A novel method of coordinating PSSs and FACTS Devices in Power System Stability Enhancement

M. Ahmadzadeh S. S. Mortazavi A. Saeedian
Elect. Engg Dept., Shahid Chamran University

Abstract— this paper shows the effect of power system Stabilizers (PSS) and Flexible AC Transmission Systems (FACTS devices) based stabilizers containing Thyristor controlled Series Compensator (TCSC), Static var compensators (SVC), Thyristor Controlled and phase shifter (TCPS) on stability of power systems. Moreover this paper presents a novel approach for designing coordinated controllers of PSS and FACTS such as coordination of PSS with SVC, PSS with TCSC and PSS with TCPS for enhancing small disturbance stability. The coordinated control problem is formulated as a constrained optimization with eigenvalue-based objective function. The proposed approach employs genetic algorithm (GA) for optimization. To study the effectiveness of the proposed controllers, three different loading conditions including light, normal and heavy loading conditions are considered. Moreover in order to determine effect of proposed design, three case studies are considered. These include: 1-without compensation (base case), 2-single compensation and 3-coordinated compensation. Simulation results show that the controller design approach is able to provide better damping and stability performance.

Index Terms- Power system stabilizer, PSS, FACTS devices, SVC, TCSC, TCPS, Optimization, coordinated design, small disturbance stability.

1.INTRODUCTION

The line impedance, the receiving and sending ends voltages, and phase angle between these voltages determine the rate of electrical power transmission over an electric line. Hence, controlling, one or few of the transmitted power factors; it is possible to control the active as well as the reactive power flow over a line.

Series and shunt capacitor, and phase shifter are different approaches to increase the power transmission capacity of lines. Even traditionally used but all these were relatively slow but very useful in a steady state operation of power systems. From a dynamical point of view, their time response is too slow to effectively damp transient oscillations. If mechanically controlled systems were made to respond faster, power system security would be significantly improved, allowing the full utilization of system capability while maintaining adequate levels of stability. This concept and advances in the field of power electronics led to a new approach introduced by the Electric Power Research Institute (EPRI) in the late 1980. Called Flexible AC Transmission Systems or simply FACTS, it was an answer to a call for a more efficient use of already existing resources of power systems while maintaining and even improving power system stability.

Damping of electromechanical oscillations among interconnected synchronous generators is necessary for secure system operation. Power system stabilizer (PSS) has been used for many years to damp out the oscillations [1]. With this way of increasing transmission line loading over long distances, then use of PSS in some cases may not provide sufficient damping for inter-area oscillations. In such cases, in addition to PSS, other effective alternatives are needed.

In particular, FACTS device stabilizers have been proposed to augment the main control systems for the purpose of damping the rotor modes or inter-area modes of oscillation.

However, to achieve an optimal small-disturbance performance and transient state stability improvement, the co-ordination between PSSs and FACTS devices controllers is necessary.

A procedure was previously reported for simultaneous co-ordination of PSSs and FACTS devices to enhance the damping of the rotor modes [2], [4]. The procedure [2] determines only the stabilizer gains based on the approximation that ‘the shift in the rotor mode eigenvalue is linearly related to the increments in stabilizer gains’. In that paper [2], a systematic and optimal control coordinate design procedure between PSSs and FACTS devices such as static VAR compensator (SVC) is developed. The controllers design problem is transformed into a constrained optimization problem (i.e. search for optimal settings of controller parameters). The design is based on the minimization of the real parts of eigenvalues, including those of the rotor modes, and eigenvalues of the state matrix of the power system to enhance its small disturbance stability. The alternative design is based on the minimization of stabilizer gains with constraints imposed on selected eigenvalues.

But in this paper for increment of damping of electromechanical mode and to improve small disturbance stability, a lead-lag controller is also used. This controller is shown in figs.1-4. In these controllers, in addition to stabilizer gains, time constants including T_1, T_2, T_3 and T_4 optimized using genetic algorithm. To study the effectiveness of the proposed controllers, three different loading conditions including light, normal and heavy loading conditions are considered.

In order to determine the effectiveness of proposed design three case studies are considered: 1-without compensation (base case), 2-single compensation and 3-coordinated compensation.
Simulation results show that the controller design approach is able to provide better damping and stability performance.

