounding ground for low resistivities. d) The 

current distribution in the surrounding ground for 

high resistivities. 

 

The results presented in Fig. 10-(a) show that for 

low resistivities (5Ωm and 10Ωm), the current 

decays much faster than in the case of the higher 

resistivities.  Moreover, the current reduces to less 

than 10% of its initial value after propagating a 

distance of 20-30cm in the lower resistivities (5Ωm 

and 10Ωm), a 1.5m at 100Ωm and it takes longer 

than 3m for the higher resistivities.  

In Fig. 10-(b), the current distributions in the 

surrounding ground of the same electrode with the 

same conditions are presented. Again it is clear that 

the current distribution to the ground is better in the 

lower resistivities than in the higher ones. Since the 

axes are logarithmic it is difficult to get a clear 

vision of the characteristics of the current 

distributions at the various resistivities. Therefore, 

the distribution for the lower resistivities is shown in 

Fig. 10-(c) and for the higher ones is shown in 

Fig.10-(d). 

Note that Fig. 10-(c) includes only 50cm of the 

electrode, while Fig. 10-(d) includes 3m. The results 

show that in low resistivities the current dissipates 

into the ground after 25-35cm, while in the higher 

resistivities after 3m, there is still current omitting 

into the ground. 

A more vivid view is presented in the 2D and 3D 

examples of Fig.11-(a) and (b). Fig. 11-(a) shows 

the current distribution to the ground in the case of 

soil resistivity of 5Ω/m. It is clear from this example 

that there is no current after 25cm, whereas Fig.11-

(b) shows the current distribution to the ground in 

the case of soil resistivity of 1000Ω/m. In this case 

not all the current dissipates to the ground even after 

3m. 

 
(a) 

 
(b) 

Fig. 11: a) 2D and 3D view of the current 

distribution in a soil with resistivity of 5Ω/m. b) 2D 

and 3D view of the current distribution in a soil with 

resistivity of 1000Ω/m 

 

Running the code for longer electrodes yields that in 

the case of high resistivity the current in the 

electrode decreases to about 10% of its initial value 

at a depth of about 13m. 

The code was also tested for various radiuses and 

various relative dielectric constants. All the results 

show that the soil conductivity σ, is the most 

sensitive parameter. 

 

 

4 Discussion and Conclusions 
As mentioned above, the simulation results show 

that the soil conductivity σ, is the most sensitive 

parameter. Similar results are found also and 

reported [12], for the voltage change in grounding 

systems and in [16]. 

The results show that for soil with conductivity 

values higher than 0.02[1/Ωm], 25cm effectively 

buried in the ground electrodes are sufficient. On 

the other hand, when soil conductivity is lower than 

0.001[1/Ωm], the length of electrodes may reach the 

length of 13m. This is in agreement with the results 

obtained by impedance calculations discussed in the 

work of Davis, Griffiths and Charlton [16] and [17]. 

The length of the electrode required by this study 

for soil conductivity value of 0.001[1/Ωm] is 13m 

and it agrees with the depth of the electrodes of 10-

12m, as reported in these references, for the same 

conductivity [16],[17]. 

The results also show that in high conductive soils, 

the current dissipation is close to the ground level 

(very small depth). This effect was observed in 

many lightning strokes where top layers of the 

ground had traces of burns or are crystallized (see 

picture in [18]).  The currents in these types of soils 

have higher magnitudes at depths close to the top 

edge of the electrode. This is in good agreement 
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with the calculated and measured results of ground 

potential of long horizontal buried electrodes, see 

for example Otero, Cidras and Alamo(1999),  [19], 

Lorentzou and Hatziargyriou(2000)  [10] and Yaqing 

, Zitnik and Thottappillil(2001)  [12].  The potentials 

reach higher values with a maximum close to the 

edge of the electrode. This means that higher 

currents must flow there in order to induce higher 

electric fields and higher potentials. 
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