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1 Introduction 
 The definition of economic dispatch is given 
as “The operation of generation facilities to produce 
energy at the lowest cost to reliably serve 
consumers, recognizing any operational limits of 
generation and transmission facilities.” In traditional 
economic dispatch, the operating cost is reduced by 
proper allocation of the amount of power to be 
generated by different generating units. However the 
optimum economic dispatch may not be the best in 
terms of the environmental criteria. Recently many 
countries throughout the world have concentrated on 
the reduction of the amount of pollutants from fossil 
fuel power generating units. Apart from particulate 
pollutants, there are three gaseous pollutants namely 
carbon di-oxide, sulphur oxides and nitrogen oxides 
emitted from fossil fuel power plants.  
 The two primary power plant emissions 
from a dispatching perspective are sulphur oxides 
(SO2) and nitrogen oxides (NOx). The economic 
dispatch and emission dispatch are considerably 
different. The economic dispatch reduces the total 
fuel cost (operating cost) of the system at an 
increased rate of NOx. On the other hand emission 
dispatch reduces the total emission from the system 
by an increase in the system operating cost. 

Therefore it is necessary to find out an operating 
point, that strikes a balance between cost and 
emission. This is achieved by combined economic 
and emission dispatch (CEED).  
 The two primary power plant emissions 
from a dispatching perspective are sulphur oxides 
(SO2) and nitrogen oxides (NOx). In the power 
plant, the sulfur enters the boiler as a part of the fuel. 
During the combustion process, some of the sulphur 
unites with oxygen from the fuel and combustion air 
to form SO2. The remaining sulphur becomes a part 
of the bottom ash in the boiler. If stack gas clean up 
equipment is present, most of the SO2 is removed. 
The remaining SO2 exits the stack as an emission. 
Fuel blending, fuel switching and scrubbers are the 
primary methods for reducing the amount of SO2 
emitted. NOx emissions are more complex. 
 There are two sources of nitrogen that 
combine with oxygen from the fuel and the 
combustion air to produce NOx. The first source is 
nitrogen in the air that produces emission called 
thermal NOx. The second source is nitrogen in the 
fuel that produces emission called fuel NOx. The 
total NOx produced during combustion is the sum of 
the thermal NOx and fuel NOx. In coal, there is no 
apparent correlation between the amount of fuel-
bound nitrogen and the fuel NOx produced.  
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The main purpose of the optimal generation dispatch 
problem has so far been confined to minimizing the 
total generation cost of the power system. However, 
in order to meet the environmental regulations 
enforced in recent years, emission control has 
become one of the important operational objectives. 
 
 
 
2 Problem Formulation 
2.1 Economic Dispatch 
 The economic load dispatching (ELD) 
problem is one of key problems in power system 
operation and planning. The ELD problem may be 
expressed by minimizing the fuel cost of generating 
units under some constraints. The fuel cost curve is 
approximated as a quadratic function of the active 
power output from the generating units. 
 The ELD problem can be defined as the 
following optimization problem, 
Minimize F cost =∑n

i=1(αiPi
2+βiPi+γi)                (2.1) 

Where 
F cost: total fuel cost in the system ($/hr) 
αi, βi, γi: fuel cost coefficients of the i th generating 
unit 
N   :    number of thermal units 
Subjected to 
1. Power balance constraint PD+PL=∑Pi             (2.2) 
2. Generating capacity limits 
Pimin ≤ Pi ≤ Pimax                                                    (2.3) 
Where 
PD  =         total system demand (MW) 
PL  =        total transmission network loss (MW 
Pi min   =        minimum power output limit of ith 
generator (MW) 
Pi max  =        maximum power output limit of ith 
generator (MW) 
PL can be calculated by  
PL=∑n

j=1∑n
i=1PiBijPj                                          (2.4) 

Where Bij’s are the elements of loss coefficient 
matrix B. 
 

