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      Abstract— this paper shows the effect of power system  

Stabilizers (PSS) and Flexible AC Transmission Systems 
(FACTS devices) based stabilizers containing Thyristor 
controlled Series Compensator (TCSC), Static var compensators 
(SVC), Thyristor Controlled and phase shifter (TCPS) on stability 
of power systems. Moreover this paper presents a novel approach 
for designing coordinated controllers of PSS and FACTS such as 
coordination of PSS with SVC, PSS with TCSC and PSS with 
TCPS for enhancing small disturbance stability. The coordinated 
control problem is formulated as a constrained optimization with 
eigenvalue-based objective function .The proposed approach 
employs genetic algorithm (GA) for optimization. To study the 
effectiveness of the proposed controllers, three different loading 
conditions including light, normal and heavy loading conditions 
are considered. Moreover in order to determine effect of proposed 
design, three case studies are considered too. These include: 1-
without compensation (base case), 2-single compensation and 3-
coordinated compensation. 

Simulation results show that the controller design approach is 
able to provide better damping and stability performance. 
 

Index Terms- Power system stabilizer, PSS, FACTS devices, 
SVC, TCSC, TCPS, Optimization, coordinated design, small 
disturbance stability. 

  
Ι.INTRODUCTION 

 
The line impedance, the receiving and sending ends 

voltages, and phase angle between these voltages 
determine the rate of electrical power transmission over an 
electric line. Hence, controlling, one or few of the 
transmitted power factors; it is possible to control the 
active as well as the reactive power flow over a line.  

Series and shunt capacitor, and phase shifter are different 
approaches to increase the power transmission capacity of 
lines. Even traditionally used but all these were relatively 
slow but very useful in a steady state operation of power 
systems. From a dynamical point of view, their time 
response is too slow to effectively damp transient 
oscillations.  If mechanically controlled systems were 
made to respond faster, power system security would be 
significantly improved, allowing the full utilization of 
system capability while maintaining adequate levels of 
stability. This concept and advances in the field of power 
electronics led to a new approach introduced by the 
Electric Power Research Institute (EPRI) in the late 1980. 
Called Flexible AC Transmission Systems or simply 
FACTS, it was an answer to a call for a more efficient use 
of already existing resources of power systems while 
maintaining and even improving power system stability. 
   

 
 Damping of electromechanical oscillations among 
interconnected synchronous generators is necessary for 
secure system operation. Power system stabilizer (PSS) has 
been used for many years to damp out the oscillations [1]. 
With this way of increasing transmission line loading over  
 
long distances, then use of PSS in some cases may not 
provide sufficient damping for inter-area oscillations. In such 
cases, in addition to PSS, other effective alternatives are 
needed.  

 In particular, FACTS device stabilizers have been 
proposed to augment the main control systems for the 
purpose of damping the rotor modes or inter-area modes of 
oscillation. 

However, to achieve an optimal small-disturbance 
performance and transient state stability improvement, the 
co-ordination between PSSs and FACTS devices controllers 
is necessary. 

A procedure was previously reported for simultaneous co-
ordination of PSSs and FACTS devices to enhance the 
damping of the rotor modes [2], [4]. The procedure [2] 
determines only the stabilizer gains based on the 
approximation that ‘the shift in the rotor mode eigenvalue is 
linearly related to the increments in stabilizer gains’. In that 
paper [2], a systematic and optimal control coordinate design 
procedure between PSSs and FACTS devices such as static 
VAR compensator (SVC) is developed. The controllers 
design problem is transformed into a constrained 
optimization problem (i.e. search for optimal settings of 
controller parameters). The design is based on the 
minimization of the real parts of eigenvalues, including those 
of the rotor modes, and eigenvalues of the state matrix of the 
power system to enhance its small disturbance stability. The 
alternative design is based on the minimization of stabilizer 
gains with constraints imposed on selected eigenvalues.  

