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Abstract: During the past thirty years, the evaluation of incremental losses in transmission systems has been
widespread around the world encompassing a fundamental task in order to solve the well-known economic dispatch
problem. Nowadays, incremental losses or computation of penalty factors has gained a new relevance allocating
transmission losses among market participants being integrated in the spot pricing model. Nevertheless, vagueness
in power injections from load demand and renewable resources has a fundamental influence on transmission incre-
mental losses, and consequently affecting spot prices of the energy. This paper presents a new method to compute
Incremental Transmission Loss (ITL) factors taking into account the effect of uncertainty on power injections due
to measurement errors or future estimation. Fuzzy Set Theory is applied to deal with vagueness of information
about power injections. The proposed technique provides a broad spectrum of feasibility of incremental losses in
order to perform operational planning tasks by Transmission System Operators or network regulators. A 3-bus
system is used to illustrate the proposed methodology.

Key–Words: Incremental transmission loss factors, loss allocation, spot pricing.

1 Nomenclature

Pk Real power injected at bus k
PGk Real power generated at bus k
PDk Real power demanded at bus k
∆ Fuzzy deviation
µ Membership degree
∼ Fuzzy operator
	 Fuzzy difference operator
⊕ Fuzzy addition operator
� Fuzzy multiplication operator
csp Crisp vaule
n number of nodes or buses
P ctrGk Central value of real power generated at bus k
P ctrDk Central value of real power demanded at bus k
LMPk Locational Marginal Price at bus k
ITLk Incremental Transmission Loss factor at bus k
λ Market System Price
B′ DC matrix
LDC Losses DC approach
L Losses AC approach
θ Bus angle DC approach
ψ ITL factor DC approach
V , φ Bus Voltage and angle AC approach

2 Introduction
The computation of Incremental Transmission Loss
(ITL) factors has been widespread in power system
analysis in the last fifty years [1], [2]. Recently, ITL
factors have acquired renewed attention because they
can be integrated in the spot pricing problem in or-
der to allocate transmission losses among market par-
ticipants though Locational Marginal Prices (LMPs)
[3–5].

There are two ways to compute ITL factors as loss
components of LMPs:

• First by means of an ex-ante approach where
ITL factors can be directly obtained (before the
course of events) from Lagrangian multipliers of
the Optimal Power Flow (OPF) problem [6] [7]
or aplying penalty factors as described in [4].

• Second by means of an ex-post approach where
ITL factors can be calculated (afterwards the
course of events) using a known state of the sys-
tem using available data from the Supervisory
Control And Data Acquisition (SCADA) system
[9]. This practice is applied when the optimal
dispatch of generators has been previously per-
formed. Then, ITL factors are calculated using
the SCADA’s collected data related to given a op-
erating point.
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It is important to highlight that under both ap-
proaches, ITL factor calculations are strongly affected
by several sources of uncertainty as measurement er-
rors, variations on load consumption or the intermit-
tency of natural resources [10] [8]. Some attempts
have been made to achieve the effect of uncertainty
upon the spot prices and ITLs under the ex-ante ap-
proach. For instance, in [11], fuzzy set theory was ap-
plied to compute fuzzy spot prices in order to dispatch
power generators at minimum production cost. These
analysis are based on multi-parametric Fuzzy Optimal
Power Flow studies and ITL factors are obtained using
a complex vertex identification and estimating branch
losses from the DC model. Solving this type fuzzy op-
timization problems implies a great computation cost
not suitable to be applied on large-scale applications.

In this paper, the effect of uncertainty of the nodal
power injections upon ITL factors is assessed using an
alternative approach based on an ex-post analysis from
measured and estimated data.

Uncertainty in load and generation power injec-
tions are modeled as fuzzy numbers that can be as-
sumed or directly obtained from the output of a Fuzzy
System State Estimator (FSSE) [12] providing a whole
spectrum of feasibility of all measured and estimated
variables as shown in Figure 2. The FSSE/Fuzzy ITL
calculation modules can coexist jointly with the moni-
toring system (SCADA) and central dispatch authority
or Transmission System Operator (TSO).