2.2 Emission Dispatch 

 The solution of economic dispatch problem 
will give the amount of power to be generated by 
various generating units of a power system for a 
minimum total fuel cost. 
But limitation on emission release is not considered 
by this problem. The emission of pollutants affects 
not only human beings, but it is harmful to other life 
forms. It also causes damage to materials and cause 
global warming. These effects may be interpreted as 
cost, as they degrade the environment in one or other 

form. The objective of emission dispatch is to 
minimize the total environmental degradation or the 
total pollutant emission due to the burning of fuels 
for production of power to meet the load demand.  
 The emission function can be expressed as 
the sum of all types of emissions as NO, SO2, 
particulate materials and thermal radiation with 
suitable pricing for each pollutant emitted. The 
emission dispatch problem can be defined as the 
following optimization problem, 
Minimize Ecost =                (2.5)             
Where 
Ecost   :       total emission release (Kg/hr) 
ai, bi , ci   :       emission coefficients of the ith 
generating unit 
n              :      number of thermal units 
Subject to demand constraint (2.2) and generating 
capacity limits (2.3). 

 

2.3 Combined Economic and Emission Dispatch 
(CEED) 
 The economic dispatch and emission 
dispatch are considerably different. The economic 
dispatch reduces the total fuel cost (operating cost) 
of the system at an increased rate of NOx. On the 
other hand emission dispatch reduces the total 
emission from the system by an increase in the 
system operating cost. Therefore it is necessary to 
find out an operating point, that strikes a balance 
between cost and emission. This is achieved by 
combined economic and emission dispatch (CEED). 
       The CEED problem can be formulated as, 
 Minimize f (F cost, E cost)                       (2.6) 
 Where  
       F cost          =  $/hr 
       E cost         =  kg/hr                   
       Subject to demand constraint (2.2) and 
generating capacity limits (2.3). 
The above mentioned multi-objective optimization 
problem can be converted to a single objective 
optimization problem by introducing a price penalty 
factor Pf as follows, 
Minimize f= F cost +h E cost                              (2.7)                   
Where h is price penalty factor, which blends the 
emission, cost with the normal fuel costs. After the 
introduction of the price penalty factor, the total 
operating cost of the system is the cost of fuel plus 
the implied cost of emission .This factor avoids the 
use of two classes of dispatching .The procedure to 
find out h is as follows. 
1. The fuel cost of each generator is evaluated at its 
maximum output 
(αi Pi

2
max+ βi Pi max+ γi)  $/hr                               (2.8) 
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2. The emission release of each generator is 
evaluated at its maximum output, 
(ai Pi

2
max+ bi Pi max + ci) Kg/hr                         (2.9) 

3. h for each generating unit is calculated 
h = (αi Pi

2
max+ βi Pi max + γi)/ (ai Pi

2
max+ bi Pi max + ci) 

$/Kg               (2.10) 
i= 1, 2, 3,….., n 
4. h (i = 1 ,2, 3 …,n) are arranged in ascending 
order. 
5. The maximum capacity of each unit, (P max) is 
added one at a time, starting from the smallest h unit 
until ∑Pi max ≥ PD. 
6. At this stage “h” associated with the last unit in 
the process is the price penalty factor h ($/Kg) for 
the given load demand PD. 
Once the value of Pf is known, by minimizing the 
equation (2.7) subjected to the constraint equations 
(2.2) and (2.3.3), the optimal generation schedule 
can be obtained. 
 

 

3 Particle Swarm Optimization 
3.1 Basic concepts of Particle Swarm 
Optimization 
 As socio biologist E. O. Wilson has written, 
in reference to fish schooling, “In theory at least, 
individual members of the school can profit from the 
discoveries and previous experience of all other 
members of the school during the search for food. 
This advantage can become decisive, outweighing 
the disadvantages of competition for food items, 
whenever the resource is unpredictably distributed in 
patches”. This statement suggests that social sharing 
of information among consecrates offers an 
evolutionary advantage: this hypothesis was 
fundamental to the development of particle swarm 
optimization. 
 

3.2 Concept of Swarm 

 The term swarm has a basis in the literature. 
In particular, the authors use the term in accordance 
with a paper by Millonas, who developed his models 
for applications in artificial life, and articulated five 
basic principles of swarm intelligence.  
→First is the proximity principle: the population 
should be able to carry out simple space and time 
computations.  
→Second is the quality principle: the population 
should be able to respond to quality factors in the 
environment.  