But in this paper for increment of damping of 
electromechanical mode and to improve small disturbance 
stability, a lead-lag controller is also used. This controller is 
shown in figs.1-4. In these controllers, in addition to 
stabilizer gains, time constants including T1, T2, T3 and T4 
optimized using genetic algorithm. To study the effectiveness 
of the proposed controllers, three different loading conditions 
including light, normal and heavy loading conditions are 
considered. 

In order to determine the effectiveness of proposed design 
three case studies are considered: 1-without compensation 
(base case), 2-single compensation and 3-coordinated 
compensation. 
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Simulation results show that the controller design 
approach is able to provide better damping and stability 
performance. 

II.MODEL OF POWER SYSTEM ELEMENTS 
 

A. Generator model 

The generator is represented by the 3rd order model 
consisting of the swing equation and the generator internal 
voltage equation. The swing equation can be written as [5]: 

 
( 1−=

•

ωωδ b )                                                           (1)                                      
 

( )( ) MDPP em /1−−−=
•

ωω                     (2)  
 
The internal voltage, Eq’, is given by 

 

=
•

qE ( )( ) doqdddfd TEixxE /−′−−  (3) 
 

B. Excitation system model 
 

( )( ) AfdpssrefAfd TEuvVKE /−+−=
•

                (4) 
 

( 2/122
qd vvv += )                                                 (5) 

 
qqd ixv =                                                          (6) 

 
ddqqddqq ixEvixEv ′−=′−=                             (7) 

 
Where  is the reference voltage, v  is the terminal 

voltage, and id, iq are d- and q-axis armature current and 
vd, vq are d- and q-axis terminal voltage xd’ is d-axis 
transient reactance and xq is Generator q-axis reactance. 

refV

 
                                                                 

      Fig.1:typeST1 excitation system with PSS. [6] 

 

 C. Damping Controller Model of PSS 
A conventional lead-lag PSS is installed in the feedback 

loop to generate a supplementary stabilizing signal , see 
Fig. 1. The PSS input is the change in the machine speed. 

pssu

 
D. Damping Controller Model of TCS 

 
Fig. 2: TCSC with lead-lag controller.[6] 

 
The complete TCSC controller structure is shown in Fig. 2. 

The output signal of the TCSC is the desired 
capacitive/inductive compensation signal, noted as XTCSC. 
The structure shown in Fig. 2is expressed as: 

 
( )( ) sTSCSTCSC

ref
TCSCsTCSC TXUXkX /−−=

•               (8)  
 

E. Damping Controller Model of SVC 
 
The SVC damping controller structure is shown in Fig. 3. 

The susceptance of the SVC, BSVC, could be expressed as: 
 

( )( ) SSVCSVC
ref
SVCSSVC TBUBKB /−−=

•

                 (9) 
 

 
Fig. 3: SVC with lead-lag controller. [6] 

 
F. Damping Controller Model of TCPS 
 
Similarly, Fig. 4 shows a TCPS equipped with a lead-lag 

stabilizer. The TCPS phase angle is expressed as: 
 

( )( ) sTCPSTCPS
ref
TCPSsTCPS TUK /Φ−−Φ=Φ

•

         (10) 
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Fig. 4: TCPS with lead-lag controller. [6] 

 
III.SINGLE MACHINE INFINITE BUS (SMIB) 

POWER SYSTEM 
 

A. Phillips-Heffron model of SMIB system installed with 
PSS and FACTS Devices 

 
Usually, the linearized incremental model around a 

nominal operating point is employed in design of 
electromechanical mode damping controllers. The SMIB 
system is shown in Fig. 5. (Detailed system data is shown 
in Appendix.) 