This paper is organized as follows: section 2 is
devoted to describe the fuzzy model applied to loads
and generating buses, section 3 describes the algo-
rithm to compute proposed fuzzy ITL factors, section
4 discusses an illustrative example and finally, section
5 draws the main conclusions and recommendations.

3 Modeling Fuzzy Power Injections
in Network Analysis

Fuzzy set theory was introduced by [13] as a mathe-
matical formulation of describing vagueness and im-
precision. The basic idea of fuzzy sets is somewhat
simple. Thinking in deterministic way, a specified el-
ement of the space either belongs to or doesn’t be-
long to the specified set. After that, the membership
of an element of the universe is crisp and nonfuzzy.
In Fuzzy sets theory, the association it is allowed the
degree of membership for each element to range over
the unit interval [0,1]. Fuzzy set foundations can be
reviewed in detail in [14] and a complete description
of the fuzzy set concepts applied to power system ap-
plications can be found in [15]. In the following lines,
a brief description of fuzzy injections is provided.

3.1 Power Injections as Fuzzy Numbers

The real power injection Pk associated to a specific
bus k, as shown in Figure 1 depends on real power
consumption PDk and real power generation PGk.

Figure 1: Real power injection at bus k

In a crisp sense, the net real power injection is
defined as:

Pk = PGk − PDk k = 1, . . . , n (1)

As a result, the uncertainty on a real power in-
jection P̃k depends strongly on uncertainties in load
consumption P̃Dk and the power generation P̃Gk.

In general, any power injection P̃k, P̃Dk and P̃Gk
associated to a specific bus k can be described by a
membership function relating each element x ∈ R to
its compatibility or association degree according to:

P̃k = {(x, µ
P̃k

(x)) | x ∈ R};µ
P̃k

(x) : R→[0, 1] (2)

P̃Dk = {(x, µ
P̃Gk

(x)) | x ∈ R};µ
P̃Dk

(x) : R→[0, 1]

P̃Gk = {(x, µ
P̃Gk

(x)) | x ∈ R};µ
P̃Gk

(x) : R→[0, 1]

These degree ranges of membership are given by
µ
P̃k

(x), µ
P̃Dk

(x) and µ
P̃Gk

(x), respectively.
In normalized fuzzy sets, this membership value

goes from 0 to 1 leading to a gradual transition be-
tween a complete belonging of x to P̃k and no be-
longing of x to P̃k. Then, a normalized fuzzy num-
ber is defined on the real semi-plane such that µ

P̃k
(x)

is normalized between 1-cut and 0-cut and piecewise
continuous. Figures 3 and 4 show the difference be-
tween a fuzzy power injection and a deterministic
power injection. In the fuzzy case, power injection
values x near the reference central point are consid-
ered compatible with the label of the set. The mem-
bership value α-cut give us a non-linear quantification
of that compatibility. Then, the fuzzy number of Fig-
ure 3 means that real power injections at bus k are
close to 800kW. On the other hand, in the determinis-
tic case, only one value is considered compatible, the
real power injections at bus k are exactly 800kW.
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Figure 2: Fuzzy loss access-pricing scheme

Figure 3: Fuzzy and deterministic power injections. A
“more less 800kW” power injection.

Figure 4: Fuzzy and deterministic power injections. A
800kW power injection.

This non-linear quantification can be simplified
using a trapezoidal representation as shown in Figure
5. Triangular representation (see Figure 6) is a
particular case of trapezoidal representation where
the membership value give a piecewise linear and
constant quantification of that compatibility.

Figure 5: Fuzzy numbers. A trapezoidal representa-
tion.

Figure 6: Fuzzy numbers. A triangular representation.