II. MODEL OF POWER SYSTEM ELEMENTS

A. Generator model

The generator is represented by the 3rd order model consisting of the swing equation and the generator internal voltage equation. The swing equation can be written as [5]:

\[\dot{\delta} = \omega_b (\omega - 1) \] \hspace{1cm} (1)

\[\dot{\omega} = \left(P_m - P_e - D (\omega - 1) \right) / M \] \hspace{1cm} (2)

The internal voltage, \(E_q' \), is given by

\[E_q' = (E_{fd} - (x_d' - x_{dq}')i_d - E_q) / T_{do} \] \hspace{1cm} (3)

B. Excitation system model

\[\dot{E}_{fd} = \left(K_A (V_{ref} - V + u_{ps}) - E_{fd} \right) / T_A \] \hspace{1cm} (4)

\[v = \left(v_d^2 + v_q^2 \right)^{1/2} \] \hspace{1cm} (5)

\[v_d = x_q i_q \] \hspace{1cm} (6)

\[v_q = E_q - x_d' i_d \] \hspace{1cm} (7)

Where \(V_{ref} \) is the reference voltage, \(V \) is the terminal voltage, and \(i_d \), \(i_q \) are d- and q-axis armature current and \(v_d \), \(v_q \) are d- and q-axis terminal voltage \(x_d' \) is d-axis transient reactance and \(x_q \) is Generator q-axis reactance.

C. Damping Controller Model of PSS

A conventional lead-lag PSS is installed in the feedback loop to generate a supplementary stabilizing signal \(u_{ps} \), see Fig. 1. The PSS input is the change in the machine speed.

D. Damping Controller Model of TCS

The complete TCSC controller structure is shown in Fig. 2. The output signal of the TCSC is the desired capacitive/inductive compensation signal, noted as \(X_{TCSC} \). The structure shown in Fig. 2 is expressed as:

\[\dot{X}_{TCSC} = \left(K_S (X_{ref}^{TCSC} - U_{TCSC}) - X_{TCSC} \right) / T_s \] \hspace{1cm} (8)

E. Damping Controller Model of SVC

The SVC damping controller structure is shown in Fig. 3. The susceptance of the SVC, \(B_{SVC} \), could be expressed as:

\[\dot{B}_{SVC} = \left(K_S (B_{ref}^{SVC} - U_{SVC}) - B_{SVC} \right) / T_s \] \hspace{1cm} (9)

F. Damping Controller Model of TCPS

Similarly, Fig. 4 shows a TCPS equipped with a lead-lag stabilizer. The TCPS phase angle is expressed as:

\[\dot{\Phi}_{TCPS} = \left(K_s (\Phi_{ref}^{TCPS} - U_{TCPS}) - \Phi_{TCPS} \right) / T_s \] \hspace{1cm} (10)
III. SINGLE MACHINE INFINITE BUS (SMIB) POWER SYSTEM

A. Phillips-Heffron model of SMIB system installed with PSS and FACTS Devices

Usually, the linearized incremental model around a nominal operating point is employed in design of electromechanical mode damping controllers. The SMIB system is shown in Fig. 5. (Detailed system data is shown in Appendix.)

![Diagram](image)

Fig. 5: SMIB with FACTS Devices and PSS

Referring to Fig. 5, the d and q components of the machine current i and terminal voltage v can be written as:

\[i = i_d + j i_q \]

\[v = v_d + j v_q \]

The voltage v_s can be written as:

\[v_s = v - j X_{TCSC} i \]

where i is the generator armature current.

The d and q components of v_s can be written as:

\[v_{sd} = x_q i_q \]

\[v_{sq} = x_q i_q \]

Where

\[x_q = x_q + X_{TCSC} \]

\[x_{qs} = x_q + X_{TCSC} \]

The voltage v' can be written as:

\[v' = \frac{V_s}{K} = \frac{V_s}{K < \Phi_{TCPS}} \]

The d and q components of v' can be written as

\[v_{d}' = \frac{1}{V} \left[v_{ad} \cos \Phi + v_{sq} \sin \Phi \right] \]

\[v_{q}' = \frac{1}{K} \left[v_{sq} \cos \Phi - v_{ad} \sin \Phi \right] \]

The load current

\[i_L = v' Y_L \]

Where the load admittance Y_L is given as:

\[Y_L = g + j b \]

The d and q components of i_L can be written as:

\[i_{Ld} = g v_{d}' - b v_{q}' \]

\[i_{Lq} = g v_{q}' + b v_{d}' \]

Then, the line current is:

\[i_L = i - i_L \]