 

 
 

Fig. 5: SMIB with  FACTS Devices and PSS 

 
Referring to Fig. 5, the d and q components of the 

machine current i and terminal voltage v can be written as: 
 

qd jiii +=
 

 
qd jvvv +=  

 
The voltage vs can be written as: 
 

ijXvv TCSCs −=  
 
where i is the generator armature current. 
The d and q components of vs can be written as:  

 

qqssd ixv =  

ddsqsq ixEv ′−=  (15)   
 
Where 
 

TCSCqqs Xxx +=                                          (16)      
 

TCSCdds Xxx +′=′                                          (17)               
 
The voltage v’ can be written as: 
 

TCPS

ss

K
V

K

V
v

Φ
==′ − p

 (18)   

 
The d and q components of v’ can be written as 
 

[ ]Φ+Φ=′ sin1
sqsdd VCOSV

V
v  (19)   

 
[ ]Φ−Φ=′ sincos1

sdsqq VV
K

v  (20)       
 
The load current 

(21)    
,LL Yvi ′=  

 
Where the load admittance YL is given as: 
 

jbgYL +=  
 
The d and q components of iL can be written as: 

(22)   

 
qdLd vbvgi ′−′=  (23)   

 (24)   
dqLq vbvgi ′+′=  

(11)   
(12)   

 
Then, the line current is: 
 (25)   (13)   

Ll iii −=  
 
The d and q components of il can be written as: 
 

Lddld iii −=  (26)   
 

Lqqq iii −=1  (27)   
(14)    
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The midpoint voltage is 
 

Zivvm 1−′=  
 
Hence, the d and q components of vm can be written as: 
 

qdqdmd XiRivcvcv +−′−′= 21  
 

qdqdmq RiXivcvcv −−′+′= 12  
 
Where 
 

XbRgc −+= 11  
 

XgRbc +=2  
 
The SVC current can be given as 
 

svcmSVC Yvi =  
 
Then the line current in this section  is given as 1li
 

SVCl iii −= 11  
 
The voltage of infinite bus is 
 

Zivv lmb 1−=  
 
And the components of  can be written as: bv
 

11sin qdmdbbd XiRivvv +−== δ  
 

11cos qdmqbbd RiXivvv −−== δ  
 

Substituting (14)-(35) into (36) and (37), the following two 
equations can be obtained 

 
qbqd Ecvicic 743 sin +=+ δ  

 
qbqd Ecvicic 865 cos +=+ δ  

 
Solving (38) and (39) simultaneously, id and iq 
expressions can be obtained. 

Linearizing (38) and (39) at the nominal loading condition, 
Δ  and Δ  can be expressed in terms of di qi

X T EqBsvcTcPs ΔΔΔΔΦ ,,, csc and Δδ as following: 

(28)   

 

TCPSTCSCsvc

qbqd

cXcBc

Ecvicic

ΔΦ+Δ+Δ

+Δ+Δ=Δ+Δ

13119

743 cos δδ  (40)   
(29)    

TCPSTCSCSVC

qbqd

cXcBc

Ecvicic

ΔΦ+Δ+Δ

+Δ−Δ−=Δ+Δ

141210

865 sin δδ  (30)   

 
Solving (40) and (41) simultaneously, Δid and Δ iq can be 

expressed as: 
 

TCPS

TCSCSVCqd

c

XcBcEcci

ΔΦ

+Δ+Δ+Δ+Δ=Δ

23

21191715 δ  

 

TCPS

TCSCSVCqq

c
XcBcEcci

ΔΦ

+Δ+Δ+Δ+Δ=Δ

24

22201816 δ  

 
The constants c1-c24 are expressions of: 
 

TCPSOTCSCOsvcqdqqdL XBEiixxYZ Φ′ ,,,,,,,,, 000  
 

The linearized form of vd and vq can be written as: 
 

qqd ixv Δ=Δ  
 

ddqq ixEv Δ′−Δ=Δ                                     
 
Using Equations (42) and (43), the following expressions 

can be easily obtained 
 

TCPSpTCSCpx

SVCPBqe

KXK

BKEKKP

ΔΦ+Δ

+Δ+Δ+Δ=Δ

Φ

21 δ
 

 
( )