A trapezoidal fuzzy set can be represented by:
Pk

β1 , Pkβ2 , Pkβ3 , Pkβ4 where Pkβ1 ≤ Pk
β2 ≤ Pk

β3 ≤
Pk

β4 . Each one is associated to a membership degree
as indicated as follows:
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0 ≤ µ
P̃k

(x) ≤


x−Pk

β1

Pk
β2−Pk

β1
if x ∈ [Pkβ1 , Pk

β2]

1 if x ∈ [Pkβ2 , Pk
β3]

x−Pk
β4

Pk
β3−Pk

β4
if x ∈ [Pkβ3 , Pk

β4]
(3)

A more general and even useful notion is that of
an α-cut or level set [14]. At given membership level
µ
P̃k

(x) = α, the hard set P̃αk is defined in R for each
cut [0,1] such that:

P̃αk = {(x, µ
P̃α

k
(x)≥α) | x ∈ R} (4)

3.2 Fuzzy Loads and Fuzzy Power Genera-
tion Injections

In fuzzy sense, the system real power injections can
be gathered in a 1xn vector as follows:

P̃ = [P̃1, . . . , P̃k, . . . , P̃n] (5)

where n is the number of buses of the system and each
trapezoidal fuzzy power injection is defined by four
deterministic numbers as:

P̃k = (P β1

k : P β2

k : P β3

k : P β4

k ) (6)

In fuzzy sense, an equivalent net real power injec-
tion equation is given by:

P̃ = P̃G	P̃D (7)

where 	 is the fuzzy difference operator for trape-
zoidal membership functions1. Fuzzy load and gen-
eration vectors are given by:

P̃G = [P̃G1, . . . , P̃Gk, . . . , P̃Gn] (8)

P̃D = [P̃D1, . . . , P̃Dk, . . . , P̃Dn] (9)

Each component of P̃G and P̃D can be repre-
sented as the quadruples:

P̃Gk = (P β1

Gk : P β2

Gk : P β3

Gk : P β4

Gk) (10)

P̃Dk = (P β1

Dk : P β2

Dk : P β3

Dk : P β4

Dk) (11)

P̃Gk = P ctrGk⊕(∆P
β1
Gk:∆P

β2
Gk:∆P

β3
Gk:∆P

β4
Gk) (12)

P̃Dk = P ctrDk⊕(∆P
β1
Dk:∆P

β2
Dk:∆P

β3
Dk:∆P

β4
Dk) (13)

1Because the concept of fuzzy numbers include the interval
at given membership value as a particular case, fuzzy arithmetic
is an extension of interval arithmetic. Hence, given two convex-
normalized trapezoidal fuzzy numbers ã = (aβ1 : aβ2 : aβ :

aβ4) and b̃ = (bβ1 : bβ2 : bβ : bβ4) the difference is ã	b̃ =
(aβ1 − bβ4 : aβ3 − bβ3 : aβ3 − bβ2 : aβ4 − bβ1)

where the symbol ∆ denotes the corresponding
deviation respect to the center value. The symbol
⊕ denotes the fuzzy addition operator for trapezoidal
fuzzy sets2. The center values P ctrGk and P ctrDk are given
by the mean value of the elements having 1.0 mem-
bership degree:

P ctrDk = (
P β2
Dk + P β3

Dk

2
);P ctrGk = (

P β2
Gk + P β3

Gk

2
) (14)

4 Incremental Transmission Loss
Pricing Fundamentals

Under the incremental cost allocation approach, eco-
nomical signals are sent to the market agents by means
of Locational Marginal Prices (LMPs). Hence, in or-
der to allocate the cost of the losses, LMPs are applied
at given bus k to remunerate or penalize the effect
of each power injection (producer or load connected)
upon power loss increase or decrease.

Then, for each bus k, LMPk is computed as
a function of the real incremental loss coefficients
ITLk and the market system price λ:

LMPk = λ(1− ITLk) (15)

The ITL factors are defined as the variation in the real
power losses, due to the incremental change of the real
power injections in each bus.