The d and q components of i_L can be written as:

\[i_{ld} = i_d - i_{Ld} \]

\[i_{lq} = i_q - i_{Lq} \]
The midpoint voltage is \[v_m = v' - i_1 Z \]

Hence, the \(d \) and \(q \) components of \(v_m \) can be written as:

\[v_{md} = c_1 v_{d}' - c_2 v_{q}' - R_i d + X_i q \] \hspace{1cm} (29)

\[v_{mq} = c_2 v_{d}' + c_1 v_{q}' - X_i d - R_i q \] \hspace{1cm} (30)

Where

\[c_1 = 1 + R_g - X_b \] \hspace{1cm} (31)

\[c_2 = R_b + X_g \] \hspace{1cm} (32)

The SVC current can be given as

\[i_{SVC} = v_m Y_{svc} \] \hspace{1cm} (33)

Then the line current in this section \(i_{l1} \) is given as

\[i_{l1} = i_1 - i_{SVC} \] \hspace{1cm} (34)

The voltage of infinite bus is

\[v_b = v_m - i_1 Z \] \hspace{1cm} (35)

And the components of \(v_b \) can be written as:

\[v_{bd} = v_b \sin \delta = v_{md} - R_i d_1 + X_i q_1 \] \hspace{1cm} (36)

\[v_{bd} = v_b \cos \delta = v_{mq} - X_i d_1 - R_i q_1 \] \hspace{1cm} (37)

Substituting (14)-(35) into (36) and (37), the following two equations can be obtained

\[c_3 i_d + c_4 i_q = v_b \sin \delta + c_7 E_q \] \hspace{1cm} (38)

\[c_5 i_d + c_6 i_q = v_b \cos \delta + c_8 E_q \] \hspace{1cm} (39)

Solving (38) and (39) simultaneously, \(i_d \) and \(i_q \) expressions can be obtained.

Linearizing (38) and (39) at the nominal loading condition, \(\Delta i_d \) and \(\Delta i_q \) can be expressed in terms of \(\Delta \Phi_{TCPs}, \Delta X_{TCSC}, \Delta B_{SVc}, \Delta E_q \) and \(\Delta \delta \) as following:

\[c_3 \Delta i_d + c_4 \Delta i_q = v_b \cos \delta \Delta \delta + c_7 \Delta E_q + \] \hspace{1cm} (40)

\[c_5 \Delta i_d + c_6 \Delta i_q = -v_b \sin \delta \Delta \delta - c_8 \Delta E_q + \] \hspace{1cm} (41)

Solving (40) and (41) simultaneously, \(\Delta i_d \) and \(\Delta i_q \) can be expressed as:

\[\Delta i_d = c_{13} \Delta \delta + c_{15} \Delta E_q + c_{19} \Delta B_{SVc} + c_{21} \Delta X_{TCSC} + c_{23} \Delta \Phi_{TCPs} \] \hspace{1cm} (42)

\[\Delta i_q = c_{16} \Delta \delta + c_{19} \Delta E_q + c_{20} \Delta B_{SVc} + c_{22} \Delta X_{TCSC} + c_{24} \Delta \Phi_{TCPs} \] \hspace{1cm} (43)

The constants \(c_{1}-c_{24} \) are expressions of:

\[c_{1}-c_{24} = T_{TCPs}, T_{TCSC}, X_{SVc}, X_{TCSCO}, E_{TCPs} \]

The linearized form of \(v_d \) and \(v_q \) can be written as:

\[\Delta v_d = x_q \Delta i_q \] \hspace{1cm} (44)

\[\Delta v_q = \Delta E_q - x_d \Delta i_d \] \hspace{1cm} (45)

Using Equations (42) and (43), the following expressions can be easily obtained

\[\Delta P_e = K_1 \Delta \delta + K_2 \Delta E_q + K_{PB} \Delta B_{SVc} + \] \hspace{1cm} (46)

\[K_{PrX} \Delta X_{TCSC} + K_{Pb} \Delta \Phi_{TCPs} \]

\[(K_q + s T_{do}) \Delta E_q = \Delta E_{fd} - K_4 \Delta \delta - K_{q4} \Delta B_{SVc} - \] \hspace{1cm} (47)

\[K_{qX} \Delta X_{TCSC} - K_{qB} \Delta \Phi_{TCPs} \]

\[\Delta v = K_5 \Delta \delta + K_6 \Delta E_q + K_{qg} \Delta B_{SVc} + \] \hspace{1cm} (48)

\[K_{veX} \Delta X_{TCSC} + K_{veB} \Delta \Phi_{TCPs} \]
where the constants K_1-K_6, K_{pB}, K_{pX}, K_{qB}, K_{qX}, K_{qP}, K_{vB}, K_{vX}, and K_{vP} are expressions of c_1-c_{24}.