→Third is the principle of diverse response: the 
population should not commit its activities along 
excessively narrow channels. 
→Fourth is the principle of stability: the population 
should not change its mode of behavior every time 
the environment changes. 
→Fifth is the principle of adaptability: the 
population must be able to change behavior mode 
when it’s worth the computational price. 
Note that principles four and five are the opposite 
sides of the same coin. The term particle was 
selected as a compromise. While it could be argued 
that the population members are mass-less and 
volume-less, and thus could be called “points,” it is 
felt that velocities and accelerations are more 
appropriately applied to particles, even if each is 
defined to have arbitrarily small mass and volume. 
PSO is basically developed through simulation of 
bird flocking in two dimensional spaces. The 
position of each agent is represented by XY axis 
position and the velocity is expressed by V (the 
velocity of X axis) and V (the velocity of Y axis). 
Modification of the agent position is realized by the 
position and velocity information. Bird flocking 
optimizes a certain objective function. Each agent 
knows its best value, so far “Pbest” and its XY 
position. Moreover, each agent knows the best value 
so far in the group “Gbest” among “Pbests”. Namely 
each agent tries to modify its position using the 
following information 
i. The distance between current position and “Pbest” 
ii. The distance between current position and “Gbest” 
iii. This modification can be represented by the 
concept of velocity. 
Velocity of each agent can be modified by the 
following equation: 
 

= w*  
+

)                (3.a) 
 
Where 
w       inertia weight factor 
c1, c2 are the acceleration constants 
rand1, rand2 are uniform random values in the range 
[0,1] 

velocity of jth dimension in ith particle, 
 

 
current position of the jth dimension in ith 

particle at iteration iter. 
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The right hand side of equation consists of three 
terms (vectors). The first term is the previous 
velocity of the agent. The second and third terms are 
used to change the velocity of the agent. Without the 
second and third terms, the agent will keep on flying 
in the same direction it hits the boundary. Namely it 
is corresponds to a kind of inertia and tries to 
explore new areas. Therefore, the first term can 
realize the diversification in the search procedure. 
On the other hand, without the first term, the 
velocity of the flying agent is only determined by 
using its current position and its best solutions in 
search history. Namely the agents will try to 
converge to their “Pbest” and or “Gbest” and, therefore 
the terms correspond to identification in the search 
procedure. The following weighting function is 
usually used in eq. 
 w = wmax -   *iter                     (3.1) 
 
where 
wmax and wmin are both random numbers called initial 
weight and final weight respectively 
 
itermax                   the maximum iteration number 
iter                           the current iteration number 

 
The model using equation is called “inertia weights 
approach”. Using the above equation the 
diversification characteristic is gradually decreased 
and a certain velocity, which gradually moves the 
current searching point close to “Pbest” and “Gbest”, 
can be calculated. The current position (searching 
point in the solution space) can be modified using 
the following eq,  

                    (3.2) 
 

3.1.2 Particle Swarm Optimization Algorithm 

 Particle Swarm Optimization (PSO) is one 
of the evolutionary optimization methods inspired 
by nature which include evolutionary strategy (ES), 
evolutionary programming (EP), genetic algorithm 
(GA), and genetic programming (GP). PSO is 
distinctly different from other evolutionary-type 
methods in that it does not use the filtering operation 
(such as crossover and/or mutation) and the 
members of the entire population are maintained 
through the search procedure. In PSO algorithm, 
each member is called “particle”, and each particle 
flies around in the multi-dimensional search space 
with a velocity, which is constantly updated by the 
particle’s own experience and the experience of the 
particle’s neighbors. 
 