ITLk =
∂L

∂Pk
(Vk, θk) (16)

rITLk =
∂L

∂Qk
(Vk, θk) (17)

These prices and factors are typically interpreted
in crisp sense. Next section provides a procedure
to interpret these economical signals under a fuzzy
sense.

5 Fuzzy Incremental Transmission
Loss Pricing

The idea behind this proposal is to estimate ITL fac-
tors in fuzzy sense. To do this, it is necessary to as-
sess the state system in fuzzy sense. It is like to take a
snapshot of the state of the system taking into account
the intrinsic uncertainties of the power injections.

The proposed procedure has four basic steps as
shown in Figure 7.

2Fuzzy addition of trapezoidal fuzzy sets: ã⊕b̃ = (aβ1 +bβ1 :
aβ2 + bβ2 : aβ3 + bβ3 : aβ4 + bβ4)
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Figure 7: General Procedure to get Fuzzy ILFs

First, a crisp analysis is performed using a
standard DC model in order to obtain crisp ψ factors.
The state of the system is directly achieved from
central values of fuzzy loads and power generation
injections discussed in previous section. Second, the
basic Fuzzy DC Power Flow is used to obtain angle
and ψ deviations respect to the crisp values. Fuzzy
trapezoidal representation requires four calculations.
Third, a standard AC model is run to get ITLs in crisp
sense. Fourth, the fuzzy ITL factors obtained in steps
1 and 2 are corrected using real crisp value obtained
in step 3. At this point, fuzzy incremental factors
computed under a DC approach can be integrated
on the loss allocation process through the short-term
tariffs of use of the network.

� STEP 1: CRISP DC ANALYSIS

The Crisp DC Incremental Transmission Loss
Factors are defined as the variation in the real power
losses owing to the incremental change in a nodal
power injection k:

ψcspk =
∂LDC

∂(P ctrGk − P ctrDk)
(18)

where losses are estimated using:

LcspDC =
n∑
i=1

n∑
k=1

Gik(1− cos θcspik ) (19)

where Gik is the real part of each impedance ele-
ment of matrix YBUS.

In the DC model, power losses are calculated
from the state of the system established by θcsp =
[θcsp1 , . . . , θcspn ]. A deterministic DC power flow

[2] must be previously performed using the spec-
ified injected real powers associated with the cen-
tral point of load a generation membership vec-
tors P ctr

G = [P ctrG1 , . . . , P
ctr
Gk , . . . , P

ctr
Gn ] and P ctr

D =
[P ctrD1 , . . . , P

ctr
Dk , . . . , P

ctr
Dn] obtained from Equation 14

for each bus of the system. Thus, using classic DC
formulation crisp values for the angles crisp are ob-
tained.

θcsp = B′
−1 · (P ctr

G − P ctr
D ) (20)

where B′ is the DC model matrix. In this formulation
column and file of slack bus must be eliminated.

ψ factors are derived from loss equation 19 apply-
ing the chain rule as follows:

∂LDC
∂θcspi

=
n∑
k=1

∂LDC
∂(P ctrGk − P ctrDk)

∂(P ctrGk − P ctrDk)
∂θcspi

(21)

Examining this equation it is possible to rearrange
it as:
∂LDC

∂P ctr
1
...

∂LDC

∂P ctr
n

 =


∂P csp

1

∂θcsp
1

. . .
∂P csp

n

∂θcsp
1

...
. . .

...
∂P csp

1

∂θcsp
n

. . .
∂P csp

n

∂θcsp
n


−1

∂LDC

∂θcsp
1
...