The above linearizing procedure yields the following linearized power system model:

$$
\begin{bmatrix}
\Delta \delta \\
\Delta \omega \\
\Delta \epsilon \\
\Delta \epsilon_{\mu}
\end{bmatrix} =
\begin{bmatrix}
0 & 377 & 0 & 0 \\
-\frac{k_1}{M} & -\frac{D}{M} & -\frac{K_2}{M} & 0 \\
-\frac{k_3}{T_{\omega}} & 0 & -\frac{K_4}{T_{\omega}} & 0 \\
-\frac{k_5}{T_{\omega}} & 0 & -\frac{K_6}{T_{\omega}} & 0
\end{bmatrix}
\begin{bmatrix}
\Delta \delta \\
\Delta \omega \\
\Delta \epsilon \\
\Delta \epsilon_{\mu}
\end{bmatrix} +
\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}
+ \begin{bmatrix}
\mu_p \\
\Delta B_{SVC} \\
\Delta X_{TSC} \\
\Delta \Phi_{TPS}
\end{bmatrix}
(49)
$$

IV. Objective Function

The state-space equation of a power system installed with PSSs and FACTS devices, linearized about a selected operating point, can be compactly written as following:

$$P\Delta x = A\Delta x + B\mu$$
(50)

Where x is state vector; μ is the vector of input reference signals; and A is the state matrix which is the function of controller parameters.

The dynamic characteristics of the system are influenced by the locations of eigenvalues of matrix A. Hence, in order to have a good dynamic characteristic (i.e. good damping), it is necessary to shift eigenvalues associated with poorly-damped modes to positions in the complex plane with good damping characteristics. This is called as tuning.

The objective of the tuning problem is to find a set of appropriate controller parameters to improve the system damping. However, the objective function used to be maximized with respect to controller parameters in the single and coordinated control design is:

$$f(K, \lambda_1, \lambda_2, ..., \lambda_m, z_1, z_2, ..., z_m) = \sum (\text{Re} \, (\lambda_i))^2$$
(51)

where:

K = controller parameters to be optimized

λ_i = the ith eigenvalue to be placed

z_i = the eigenvector associated with the ith eigenvalue;

$m =$ number of selected eigenvalues

The related eigenvalues and eigenvectors are nonlinear functions of parameter vector K. The maximization of the objective function is subject to equality constraints formed from the eigenvalue-eigenvector equations and inequality constraints which represent the bounds required on the selected eigenvalues and controller parameters.

V. Optimization Problem Formulation

In this study, the proposed objective function is optimized individually. The problem constraints are the stabilizer optimized parameter bounds. Therefore, the design problem can be formulated as the following optimization problem.

$$\text{Maximize } f$$

Subject to

$$K_i \min < K \leq K_{\max}$$

$$T_{ij} \min \leq T \leq T_{ij} \max$$

$$T_{ij} \min \leq T \leq T_{ij} \max$$

$$T_{ij} \min \leq T \leq T_{ij} \max$$

Genetic algorithm (GA) is employed to solve this optimization problem. Searching is done for optimal set of the stabilizer parameters, i.e. K_i, T_{ij}, T_{ij}, T_{ij}, T_{ij}, where i is the Number of stabilizers considered.

VI. Stabilizer Tuning and Simulation Results

To study the effectiveness of the proposed controllers, three different loading conditions are considered for eigenvalue analysis. These conditions are as following:

1. Light loading (P_e, Q_e) = (0.25, 0.02) p.u.
2. Normal loading (P_e, Q_e) = (1.0, 0.02) p.u.
3. Heavy loading (P_e, Q_e) = (1.5, 0.45) p.u.

VII. Case Studies

Case 1: without compensation (base case)

In this case, the power system is not equipped with any compensator. Eigenvalues and damping factors of electromechanical mode, in different loading conditions, are as following:

<table>
<thead>
<tr>
<th>P_e</th>
<th>Q_e</th>
<th>λ_1</th>
<th>λ_2</th>
<th>λ_3</th>
<th>λ_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>Normal</td>
<td>Heavy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-.009 j4.85</td>
<td>.1754 j4.9563</td>
<td>.3652 j3.98</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Damping of electromechanical mode in light, normal and heavy loading conditions, Base case (without installation of PSS&FACTS Devices)
Simulated results in this case are shown in figs. 6-8. These figures show the step response of deviation of generator speed in normal, light and heavy loading conditions, without compensation.