TCPSqTCSCqX

SVCqBfdqdo

KXK

BKKEEsTK

ΔΦ−Δ

−Δ−Δ−Δ=Δ+

Φ

δ43  

 

TCPSvTCSCvx

SVCvBq

KXK

BKEKKv

ΔΦ+Δ

+Δ+Δ+Δ=Δ

Φ

65 δ                (48) 

 

(41)   

(31)   

(42)   
(32)   

(43)   (33)   

(34)

(35)   (44)   

(45)   

(36)   

(37)
(46)   

(38)   
(47)   

(39)   
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where the constants K1-K6, KpB, KpX, KpΦ, KqB, KqX, KqΦ, 
KvB, KvX, and KvΦ are expressions of c1-c24. 

 
The above linearizing procedure yields the following 

linearized power system model: 
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IV. Objective Function 

 
The state-space equation of a power system installed 

with PSSs and FACTS devices, linearized about a selected 
operating point, can be compactly written as following: 

            
PΔx=AΔx+BΔu                                             
 
Where x is state vector; u is the vector of input reference 

signals; and A is the state matrix which is the function of 
controller parameters. 

The dynamic characteristics of the system are influenced 
by the locations of eigenvalues of matrix A. Hence, in 
order to have a good dynamic characteristic (i.e. good 
damping), it is necessary to shift eigenvalues associated 
with poorly-damped modes to positions in the complex 
plane with good damping characteristics. This is called as 
tuning. 

The objective of the tuning problem is to find a set of 
appropriate controller parameters to improve the system 
damping. However, the objective function used to be 
maximized with respect to controller parameters in the 
single and coordinated control design is: 

 
f(K,λ1, λ2,....., λm, , z1, z2 ,,..., ,zm)=  ∑      (51)                      ( )( 2Re il λ )

 
where: 
 
K= controller parameters to be optimized 
λi = the ith eigenvalue to be placed 
zi = the eigenvector associated with the ith eigenvalue; 

m = number of selected eigenvalues 
The related eigenvalues and eigenvectors are nonlinear 

functions of parameter vector K. The maximization of the 
objective function is subject to equality constraints formed 
from the eigenvalue-eigenvector equations and inequality 
constraints which represent the bounds required on the 
selected eigenvalues and controller parameters. 
 
V. Optimization Problem Formulation 

 
In this study, the proposed objective function is optimized 

individually. The problem constraints are the stabilizer 
optimized parameter bounds. Therefore, the design problem 
can be formulated as the following optimization problem. 

 
Maximize f (49)   
Subject to 

Ki min ≤Ki≤ Ki max 
  T1i min ≤T1i ≤T1i max 

  T2i min ≤ T2i ≤ T2i max 
  T3i min ≤ T3i ≤ T3i max 
 T4i min ≤ T4i ≤ T4i max 

 
Genetic algorithm (GA) is employed to solve this 

optimization problem. Searching is done for optimal set of 
the stabilizer parameters, i.e. Ki, T1i, T2i, T3i, T4i where i is the 
Number of stabilizers considered. 
 
VI. Stabilizer Tuning and Simulation Results 

 
  To study the effectiveness of the proposed controllers, three 
different loading conditions are considered for eigenvalue 
analysis. These conditions are as following: 

(50)   

 
1. Light loading (Pe, Qe) = (0.25, 0.02) p.u. 
2. Normal loading (Pe, Qe) = (1.0, 0.02) pu. 
 3. Heavy loading (Pe, Qe) = (1.5, 0.45) pu. 