∂LDC

∂θcsp
n

 (22)

where ∂LDC

∂P ctr
1
, . . . , ∂LDC

∂P ctr
n

are the incremental transmis-

sion loss factors ψcspk under a DC approach.
The real power injection in the DC model is given

by:

P cspi =
n∑
k=1

(Gik · cos θcspik +Bik · sin θcspik ) (23)

The partial derivatives of a power injection re-
spect to the bus angles are:

∂P cspk

∂θcspi
= −Gik · sin θcspik +Bik · cos θcspik (24)

where Bik are the imaginary part of each impedance
element of matrix YBUS. As θcspik is small, then
cos θcspik ≈ 1 and sin θcspik ≈ 0 then

∂P cspk

∂θcspi
= Bik and

∂P cspi

∂θcspi
= Bii (25)
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Assuming rik � xik, these elements become in
the negative values of the DC matrix model B′

ik =
−x−1

ik and B′
ii =

∑n
k=1 x

−1
ik . The Equation 22 can

now be succinctly rewritten as:

ψcsp = −B′
−1 · T csp (26)

where T csp is a vector whose elements are derivatives
of DC losses respect to bus angles. Each element T cspi

is given by:

T cspi =
∂LDC
∂θcspi

= 2
n∑
k=1

Gik sin θcspik (27)

The Equation 26 is important because it highlights
the fact that it is possible obtain incremental factors
directly from the state of the system θcsp obtained
from Equation 20.

� STEP 2: FUZZY DC POWER FLOW ANALY-
SIS

The Fuzzy DC power flow is an extension of the
classic DC power flow, introduced originally by [16]
based upon the following expression

θ̃ = B′
−1 � P̃ (28)

where � is the fuzzy multiplication operator3, and
θ and P are bus angle and power injection vectors
whose entries are fuzzy numbers. Eliminating file
and column corresponding to slack bus of matrix B′,
the possibility distribution of bus angle deviations are
written as

∆θ̃ = B’−1 �∆P̃ (29)

In trapezoidal fuzzy set representation, it is re-
quired to compute four angle deviations vectors:
∆θβ1 and ∆θβ4 for α-cut=0 and ∆θβ2 and ∆θβ3 for
α-cut=1. Using the crisp angles computed according
to Equation 20, the vector of fuzzy angle membership
function is aggregated as:

θ̃ = θcsp ⊕ (∆θβ1 : ∆θβ2 : ∆θβ3 : ∆θβ4) (30)

As the relationship between bus angles and power
injections is linear, it is verified that maximum angle

3The multiplication between a trapezoidal fuzzy set and a real
number is shape preserving. Given a convex-normalized fuzzy
number ã = (aβ1 : aβ2 : aβ : aβ4) and a real number c the fuzzy
multiplication is expressed as a trapezoidal fuzzy set c � ã =
(c · aβ1 : c · aβ2 : c · aβ3 : c · aβ4).

deviations take place when power injection deviations
are maximum, when generation is maximum and load
is minimum. This means that minimum angle devia-
tions always occurs when power injection deviations
are minimum (when generation is minimum and load
is maximum). This criterion cannot be applied to find
the membership functions related to power losses and
line flow currents due to non-linearity. However, this
problem is not relevant in the ψ membership aggrega-
tion because the relationship between the ψ factor and
the bus angle for each α-cut degree is approximately
linear. As a result, Equation 26 can be applied to ob-
tain the ψ vector at each α-cut level and related points
βγ where γ = 1, 2, 3, 4 in trapezoidal fuzzy sets.

ψβγ = -B’−1 · T βγ (31)

where the element T βγ

i of the vector T βγ are:

T
βγ

i = 2
n∑
k=1

Gik sin(θcspik + ∆θβγ

ik ) (32)

when θβγ

ik is small.

T
βγ

i ≈ 2
n∑
k=1

Gikθ
βγ

ik (33)

Then, the elements ψβγ are written as:

ψ
βγ

k = −2
n∑
i=1

Zik

n∑
j=1

Gij sin(θcspij + ∆θβγ

ij ) (34)

This equation is equivalent to:

ψ
βγ

k =
n∑
i=1

n∑
j=1

Gij sin(θcspij + ∆θβγ

ij )(−Z ′
ik + Z ′

jk)