Case 2: Single Compensation Design Approach

In this case the power system is equipped by PSS or FACTS devices alone. The state matrix of power system equipped by PSS and FACTS devices are following:

\[
\begin{bmatrix}
\Delta \sigma_r \\
\Delta v \\
\Delta \omega \\
\Delta \delta
\end{bmatrix} =
\begin{bmatrix}
\frac{S_b h_e}{1 + S_b h} & 0 & 0 & 0 \\
\frac{1 + S_b h}{1 + S_b h} & A_{v} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\Delta \sigma_r \\
\Delta v \\
\Delta \omega \\
\Delta \delta
\end{bmatrix} +
\begin{bmatrix}
K & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\Delta \sigma_r \\
\Delta v \\
\Delta \omega \\
\Delta \delta
\end{bmatrix}
\]

\[
\begin{bmatrix}
\Delta v \\
\Delta \omega \\
\Delta \delta
\end{bmatrix} =
\begin{bmatrix}
K_{M} & 0 & 0 \\
0 & K_{M} & 0 \\
0 & 0 & K_{M}
\end{bmatrix}
\begin{bmatrix}
\Delta \sigma_r \\
\Delta v \\
\Delta \omega \\
\Delta \delta
\end{bmatrix} +
\begin{bmatrix}
K_{A} & 0 & 0 & 0 \\
0 & K_{A} & 0 & 0 \\
0 & 0 & K_{A} & 0
\end{bmatrix}
\begin{bmatrix}
\Delta \sigma_r \\
\Delta v \\
\Delta \omega \\
\Delta \delta
\end{bmatrix}
\]

(52)

(53)
Equations (52) and (53) show the linearized power system model equipped by PSS and FACTS devices respectively. GA has been applied to optimize the settings of the proposed stabilizers. The final settings of the optimized parameters, eigenvalues and damping factors of electromechanical mode for the proposed stabilizers in light loading condition are given in Tables 3-5:

Table 3. Optimum parameters of Stabilizer in light loading condition, single design (with installation of PSS or FACTS Devices)

<table>
<thead>
<tr>
<th>Optimum parameter</th>
<th>PSS</th>
<th>TCSC</th>
<th>TCPS</th>
<th>SVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>.1178</td>
<td>.0476</td>
<td>.0576</td>
<td>1</td>
</tr>
<tr>
<td>T2</td>
<td>.1000</td>
<td>.1000</td>
<td>.1000</td>
<td>.3100</td>
</tr>
<tr>
<td>T3</td>
<td>.1645</td>
<td>.0398</td>
<td>.0317</td>
<td>.0120</td>
</tr>
<tr>
<td>T4</td>
<td>.1000</td>
<td>.1000</td>
<td>.1000</td>
<td>.3000</td>
</tr>
<tr>
<td>K</td>
<td>19.2467</td>
<td>95.7300</td>
<td>90.870</td>
<td>89.94</td>
</tr>
</tbody>
</table>

Table 4. System eigenvalues in light loading condition, Single design (with installation of PSS or FACTS Devices)

<table>
<thead>
<tr>
<th>PSS</th>
<th>TCSC</th>
<th>TCPS</th>
<th>SVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8.75±j5.06</td>
<td>-8.25±j5.1</td>
<td>-4.5±j6.6</td>
<td>-6.8±j4.7</td>
</tr>
<tr>
<td>-6.98±j5.5</td>
<td>-9.9±j3.8</td>
<td>-9.3±j3.4</td>
<td>-7.04±j2.08</td>
</tr>
<tr>
<td>-16.77</td>
<td>-19.53</td>
<td>-17.37</td>
<td>-19.9</td>
</tr>
<tr>
<td>-7.7</td>
<td>-10.72</td>
<td>-10.76</td>
<td>-9.93</td>
</tr>
<tr>
<td>-2.2</td>
<td>-8.43</td>
<td>-4.33</td>
<td>-2.55</td>
</tr>
<tr>
<td></td>
<td>-203</td>
<td>-212</td>
<td>-199</td>
</tr>
</tbody>
</table>

Table 5. Damping of system electromechanical mode in light loading condition, single design (with installation of PSS or FACTS Devices)

<table>
<thead>
<tr>
<th>PSS</th>
<th>TCSC</th>
<th>TCPS</th>
<th>SVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2548</td>
<td>.2631</td>
<td>.5802</td>
<td>.1516</td>
</tr>
</tbody>
</table>

Simulated results in this case are shown in figs. 11-12. These figures show effect of PSSs and FACTS devices on Step response of deviation of generator speed and step response of generator power angle in light loading condition.