 
VII .Case studies 
Case 1: without compensation (base case) 
    In this case, the power system is not equipped with any       
compensator. Eigenvalues and damping factors of 
electromechanical mode, in different loading conditions, are 
as following:  
 

Table1. Eigenvalues of light, normal and heavy loading conditions, Base 
case (without installation of PSS&FACTS Devices) 

Light Normal Heavy 
-.009±j4.85 .1754±j4.9563 .3652±j3.98 

     
Table2. Damping of electromechanical mode in light, normal and heavy 
loading conditions, Base case (without installation of PSS&FACTS Devices) 

Light Normal Heavy 
.0019 -.0357 -.0671 
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Simulated results in this case are shown in figs. 6-8. These 
figures shown Step response of deviation of generator 
speed in normal, light and heavy loading conditions, 
without compensation, 

 
Fig 6: Step response of deviation of generator speed in light loading 

condition, without compensation 

 
Fig 7: Step response of deviation of generator speed in heavy loading 

condition, without compensation 

 
Fig 8: Step response of deviation of generator speed in normal loading 

condition, without compensation 

 

 

 

 

Case 2: Single compensation Design Approach 

 

 In this case the power system is equipped by PSS or 
FACTS devices alone. The state matrix of power system 
equipped by PSS and FACTS devices are following: 

 

 
Fig 9: PSS Lead-Lag controller 
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(52)

 
Fig 10: FACTS devices with lead-lag controller 
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Equations (52) and (53) show the linearized power 
system model equipped by PSS and FACTS devices 
respectively. GA has been applied to optimize the settings 
of the proposed stabilizers. The final settings of the 
optimized parameters, eigenvalues and damping factors of 
electromechanical mode for the proposed stabilizers in 
light loading condition are given in Tables 3-5: 
 

Table3. Optimum parameters of Stabilizer in light loading condition, 
single design (with installation of PSS or FACTS Devices) 

Optimum 
parameter 

PSS TCSC TCPS SVC 

T1 .1178 .0476 .0576 1 
T2 .1000 .1000 .1000 .3100 
T3 .1645 .0398 .0317 .0120 
T4 .1000 .1000 .1000 .3000 
K 19.2467 95.7300 90.870 89.94 

 
Table4. System eigenvalues in light loading condition, Single design 

(with installation of PSS or FACTS Devices) 
     PSS TCSC TCPS SVC 

-.87±j5.06 
-6.98±j5.5 

-16.77 
-7.7 
-.2 

-.82±j5.1 
-9.9±j3.8 

-19.53 
-10.72 
-8.43 
-.203 

-4.5±j6.6 
-9.3±j3.4 

-17.37 
-10.76 
-4.33 
-.212 

-.68±j4.7 
-7.04±j2.08 
   -19.9 
   -9.93 
   -2.55 
   -.199 

 
Table5. Damping of system electromechanical mode in light loading 
condition, single design (with installation of PSS or FACTS Devices) 

PSS TCSC TCPS SVC 
.2548 .2631 .5802 .1516 

 
Simulated results in this case are shown in figs. 11-12. 
These figures show effect of PSSs and FACTS devices on 
Step response of deviation of generator speed and step 
response of generator power angle in light loading 
condition. 
 

 
Fig11:step response generator power angle in light loading condition, 

single design 

  
Fig12: step response deviation of generator speed in light loading condition, 

single design  

 
The final settings of the optimized parameters, eigenvalues 

and damping factors of electromechanical mode for the 

proposed stabilizers in normal loading condition are given in 

Tables 6-8: 
 

Table6. Optimal parameters of Stabilizer in normal loading condition, single 
design 

Optimal 
Parameter PSS TCSC TCPS SVC 

T1 .1478 .0751 .0790 1 
T2 .1000 .1000 .1000 .3000 
T3 .1741 .0765 .0754 .0110 
T4 .1000 .1000 .1000 .3000 
K 21.2467 98.000 100.000 93.9870 

 
Table7. System eigenvalues in normal loading condition, Single design 

(with installation of PSS or FACTS Devices) 
PSS TCSC TCPS SVC 

-3.24±j5.6 
-3.39±j5.9 
-19.497 
-7.414 
-.2055 
 

-3.5±j4.1 
-5.7±j6.7 
-11.4±j1.2 

-18.67 
-.2 

 