(35)
and approximately by

ψ
βγ

k ≈
n∑
i=1

n∑
j=1

Gij(θ
csp
ij + ∆θβγ

ij )(−Z ′
ik + Z ′

jk) (36)

where Z ′
jk and Z ′

ik are elements of B’−1. Note that
Z ′
ij elements of file and column related to slack bus

are equal to zero.
The incremental transmission loss factors can be

represented by a linear behavior for small angle differ-
ences. For example, Figure 8 shows this dependence
in a simply two-bus system.
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In fact, deviations ∆ψ can be expressed as the
linear relationship:

∆ψβγ

k ≈
n∑
i=1

n∑
j=1

Gij(∆θ
βγ

ij )(Z ′
ik + Z ′

jk) (37)

Figure 8: 2-Bus System – ψβγ

k as function of θβγ

ik

This approximately linear dependence implies
that incremental factor deviations are reached in the
same direction that bus angles and power injection de-
viations. This happens in the same way that angle de-
viations are numerically correlated with power injec-
tion deviations in the conventional DC Fuzzy Power
Flow analysis. As a result, it is possible ensure the
following numerical correlation among power injec-
tion deviations, angle deviations and incremental fac-
tor deviations:

∆P βγ

G

∆P β5−γ

D

 ∆θβγ  ∆ψβγ (38)

The deviation value (∆ψβ4) occurs at maximum-
generation and minimum load scenario, ∆P β4

G and
∆P β1

D . On the other hand, deviation (∆ψβ1) occurs
at minimum-generation and maximum demand sce-
nario, ∆P β1

G and ∆P β4

D . This result is meaningful
because incremental loss factors are directly linked to
bus angles and not to power losses and line currents.
It allows to build the ITL membership functions from
the angles membership function (see Equation 30) ob-
tained from a conventional DC Fuzzy Power Flow
analysis.

Finally, the direct computation of ∆ψβγ are given
by :

∆ψβγ = ψβγ −ψcsp (39)

Fuzzy deviation ∆ψ̃ is aggregated as

∆ψ̃ = (∆ψβ1 : ∆ψβ2 : ∆ψβ3 : ∆ψβ4) (40)

The achievement of the fuzzy incremental
transmission loss factors directly from bus angle
membership functions provided by a conventional
DC Fuzzy Power Flow is a fundamental contribution
of this research.

� STEP 3: CRISP AC ANALYSIS.
The crisp real ITL factors (AC approach) can be

obtained from the current state of the system by eval-
uating the Jacobean of a converged Newton Raphson
AC power flow. According to [2], the standard chain
rule is applied to calculate the ITLs by means of inter-
mediate variables, voltages and angles, V , φ:

[
ITL
rITL

]
=

 ∂P

∂φ

∂Q

∂φ
∂P

∂V

∂Q

∂V


−1 ∂L

∂φ
∂L

∂V

 (41)

where system losses are given by:

L =
1
2

n∑
i=1

n∑
j=1

Gij [V 2
i + V 2

j − 2ViVjcosφij ] (42)

� STEP 4: FUZZY ITL AGGREGATION.
The ψ̃ membership function built in Step 1 and

2 is corrected with the real crisp values calculated in
Step 3.

ĨTL = ITLcsp ⊕∆ψ̃ (43)

It is important to underline that, at given operat-
ing point, the state of the system and therefore the ITL
factors should be considered optimal or not depend-
ing on the network optimization methodology adopted
by the TSO. The adoption of an ex-ante methodology
to optimize the power system –as an optimal reactive
dispatch model for power loss minimization as pro-
posed by [18]– can improve the incremental signals
and achieve more efficient tariffs.

6 Illustrative Example

The proposed methodology is applied for illustration
purposes in a simple three-bus test system as shown in
Figure 9.
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Figure 9: 3-Bus System – Test network with fuzzy injections

Bus 1 corresponds to Grid Supply Point (GSP)
where the distribution system connects to the trans-
mission system. Uncertainty at power generation and
load is represented using trapezoidal fuzzy numbers.
Network parameters are given in p.u. using SBASE =
10MVA and VBASE = 10kV.