Simulated results in this case are shown in figs. 13-14. These figures show effect of PSSs and FACTS devices on Step response of deviation of generator speed and step response of generator power angle in normal loading condition.
Table 9. Optimal parameters of Stabilizer in heavy loading condition, single design

<table>
<thead>
<tr>
<th>Optimum parameter</th>
<th>PSS</th>
<th>TCSC</th>
<th>TCPS</th>
<th>SVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>.1918</td>
<td>.018</td>
<td>.1388</td>
<td>.01</td>
</tr>
<tr>
<td>T2</td>
<td>.1000</td>
<td>.1000</td>
<td>.1000</td>
<td>.3100</td>
</tr>
<tr>
<td>T3</td>
<td>.2016</td>
<td>.2741</td>
<td>.0489</td>
<td>.01</td>
</tr>
<tr>
<td>T4</td>
<td>.1000</td>
<td>.1000</td>
<td>.1000</td>
<td>.3000</td>
</tr>
<tr>
<td>K</td>
<td>26.23</td>
<td>100</td>
<td>99.987</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 10. System eigenvalues in heavy loading condition, Single design

<table>
<thead>
<tr>
<th>PSS</th>
<th>TCSC</th>
<th>TCPS</th>
<th>SVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.4+j3.58</td>
<td>-5.8+j7.58</td>
<td>-7.651+j8.5</td>
<td>-2.81+j5.25</td>
</tr>
<tr>
<td>-5.11+j7.1</td>
<td>-10.3+j1.17</td>
<td>-2.92+j1.17</td>
<td>-1.48+j2.67</td>
</tr>
<tr>
<td>-19.62</td>
<td>-18.05</td>
<td>-10.8+j8.62</td>
<td>-20.9455</td>
</tr>
<tr>
<td>-7.23</td>
<td>-7.463</td>
<td>-17.198</td>
<td>-13.1445</td>
</tr>
<tr>
<td>-2094</td>
<td>-2.342</td>
<td>-2.221</td>
<td>-4.1267</td>
</tr>
</tbody>
</table>

Table 11. Damping of system electromechanical mode in heavy loading condition (with installation of PSS or FACTS Devices)

<table>
<thead>
<tr>
<th>PSS</th>
<th>TCSC</th>
<th>TCPS</th>
<th>SVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>.4105</td>
<td>.6014</td>
<td>.8712</td>
<td>.4948</td>
</tr>
</tbody>
</table>

Simulated results in this case are shown in figs. 15-16. These figures show effect of PSSs and FACTS devices on Step response of deviation of generator speed and step response of generator power angle in heavy loading condition.

CASE 3: Coordinated Compensation

In this case FACTS devices and PSS are coordinated and state matrix of power system is following:

\[
\begin{bmatrix}
0 & 377 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
-\frac{k_1}{M} & -\frac{D}{M} & -\frac{k_2}{M} & 0 & 0 & 0 & 0 & 0 & 0 & 0
-\frac{k_1}{M} & 0 & 0 & -\frac{k_2}{M} & 0 & 0 & 0 & 0 & 0 & 0
-\frac{k_1}{M} & 0 & 0 & 0 & -\frac{k_2}{M} & 0 & 0 & 0 & 0 & 0
-\frac{k_1}{M} & 0 & 0 & 0 & 0 & -\frac{k_2}{M} & 0 & 0 & 0 & 0
-\frac{k_1}{M} & 0 & 0 & 0 & 0 & 0 & -\frac{k_2}{M} & 0 & 0 & 0
-\frac{k_1}{M} & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{k_2}{M} & 0 & 0
-\frac{k_1}{M} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{k_2}{M} & 0
-\frac{k_1}{M} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{k_2}{M}
\end{bmatrix}
\times
\begin{bmatrix}
\Delta P
\Delta Q
\Delta V
\Delta q
\Delta f
\Delta \delta
\Delta \phi
\Delta \delta
\Delta \phi
\Delta M_{\text{FACTS}}
\end{bmatrix}
\]

(54)
A. Coordinated Design [PSS & SVC]

According to tables 7, 9 and 11, because that Damping of system electromechanical mode equipped by SVC and PSS at all loading conditions is smaller than another devices. Therefore, In this stage the coordinated design of PSS and SVC-based stabilizer is done at whole of loading conditions.