3.1.3 Simple PSO algorithm 
 Initialize parameters 
 Initialize population -1 
 Evaluate 
 Do { 
 Find particle best -2 
 Find global best 
 Update velocity -3 
 Update position -4 
 Evaluate 
 } While (Termination) 

 
Step 1: Initialization: The initial particles are 
chosen randomly and would attempt to cover the 
entire parameter space uniformly. Uniform 
probability distribution for all random variables is 
assumed, that is: 
Xi=Xi min+ρi (Xi max – Xi min)         i=1.. . Np       (3.3) 
Where ρi Є [0, 1] is a random number. The initial 
process produces Np individuals of Xi 
randomly. Similarly, initial velocities are also 
chosen randomly and would attempt to cover the 
entire parameter space uniformly. 
Vi=Vi min+ρi(Vi max –Vi min)          i=1...Np          (3.4) 
Xi min, Xi max minimum and maximum limits of Xi 
which are initialized at start . 
Vi min, Vi max are calculated as follows: 
V min=(X min-X max)/n;                                          (3.5) 
V min=-V max                                                      (3.6) 
Where n is percentage change for the population can 
be taken as 10 
 
Step 2: Finding bests: The fitness values of the 
population are found and population with best 
fitness is named as Particle best and best fitness 
among these particle best is taken as Global best. 
These Particle best and global best are updated for 
every iteration after obtaining the new population by 
adding velocities. The fitness value of each 
individual is compared and the best individual 
among the two is chosen. 
 
Step 3: Updating Velocities: To modify the 
position of each individual, it is necessary to 
calculate the velocity of each individual in the next 
stage. In this velocity updating process, the values of 
parameters such as , ω,c1,c2 should be determined in 
advance. 
Here, the weighting function is defined as follows: 
w=w max  -   * iter                                (3.7) 
where 
w max and w min are both random numbers called  
initial weight and final weight respectively 
iter max                       the maximum iteration number 
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iter                           the current iteration number 
 

=w* +
)                                                                                                

                (3.8) 
 
Where 
w          =          inertia weight factor 
c1, c2    =         are the acceleration 
constants 
rand1, rand2 = are uniform random values 
in the range [0, 1] 

 = velocity of jth dimension in 
ith particle, 

 
  =   current position of the jth 

dimension in ith particle at iteration iter. 
 
Step 4: Updating Position: Position of each 
individual is modified by adding the velocity      of 
each individual. The resulting position of individual 
is not always guaranteed to satisfy the constraints 
due to over/under velocity. If any element of an 
individual violates its inequality constraint due to 
over/under speed then the position of the individual 
is fixed to its maximum/minimum operating point. 

  
Finally the G best is the best solution. 
 
Step –5: Stop criterion: The search   procedure can 
be stopped when the current iteration number 
reaches the predetermined maximum iteration 
number. The last “g best” can be output as a solution. 
 
3.2 Dispersed Particle Swarm Optimization 
 As a population-based evolutionary 
technique, in PSO each individual (called particle) 
searches the multi-dimensional domain space with 
position and velocity information, and preserve the 
best position found by itself. 

=w* +
)                                                                                                

     ……(3.2.1) 
Where 
w                            inertia weight factor 
c1, c2           are the acceleration constants 
rand1, rand2 are uniform random values in the   
range [0,1] 

velocity of jth dimension in ith particle, 

 

 current position of the jth dimension in ith 
particle at iteration iter. 
To control excessive roaming outside the search 
space  

 
Where  
V max     is the velocity threshold with statistic 
analysis, Y. Peng proved that the performance of 
PSO was mainly affected by social coefficient. All 
of these settings are all particle-independent, in other 
words, centralized control—the same value among 
the swarm in each generation. In this manner, the 
swarm tends to search around the historical best 
position of the swarm G best. .Then, some useful 
information inside the personal historical best 
position P best may lose, then decrease the search 
efficiency. To overcome this shortcoming, a 
dispersed control manner is introduced, in which 
each particle selects its social coefficient value to 
decide the search direction: P best or G best for 
standard particle swarm optimization, each particle 
maintains the same flying (or swimming) rules 
which means in the conventional PSO the social co 
efficient was centralized, as in all the particles have 
the same coefficient. Generally, the centralized 
social coefficient setting makes the particles 
converge onto one position G best. Thus, some useful 
information among P best is neglected. 
 At each iteration, the social coefficient c2, an 
important parameter affecting the performance, is 
the same within the whole swarm of standard PSO, 
thus the differences among particles are omitted. 
Since the complex swarm behaviors can emerge the 
adaptation, a more precise model, incorporated with 
the differences, can provide a deeper insight of 
swarm intelligence, and the corresponding algorithm 
may be more effective and efficient. Inspired with 
this method, we propose a new dispersed social 
coefficient setting. 
In order to compensate for the above disadvantages 
we define a new parameter called as 