After some algebra, the fuzzy real power injec-
tions can be written in p.u. as:

P̃ =
[

0.05

−0.35

]
⊕ (

[
−0.35

−0.15

]
:
[
−0.10

−0.05

]
:
[

0.10

0.05

]
:
[

0.35

0.15

]
)

Step 1: The elements of the DC matrix B
are B22 = B33 = 0.666 and B23 = B32 =
0.333. Using Equation 20 crisp angles are θcsp =
[−0.0833,−0.2167]. Using Equation 26 crisp incre-
mental transmission loss factors are given by:[

ψcsp
2

ψcsp
3

]
=

[
B22 B23

B32 B33

]−1[ ∂LDC

∂θcsp
2

∂LDC

∂θcsp
3

]
=

[
−0.0083

−0.0215

]

Note that ∂LDC

∂θcsp
2

and ∂LDC

∂θcsp
3

have been computed
using the general form Equation 27. If the approx-
imation sin θik ≈ θik is applied results are basically
the same [−0.0083,−0.0216].

Step 2: The bus angle deviations are obtained us-
ing 28:

∆θβ = (
[
−0.2833

−0.2166

]
:
[
−0.0833

−0.0666

]
:
[

0.0833

0.0666

]
:
[

0.2833

0.2166

]
)

Applying Equation 39

∆ψ̃=(

−0.0273

−0.0206

:

−0.0082

−0.0065

:

0.0083

0.0066

:

0.0281

0.0215

)

Step 3: The Crisp AC analysis indicate that there is no
reactive injection in buses 2 and 3. Bus 2 is specified
as a PV bus with V csp

2 = 1.0. The state of the sys-
tem is given by and φcsp = [−0.0858,−0.2238] and

V csp
2 = 0.9738. Applying Equation 41, ITLcsp =

[−0.0088,−0.0239].
Step 4: Finally, incremental transmission loss

factors are corrected using Equation 43 with the real
crisp incremental values:

ĨTL=ITLcsp⊕∆ψ

ĨTL=(

−0.0362

−0.0445

:

−0.0171

−0.0304

:

−0.0006

−0.0173

:

 0.0195

−0.0024

)

In Figure 10 is shown how the membership func-
tion of ψ̃3 is built through steps 1 to 4. Results show
that for a confidence degree µ = 1, incremental trans-
mission loss factors goes from -0.0171 to -0.0005 in
the bus 2 and for confidence degree µ = 0 goes from -
0.0304 to -0.0173 in the bus 3, respectively. Note that,
crisp values -0.0083 and -0.0215 coincide with the
center values of the membership functions displayed
in Equation 44.

This means that the length of deviations are prac-
tically the same at both sides of fuzzy numbers when
µ = 1, ∆ψβ2 = ∆ψβ2 . Nevertheless, if µ = 0 this
behavior is not observed being ∆ψβ1 6= ∆ψβ4 .

7 Limitations and Future Research

This first model acquires fuzzy ITLs from a DC Fuzzy
Power Flow model [16]. This was done because, its
application provides a simply and clear example of
how to get fuzzy ITLs. However, more realistic mem-
bership functions can be obtained from a complete AC
Fuzzy Power Flow model as reported in [17] or [18].
The application of this idea to real and large-scale
transmission systems is currently matter of research.
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Figure 10: 3-Bus System – ĨTL3 Aggregation

8 Conclusions

This paper addresses the following conclusions:

• It is proposed a novel methodology to assess the
effect of uncertainty upon Incremental Transmis-
sion Loss (ITL) factors computation.

• It was demonstrated that Incremental Transmis-
sion Loss factors can be efficiently assessed us-
ing fuzzy programming. At a given operating
point, location and time specific fuzzy ITL fac-
tors are obtained from the results of running a
Fuzzy Power Flow program where load and gen-
eration are represented as fuzzy sets.

• A general algorithm is developed and tested.
Fuzzy set techniques provide a whole spectrum
of feasibility of the spot prices applied to each
market agent.

• Proposed methodology has been applied to the
3-bus test system for didactic purposes.
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