-3.1±j3.5 
-7.1±j7.9 
-11.04±j.83 

-10.76 
-17.8 

      -.2099 

-2.26±j4.6 
-2.49±j5.07 
   -20.45 
   -14.26 
   -2.63 
      -.2 

 
Table8. Damping of electromechanical mode in normal loading condition 

(with installation of PSS or FACTS Devices) 
PSS TCSC TCPS SVC 

.4716 .6384 .651 .3143 
 
Simulated results in this case are shown in figs. 13-14.  
These figures show effect of PSSs and FACTS devices on 
Step response of deviation of generator speed and step 
response of generator power angle in normal loading 
condition. 
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Fig13:step response of generator power angle in normal loading 

condition, single design. 

 
Fig 14: step response of deviation of generator speed in normal loading 

condition, single design. 
 
The final settings of the optimized parameters, 

eigenvalues and damping factors of electromechanical 
mode for the proposed stabilizers in heavy loading 
condition are given in Tables 9-11: 

 
Table9. Optimal parameters of Stabilizer in heavy loading condition,    

    single design 

Optimum 
.parameter PSS TCSC TCPS SVC 

T1 .1918 .018 .1388 .01 
T2 .1000 .1000 .1000 .3100 
T3 .2016 .2741 .0489 .01 
T4 .1000 .1000 .1000 .3000 
K 26.23 100 99.987 100 

 
Table10. System eigenvalues in heavy loading condition, Single design 

(with installation of PSS or FACTS Devices) 
PSS TCSC TCPS SVC 

-1.4±j3.58 
-5.11±j7.1 
-19.62 
-7.23 
-.2094 
 

-5.8±j7.58 
-10.3±j.76 
-18.05 

-7.463 
-2.342 
-.2275 

-7.651±j8.5 
-2.92±j1.17 
-10.8±j.862 

-17.198 
      -.221 

-2.81±j5.25 
-1.48±j2.67 
   -20.9455 
   -13.1445 
   -4.1267 
      -.2037 

 
 
 

Table11. Damping of system electromechanical mode in heavy loading 
condition (with installation of PSS or FACTS Devices) 

PSS TCSC TCPS SVC 
.4105 .6014 .8712 .4948 

   
  Simulated results in this case are shown in figs. 15-16. 
These figures show effect of PSSs and FACTS devices on 
Step response of deviation of generator speed and step 
response of generator power angle in heavy loading 
condition.

 
    Fig 15: step response of generator power angle in heavy loading 
condition, single design. 

 

 
Fig 16: step response of deviation of generator speed in heavy loading 

condition, single design 
 

CASE 3: Coordinated Compensation 
 

In this case FACTS devices and PSS are coordinated and 
state matrix of power system is following: 
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      A. Coordinated Design [PSS & SVC]    
According to tables.7,9 and 11, because that Damping of 

system electromechanical mode equipped  by SVC and 
PSS at all loading  conditions  is smaller than another 
devices .Therefore, In this stage the coordinated design of 
PSS and SVC-based stabilizer is done at  whole of loding 
conditions.   

Table15. Damping of system electromechanical mode in all of loading 
conditions, single and coordinated design 

single design coordinated 
design 

Loading PSS SVC PSS&SVC 

Light .2548 .1516 .2685 

Normal .4716 .3143 .6984 
Heavy .3141 .4948 .6821 

Both stabilizers PSS & SVC are simultaneously tuned by 
PSO search for the optimum controllers parameter settings.  

System eigenvalues for different loading conditions in 
this case are following:   

  
 Simulated results in this case are shown in figs. 17-18.  

 These figures show effect of coordination of PSSs and SVC 
on Step response of deviation of generator speed and step 
response of generator power angle in normal loading 
condition. 