       …(3.2.3) 
Where  
f worst(t) and f best(t)  are the corresponding worst and 
best positions at time t. If the swarm converges at 
point where f worst = f best then,  1 
Gradeu(t) is an information index to represent the 
differences of particle u at time t, according to its 
fitness value of the current position. The better the 
particle is, the larger Gradeu(t) is, and vice versa. 
 
3.2.1 Social Coefficient Settings 
 The social co efficient setting is being 
modified to as follows 
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=           (3.2.4) 
Where 
clow and cup are two predefined constants and c2,j  (t) 
represents the social coefficient of particle jat time t.  
         
3.2.2 Mutation Strategy 
 In order to prevent pre mature convergence 
due to the introduction of  a mutation 
strategy is introduced to enhance the ability of 
escaping from the local optima. This mutation 
strategy is designed as follows. At each time, 
particle j is uniformly random selected within the 
whole swarm, as well as the dimensionality k is also 
uniformly random selected, then, the vjk(t) is 
changed as follows. 
vjk(t)  = 0.5×xmax ×r1, if r2  < 0.5,          
−0.5×xmax×r1, otherwise                             (3.2.5) 
Where r1 and r2 are random numbers generated with 
uniform distribution from [0,1] 
 
3.2.3 The Details Of The Steps Of DPSO 
Step 1. Initializing the position and velocity vectors 
of the swarm, and determining the historical best 
position G best and P best (j = 1, 2, . . .  , n); 
Step 2. Calculating the dispersed social coefficient 
according to formula (3.2.3) and (3.2.4); 
Step 3. Updating the position and velocity vectors 
with formula (3.2.1) and (3.2.2) whereas the social 
coefficient c2 is replaced by c2,j (t); 
Step 4. Updating the historical best position G best 
and P best (j = 1, 2, . . . , n); 
Step 5. Making mutation strategy; 
Step 6. If the stopping criteria is applied, then the 
output is the fitness value of G best; otherwise, goto 
Step 2. 
        
 
3.3   New Particle Swarm Optimization 
 In PSO, each particle moves in the search 
space with a velocity according to its own previous 
best solution and its group’s previous best solution. 
The dimension of the search space can be any 
positive integer. The original PSO described above 
is basically developed for continuous optimization 
problem. However, lots of practical engineering 
problems are formulated as combinational 
optimization problem. 
 New PSO is a new variation in the classical 
PSO by splitting the cognitive component of the 
classical PSO into two different components. The 
first component can be called good experience 
component. That is, the bird has a memory about its 
previously visited best position. This component is 
exactly the same as the cognitive component of the 

basic PSO. The second component is given the name 
bad experience component. The bad experience 
component helps the particle to remember its 
previously visited worst position. To calculate the 
new velocity, the bad experience of the particle is 
also taken into consideration. 
This gives the new model of the PSO as below. The 
new velocity update equation is given by 

=w* +

)                   ……(3.3.1) 
Where 
i = (1,2,……….n)    n is number of decision 
variables. 
j = (1,2,…………m)  m is the number of 
particles in the swarm 
iter =  iteration count 

= dimension of the velocity of particle at 
iteration 

   = dimension of the position of particle at 
iteration 
W = inertia weight 
c1,c2      = acceleration coefficients 

 = dimension i of the own best position of 
particle j until iteration; 

   = dimension i of the best particle in the 
swarm at iteration; 
c1g              =   acceleration coefficient, which 
accelerates the particle toward its best position; 
c1b              =   acceleration coefficient,   
which accelerates the particle from its worst  
position rand1,rand2 and rand3   =   three separately 
generated uniformly distributed random numbers in 
the range [0, 1]. 

                        …(4.3.2) 
The positions are updated using equation (4.3.2) 
The inclusion of the worst experience component in 
the behavior of the particle gives additional 
exploration capacity to the swarm. By using the bad 
experience component, the bird (particle) can bypass 
its previous worst position and always try to occupy 
a better position.  
       