Both stabilizers PSS & SVC are simultaneously tuned by PSO search for the optimum controllers parameter settings. System eigenvalues for different loading conditions in this case are following:

Table 12. System eigenvalues in light loading condition, coordinated design

<table>
<thead>
<tr>
<th>PSS</th>
<th>SVC</th>
<th>PSS&SVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>-.87±j5.06</td>
<td>-48.4±j4.7</td>
<td>-95.5±j5.56</td>
</tr>
<tr>
<td>-6.98±j5.5</td>
<td>-7.04±j2.08</td>
<td>-10.1±j3.32</td>
</tr>
<tr>
<td>-16.77</td>
<td>-19.9</td>
<td>-20.3</td>
</tr>
<tr>
<td>-7.7</td>
<td>-9.93</td>
<td>-8.11</td>
</tr>
<tr>
<td>-2</td>
<td>-2.55</td>
<td>-2.98</td>
</tr>
<tr>
<td></td>
<td>-.199</td>
<td>-.205</td>
</tr>
</tbody>
</table>

Table 13. System eigenvalues in normal loading condition, coordinated design

<table>
<thead>
<tr>
<th>PSS</th>
<th>SVC</th>
<th>PSS&SVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.24±j5.6</td>
<td>-2.26±j4.6</td>
<td>-6.4321±j6.045</td>
</tr>
<tr>
<td>-3.39±j5.9</td>
<td>-2.49±j5.07</td>
<td>-6.0321±j5.668</td>
</tr>
<tr>
<td>-16.414</td>
<td>-14.26</td>
<td>-17.26</td>
</tr>
<tr>
<td>-.2055</td>
<td>-2.63</td>
<td>-2.48</td>
</tr>
<tr>
<td></td>
<td>-.2</td>
<td>-.213</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.197</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.209</td>
</tr>
</tbody>
</table>

Table 14. System eigenvalues in heavy loading condition, coordinated design

<table>
<thead>
<tr>
<th>PSS</th>
<th>SVC</th>
<th>PSS&SVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.4±j3.58</td>
<td>-2.81±j5.25</td>
<td>-7.22±j7.75</td>
</tr>
<tr>
<td>-5.11±j7.1</td>
<td>-1.48±j2.67</td>
<td>-8.67±j3.64</td>
</tr>
<tr>
<td>-19.62</td>
<td>-20.9455</td>
<td>-2.4±j1.503</td>
</tr>
<tr>
<td>-7.23</td>
<td>-13.1445</td>
<td>-16.88±j11.54</td>
</tr>
<tr>
<td>-.2094</td>
<td>-4.1267</td>
<td>-.228</td>
</tr>
<tr>
<td></td>
<td>-.2037</td>
<td>-.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.267</td>
</tr>
</tbody>
</table>

Simulated results in this case are shown in figs. 17-18. These figures show effect of coordination of PSSs and SVC on Step response of deviation of generator power angle in normal loading condition.
B. Coordinated Design [PSS & TCSC]

According to tables 1 because that Damping of system electromechanical mode in coordinated design of PSS with SVC-based stabilizer at light loading conditions is smaller than another condition. Therefore, in this stage the coordinated design of PSS and TCSC-based stabilizer is done at this loading condition. Eigenvalues and damping of electromechanical mode are in tables 17 and 18 respectively.

| Table16. System eigenvalues in light loading condition, coordinated design |
|------------------|------------------|------------------|
| PSS | TCSC | PSS&TCSC |
| -87±j5.06 | -82±j5.1 | -1.5±j5.26 |
| -6.98±j5.5 | -9.9±j3.8 | -7.3±j3.54 |
| -16.77 | -19.53 | -16.22±j2.6 |
| -7.7 | -10.72 | -5.86 |
| -2 | -8.43 | -10 |
| | -203 | -2 |

| Table17. Damping of system electromechanical mode in light loading condition, single and coordinated design |
|------------------|------------------|
| single design | coordinated design |
| PSS | TCSC |
| .2548 | .2631 |