 
Table12. System eigenvalues in light loading condition, coordinated     

   design 
single design coordinated design 
PSS SVC PSS&SVC 
-.87±j5.06 
-6.98±j5.5 

-16.77 
-7.7 
 -.2 

-.48±j4.7 
-7.04±j2.08 
   -19.9 
   -9.93 
   -2.55 
   -.199 

-.95±j5.56 
-10.1±j3.32 
   -20.3 
   -8.11 
   -2.98 
   -.205 
   -.19 

 

 

 
 
 

Table13. System eigenvalues in normal loading condition, coordinated 
design 

single design coordinated design 
PSS SVC PSS&SVC 
-3.24±j5.6 
-3.39±j5.9 
-19.497 
-7.414 
-.2055 
 

-2.26±j4.6 
-2.49±j5.07 
   -20.45 
   -14.26 
   -2.63 
      -.2 

-6.4321±j6.045 
-6.0321±j5.668 
-13.8±j14.07 
-17.26 
-2.48 
-.213 
-.197 
-.209 

 
fig 17: step response of generator power angle in normal loading condition, 

coordinated design 
 

 

 
 

 
Table14. System eigenvalues in heavy loading condition, 

Coordinated design 
single design coordinated design 
PSS SVC PSS&SVC 
-1.4±j3.58 
-5.11±j7.1 
-19.62 
-7.23 
-.2094 

-2.81±j5.25 
-1.48±j2.67 
   -20.9455 
   -13.1445 
   -4.1267 
     -.2037 

-7.22±j7.75 
-8.67±j3.64 
-2.4±j.503 
   -16.88±j11.54 
   -.228 
   -.2 
-2.67 

 

fig 18: step response of deviation of generator speed in normal loading 
condition, coordinated design. 
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B. Coordinated Design [PSS & TCSC] 

 
According to tables 1 because that Damping of system 

electromechanical mode   in coordinated design of PSS 
with SVC-based stabilizer at light loading conditions is 
smaller than another condition. Therefore, in this stage the 
coordinated design of PSS and TCSC-based stabilizer is 
done at this loading condition. Eigenvalues and damping of 
electromechanical mode are in tables 17 and 18 
respectively. 
 

 
 

Table16. System eigenvalues in light loading condition, coordinated 
design 

            single design coordinated design 
PSS TCSC PSS&TCSC 
 -.87±j5.06 
 -6.98±j5.5 
    -16.77 
     -7.7 
      -.2 

  -.82±j5.1 
   -9.9±j3.8 
    -19.53 
    -10.72 
    -8.43 
    -.203 

-1.53±j5.26 
-7.33±j3.54 
-16.22±j2.6 
     -10 
     -.205 
     -.2 

 
 
 

Table17. Damping of system electromechanical mode in light loading 
condition, single and coordinated design 

                 single design coordinated design 
    PSS        TCSC     PSS&TCSC 
  .2548      .2631      .4203 
 

 
 

Table18. Controller optimal parameters in light loading condition for 
single and coordinated design. 

Controller 
optimal 

parameter 

single 
design 

 
coordinated design 

 PSS TCSC PSS TCSC 
T1 .178 .0476 .305 .2053 
T2 .09 .1 .11 .1 
T3 .645 .0398 .4085 .1624 
T4 .1 .108 .1 .1 
K 19.546 95.73 30.6035 55.137 

 
 
Table19. Damping of system electromechanical mode in light loading 

condition, single and coordinated designs 
single 
design 

 

coordinated 
design 

PSS TCSC PSS&TCSC 
.2548 .2631 .4203 

 
 
 

 
Table20. System eigenvalues in light loading condition,single and      

coordinated designs. 
S
d

cingle 
esign 

oordinated design 

PSS T PCSC SS&TCSC 
-
-

-
-
-

-
-

-
-
-
-

-
-
-
-

-
-
-

.87±j5.06 
6.98±j5.5 

16.77 
7.7 
.2 

.82±j5.1 
9.9±j3.8 

19.53 
10.72 
8.43 
.203 

1.53±j5.26 
7.33±j3.54 
14.22±j2.6 
10±j5.65 

5.86 
.205 
.2 

 
Simulated results in this case are shown in figs. 19-20. 
 These figures show effect of coordination of PSSs and 
TCSC on Step response of deviation of generator speed and 
step response of generator power angle in light loading 
condition. 