 
4. Application Example 
 
 In order to show the effectiveness of the 
various PSO algorithms proposed in this paper, the 
optimization results for a six unit test system are 
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presented here. For implementation of PSO, 
population size of 10 and maximum number of 
iterations of 100 are taken  All the related programs 
are written in MATLAB software package, and they 
are executed using P-IV computer @1.5GHz.The 
results are compared with those of GA.The results 
for pure economic dispatch for a demand of 500 
MW are presented in Table 1,and the results for pure 
emission dispatch for a demand of 700 MW are 
presented in Table 2.From the results it is clear that 
PSO        gives global optimum solution with less 
computation time ,than the other techniques .It is 
also observed that the losses are also minimum. 
Table 3 presents dispatch results for economic and 
emission dispatch. 
 
 
 
 
 
Table 1. CEED Results For 500 Mw System 
  PSO DPSO NPSO 
Fuel Cost 
($/hr) 

2.7613 
 *104 

2.7616 
*104 

2.7640 
*104 

Emission 
(Kg/hr) 

263.01 
09 

262.95 
95 

262.62 
20 

Total Cost 
($/Kg) 

3.9159 
*104 

3.9151 
*104 

3.9168 
*104 

Losses(PL) 
(MW) 

8.9331 8.9293 8.8848 

Standard 
Deviation 

19.0106 18.1118 60.2486 

Mean 3.9208 

*104 

3.9168 

*104 

3.9188*104

P1(MW) 33.1966 33.3990 34.5469 

P2(MW) 26.9218 27.1529 28.1660 

P3(MW) 89.9363 89.5262 90.4942 

P4(MW) 90.4776 90.6532 91.4414 

P5(MW) 135.7146 135.6969 130.000 

P6(MW) 132.7834 132.5011 134.2356 

Time(sec) 0.26500 0.29700 0.26600 

 

 

 

 

 

 

Fig 1. Convergence Graph for 500 MW 

 
Table 2.CEED Results for 700 MW system  

 PSO DPSO NPSO 
Fuel Cost
($/hr) 

3.7500 
*104 

3.7509 
*104 

3.7504 
*104 

Emission
(Kg/hr) 

439.6350 439.45 
50 

439.5522 

Total Cost
($/Kg) 

5.719 
*104 

5.7191 
*104 

5.7190 
*104 

Losses(PL)
(MW) 

17.05 
58 

17.05 
96 

17.04 
81 

Standard 
Deviation

164.44 
14 

148.99 
34 

276.05 
08 

Mean 5.7233 
*104 

5.7229 
*104 

5.7285 
*104 

P1(MW) 62.02 
05 

63.41 
99 

62.14 
11 

P2(MW) 61.62 
89 

60.93 
85 

61.83 
93 

P3(MW) 120.00 
48 

120.45 
18 

120.34 
19 

P4(MW) 119.67 
32 

119.15 
41 

119.10 
79 

P5(MW) 178.15 
98 

177.15 
51 

178.29 
63 

P6(MW) 175.56 
87 

175.94 
02 

175.32 
15 

Time(sec) 0.187 
00 

0.218 
72 

0.219 
00 
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Fig 2. Convergence Graph for 700 MW 
 
 

 
 
Table 2.CEED Results for 900 MW system  
 
 PSO DPSO NPSO 

Fuel Cost($/hr) 4.8349 
*104 

4.8371 
*104 

4.8358 
*104 

Emission 
(Kg/hr) 

693.81 
98 

693.38 
19 

693.85 
18

Total Cost 
($/Kg) 

8.1529 
*104 

8.1529 
*104 

8.1532 
*104 

Losses(PL) 
(MW) 