Simulated results in this case are shown in figs. 19-20. These figures show effect of coordination of PSSs and TCSC on Step response of deviation of generator speed and step response of generator power angle in light loading condition.

| Table18. Controller optimal parameters in light loading condition for single and coordinated design |
|------------------|------------------|------------------|
| Controller optimal parameter | single design | coordinated design |
| T1 | .178 | .305 |
| T2 | .0476 | .2053 |
| T3 | .09 | .1 |
| T4 | .1 | .1 |
| K | 19.546 | 30.6035 |

C. Coordinated Design [PSS & TCPS]

The above results of eigenvalues analysis shows that, the maximum effect on damping of electromechanical mode is related to TCPS, in this stage for increment of damping of electromechanical mode in heavy loading condition, PSS is coordinated with TCPS.
Table 21. Controller optimal parameters in heavy loading, single and coordinated design.

<table>
<thead>
<tr>
<th>Controller optimal parameter</th>
<th>Single design</th>
<th>coordinated design</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSS TCPS</td>
<td>PSS TCPS</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>.1918</td>
<td>.321</td>
</tr>
<tr>
<td>T2</td>
<td>.1388</td>
<td>.543</td>
</tr>
<tr>
<td>T3</td>
<td>.321</td>
<td>.1201</td>
</tr>
<tr>
<td>T4</td>
<td>.0489</td>
<td>.1201</td>
</tr>
<tr>
<td>K</td>
<td>26.23</td>
<td>43.165</td>
</tr>
</tbody>
</table>

Table 22. System eigenvalues in heavy loading condition, single and coordinated design.

<table>
<thead>
<tr>
<th></th>
<th>Single design</th>
<th>coordinated design</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSS TCPS PSS&TCPS</td>
<td>PSS&TCPS</td>
<td></td>
</tr>
<tr>
<td>-1.4±j3.58</td>
<td>-7.651±j4.7</td>
<td></td>
</tr>
<tr>
<td>-5.1±j7.1</td>
<td>-2.92±j1.17</td>
<td></td>
</tr>
<tr>
<td>-19.6±j8.62</td>
<td>-11.8±j1.453</td>
<td></td>
</tr>
<tr>
<td>-7.23±j8.62</td>
<td>-17.198±j12.6</td>
<td></td>
</tr>
<tr>
<td>-2.09±j8.62</td>
<td>-221</td>
<td></td>
</tr>
</tbody>
</table>

Table 23. Damping of system electromechanical mode in heavy loading condition, single and coordinated design.

<table>
<thead>
<tr>
<th></th>
<th>Single design</th>
<th>coordinated design</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSS TCPS PSS&TCPS</td>
<td>PSS&TCPS</td>
<td></td>
</tr>
<tr>
<td>.4105</td>
<td>.8712</td>
<td></td>
</tr>
</tbody>
</table>

Simulated results in this case are shown in figs. 21-22. These figures show effect of coordination of PSSs and TCPS on Step response of deviation of generator speed and step response of generator power angle in heavy loading condition.

VIII. Eigenvalue and Simulation results Analysis

According to above design and simulation results the following observations could be derived:

1) Damping of electromechanical mode by TCPS depends on the loading conditions. (The damping is increased as the load increases)

2) At light loading conditions, the operation of PSS, SVC, and TCSC to control the electromechanical mode are considerably lower compared to that of TCPS.

3) The electromechanical mode controllability of the PSS and SVC is approximately the same in the different range of loading conditions.

4) The electromechanical mode of TCSC and TCPS is more controllable in comparison to that of PSS and SVC.

5) The electromechanical mode controllability by TCPS changes almost linearly with the practical system loading.

6) The electromechanical mode at heavy loading is most controllable by TCPS.

7) With taking in account of all loading conditions, the electromechanical mode is most controllable by coordinated design.

X. Conclusion

An optimization method for single and coordinated designs of PSSs, FACTS devices such as TCSC, SVC and TCPS controllers in a single machine infinite bus (SMIB) power system is developed. The optimization technique has been successfully applied to a test system. The performance of the proposed technique in solving the problem has also been verified through eigenvalue analysis. It is found that system damping can be improved by the PSS, and the FACTS devices. Controllers can further improve the damping when
the controllers’ parameters are properly tuned coordinately. These results show the importance of the control coordination of PSS and FACTS controllers and the effectiveness of the proposed technique.

In this paper a SMIB power system has been simulation study. It is proposed to apply the proposed method to a large multi-machine system for more investigation.

XI. References