 
Fig19: step response of generator power angle in light loading condition, 

coordinated design. 

 
Fig 20: step response of deviation of generator speed in light loading 

condition, coordinated design. 
 

C. Coordinated Design [PSS & TCPS] 
 

The above results of eigenvalues analysis shows that, the 
maximum effect on damping of electromechanical mode is 
related to TCPS, in this stage for increment of damping of 
electromechanical mode in heavy loading condition, PSS is 
coordinated with TCPS. 
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Table21. Controller optimal parameters in heavy loading,single and 
coordinated design. 

Controller 
optimal 

parameter 

Single 
design 

 

coordinated design 

 PSS TCPS PSS TCPS 
T1 .1918 .1388 .321 .543 
T2 .1 .1 .098 .1201 
T3 .2016 .0489 .142 .1629 
T4 .1 .1 .1 .0871 
K 26.23 99.987 43.165 87.197 

 
 

Table22. System eigenvalues in heavy loading  condition, single and 
coordinated design. 

Single design 
 

coordinated design 

PSS TCPS PSS&TCPS 
-1.4±j3.58 
-5.11±j7.1 

-19.62 
-7.23 
-.2094 

-7.651±j4.7 
-2.92±j1.17 
-11.8±j.862 

-17.198 
-.221 

 

-8.243±j4.05 
-4.87±j2.14 
-10.5±j1.453 

-14.432±j12.6 
-4.65 
-.218 
-.187 

 
Table23. Damping of system electromechanical mode in heavy loading 

condition, single and coordinated design 
Single 
design 

 

coordinated design 

PSS TCPS PSS&TCPS 
.4105 .8712 .9603 

 
 Simulated results in this case are shown in figs. 21-22. 
 These figures show effect of coordination of PSSs and 
TCPS on Step response of deviation of generator speed and 
step response of generator power angle in heavy loading 
condition. 

 
Fig 21: step response of generator power angle in heavy loading 

condition, coordinated design. 

 
Fig 22: step response of deviation of generator speed in heavy loading 

condition, coordinated design. 

VIII. Eigenvalue and Simulation results Analysis 
 
According to above design and simulation results the 

following observations could be derived: 
 

1) Damping of electromechanical mode by TCPS depends on 
the loading conditions. (The damping is increased as the load 
increases) 

 
2) At light loading conditions, the operation of PSS, SVC, 
and TCSC to control the electromechanical mode are 
considerably lower compared to that of TCPS.  
 
3) The electromechanical mode controllability of the PSS and 
SVC is approximately the same in the different range of 
loading conditions. 

 
4) The electromechanical mode of TCSC and TCPS is more 
controllable in comparison to that of PSS and SVC. 

 
5) The electromechanical mode controllability by TCPS                  
    changes almost linearly with the practical system loading. 

 
6) The electromechanical mode at heavy loading is most 
controllable by TCPS. 

 
7) With taking in account of all loading conditions, the         
 electromechanical mode is most controllable by    
coordinated design. 

 
Х. Conclusion 

 
An optimization method for single and coordinated designs of 

PSSs, FACTS devices such as TCSC, SVC and TCPS 
controllers in a single machine infinite bus (SMIB) power 
system is developed. The optimization technique has been 
successfully applied to a test system. The performance of the 
proposed technique in solving the problem has also been 
verified through eigenvalue analysis. It is found that system 
damping can be improved by the PSS, and the FACTS 
devices. Controllers can further improve the damping when 
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the controllers’ parameters are properly tuned coordinately. 
These results show the importance of the control 
coordination of PSS and FACTS controllers and the 
effectiveness of the proposed technique. 

In this paper a SMIB power system has been      
simulation study. It is proposed to apply the proposed 
method to a large multi-machine system for more 
investigation. 
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