28.00 
92 

27.98 
16 

27.88 
56

Standard 
Deviation 

230.08 
07 

248.85 
87 

250.86 
76 

Mean 8.1587 
*104 

8.1580 
*104 

8.1630 
*104 

P1(MW) 92.2106 92.4181 90.8027 

P2(MW) 98.4220 99.3425 100.0541

P3(MW) 150.18 
33 

149.98 
98 

153.83 
75 

P4(MW) 148.66 
62 

148.48 
45 

148.06 
31 

P5(MW) 220.27 
96 

220.22 
18 

220.79 
88 

P6(MW) 218.24 
74 

217.52 
50 

214.32 
93 

Time(sec) 0.18 
80 

0.18 
75 

0.23 
40 

 
               

Fig 3. Convergence Graph for 900 MW 
 

           
 

 

 

 

 

Table 4. Comparison Table for 500 MW 

 GA PSO DPSO NPS
O 

Total 
Cost 
($/hr) 

3925
8.030 

3.9159 
*104 

2.7616 
*104 

2.7640
*104 

Fuel Cost 
($\hr)

2763
8.300

2.7613 
*104

2.7616 
*104 

2.764 
*104

Emission 
Cost 
($/hr) 

263.4
7 

263.0109 262.95 
95 

262.62

Losses 
(MW) 

10.17
2 

8.9331 8.92 
93 

8.88 
48 

 

 

Table 5. Comparison Table for 700 MW 
 GA PSO DPSO NPSO 

Total 

Cost($/hr) 

57346.19 3.9159*1

04 

2.7616 

*104 

2.7640 

*104 

 

Fuel 

Cost($/hr) 

 

37640.37

0 

 

3.7500*104

 

3.7509*1

 

3.7504 

*104 

Emission 

Cost($/hr) 

439.979 439.6350 439.4550 439.5522

Losses(M

W) 

18.521 17.0558 17.0596 17.0481
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Table 6. Comparison Table for 900 MW 
 GA PSO DPSO NPSO 

Total 

Cost($/hr) 

81764.45 8.1529*1 8.1529 

*104 

8.1532 

*104 

Fuel 

Cost($/hr) 

48567.75 4.8349*1 4.8371*1 4.8358*1

Emission 

Cost($/hr) 

694.169 693.8198 693.3819 693.8518

Losses 

(MW) 

29.725 28.0092 27.9816 27.8856

 

 

5. Conclusion 
           This paper introduces a new approach based 
on Particle Swarm Optimization (PSO) optimization 
to study the power system economic dispatch with 
Emission, which is formulated as a constrained 
optimization problem. The proposed method has 
been applied to one test case. When compared with 
Evolution with a Genetic Algorithm (GA), the 
analysis results have demonstrated that PSO 
outperforms the other methods in terms of a better 
optimal solution and significant reduction of 
computing times. However, the much improved 
speed of computation allows for additional searches 
to be made to increase the confidence in the solution.  
Overall, the PSO algorithms have been shown to be 
very helpful in studying optimization problems in 
power systems. 
 
 
 
5.1 Data Required 
 
Table 5.1 Fuel cost Equations (Rs/hr) 
 

F1 = 0.15247 * + 38.53973 * P1 + 756.79886 
F2 = 0.10587 *  + 46.15916 * P2 + 451.32513 
F3 = 0.02803 *  + 40.39655 * P3 + 1049.9977 
F4 = 0.03556 * + 38.30553 * P4 + 1234.5311 
F5 = 0.02111 *  + 36.32782 * P5 + 1658.5696 
F6 = 0.01799 *  + 38.27041 * P6 + 1356.6592 

 
 
 
 
 
 
 

Table 5.2 Loss Co Efficients 
 
B coefficients= * 10-4  

   

 
 
Table 5.3 Emission Equations  
 
E1 = 0.00419 *  + 0.32767 * P1 + 13.85932 
E2 = 0.00419 *  + 0.32767 * P2 + 13.85932 
E3 = 0.00683 *   - 0.54551 * P3 + 40.26690 
E4 = 0.00683 *  - 0.54551 * P4 + 40.26690  
E5 = 0.00461 *  - 0.51116 * P5 + 42.89553 
E6 = 0.00461 * - 0.51116 * P6 + 42.89553 
 
Table 5.4 Generator limits 
 
Generator P1 P2 P3 P4 P5 P6

Min Limit 10 10 35 35 130 125
Max Limit 125 150 225 210 325 315
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