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Abstract: - This paper presents a new approach for determining the effective control signals for damping of 

oscillations by performance comparison of Unified Power Flow Controller in coordination with Power 

Oscillation Damping Controller and Power System Stabilizer. For the analysis Modified Phllips-Heffron Model 

of Single Machine Infinite Bus system is established with Unified Power Flow Controller. Impact of additional 

damping controllers like Power Oscillation Damping Controller and Power System Stabilizer are designed to 

achieve improved damping performance of the Single Machine Infinite Bus system by selecting effective 

control signals. The Power Oscillation Damping Controller  parameters are optimized by using Nonlinear 

Control design Blockset (NCD). Investigations reveal that coordinated tuning of Unified Power Flow 

Controller with optimized POD parameters provide the robust dynamic performance. Eigen value analysis 

provides the quantitative measure for the comparative performance of additional damping signal with effective 

control signals 
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1 Introduction 

The deregulation and competitive environment in 

the contemporary power networks [1,2] will imply a 

new scenario in terms of load and power flow 

condition and so causing problems of line 

transmission capacity. But nowadays some 

problems exists like power system oscillation 

stability refers to the damping of electromechanical 

oscillations occurring in power systems with 

oscillation frequency in the range of 0.2 Hz. to 2 Hz. 

These low-frequency oscillations are the 

consequence of the development of interconnection 

of large power systems. A low frequency oscillation 

in a power system constrains the capability of power 

transmission, threatens system security and damages 

the efficient operation of the power system. In 

recent years, the fast progress in the field of power 

electronics has opened new opportunities for the 

power industry via utilization of the controllable 

Flexible AC Transmission System devices like 

Unified Power Flow Controller which offer an 

alternative means to mitigate power system 

oscillations. Oscillation Stability analysis and 

control has been an important subject in power 

system research and applications. To increase power 

system oscillation stability, the installation of 

supplementary excitation control, Power System 

Stabilizer, is a simple, effective and economical 

method. Power System Stabilizer [3] is the 

conventional damping controller applied at 

generating station along with Automatic Voltage 

Regulator Control, whereas proposed Power 

Oscillation Damping Controller can be applied at 

Unified Power Flow Controller location. Moreover 

Unified Power Flow Controller further improves the 

dynamic performance of the power system in 

coordination with damping controllers. They can 

improve system operation because they allow for 

more accurate control of the power flow, better and 

faster control of voltage and system stability. As a 

result one of their applications is the damping of 

power system oscillations, which recently has been 

attracting the interest of many researchers [1-11]. 

First phase of research in this area was focussed on 

developing steady state and dynamic models of the 

Unified Power Flow Controller proposing control 

strategy and studies related to system stability 

enhancement. Wang [4] have proposed a control 

strategy in which the relative effectiveness of 

Unified Power Flow Controller control signals in 

damping low frequency oscillations has been 
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examined. However they have not presented an 

approach for obtaining the simultaneous 

coordination of the Unified Power Flow Controller 

with each control signal with Power Oscillation 

Damping Controller and Power System Stabilizer 

for damping of power system oscillations. Tambey 

et al [6] have presented a comprehensive approach 

for the design of UPFC controllers for a SMIB 

system. However they have not presented an 

approach for obtaining the simultaneous 

coordination of UPFC with each control signal with 

PSS. Dhurvey et al [7] has addressed the effective 

control signals for SMIB system for simultaneous 

coordination of UPFC and POD. However they have 

not optimized the parameters. A potential advantage 

of the radial basis function network (RBFN) is its 

ability to implement with less computational 

burden, there by, making it attractive for real time 

application. Chandrakar et al [8] presents a design 

of Proportional Integral (PI) and RBFN controllers 

for the UPFC in single machine infinite bus system 

and multi-machine test system to achieve the 

increase in power handling capacity of the line, 

improvement in transient stability and damping of 

oscillations. However they have not optimised the 

parameters of damping control schemes like POD. 

As the system performance changes with the UPFC 

locations, hence the second phase of research has 

laid more stress on identification of suitable location 

for UPFC installation. Chaudhary et al [9] has 

proposed a sensitivity-based approach for 

identifying the most suitable location for UPFC 

placement based on the reduction in the severity of a 

load bus under line outage contingencies which has 

been tested on IEEE 30 bus system. Ashwani 

Kumar [10] has proposed mixed integer non-linear 

programming approach for optimal location of 

UPFC to enhance loadability of power systems in 

deregulated electricity environment. A comparative 

study of UPFC with other FACTS controllers 

Thyristor Controlled Phase Angle Regulator 

(TCPAR) and Thyristor Controlled Series Capacitor 

(TCSC) has been presented for enhancement of 

system loadability for pool as well as hybrid model. 

Dubey et al [11] presents a systematic approach for 

the simultaneous tuning of GA based PSS and 

conventionally tuned PSS for damping local and 

interarea modes of oscillations effectively. In view 

of above, the main objectives of this paper are to 

improve the dynamic performance of the system by 

using the UPFC in coordination with Optimized 

POD parameters and PSS independently by using 

Nonlinear Control Design Blockset (NCD). 

 

2. System Model 

System considered for analysis is a Single-Machine 

Infinite Bus power system installed with a Unified 

Power Flow Controller in one of the two 

transmission lines which consists of an excitation 

transformer, a boosting transformer, two three-phase 

Gate Turn Off  based voltage source converters and 

a DC link capacitor is shown in Fig.1. Control 

signals for shunt voltage source converter (VSC-E) 

are modulation index of the shunt converter (mE) 

and phase angle of the shunt-converter voltage (δE) 

and for series voltage source converter (VSC-B)  are 

modulation index of series converter (mB) and phase 

angle of the injected voltage(δB). The static 

excitation system, model type IEEE-ST1 A has been 

considered. The Unified Power Flow Controller is 

assumed to be based on pulse width modulation 

converters [4,5]. The nominal loading condition and 

system parameters are given in Appendix-A 

  Fig. 1: A single machine infinite bus power system 

installed with an UPFC in one of the lines 

3. Unified Power Flow Controller 

Unified Power Flow Controller consists of two 

voltage source converters. These back-to-back 

voltage source converters, labeled as voltage source 

converter with excitation transformer (VSC-E )and 

voltage source converter with boosting transformer 

(VSC-B) are operated from a common dc link 

provided by a dc storage capacitor. This 

arrangement functions as an ideal ac-to-ac power 

converter in which the real power can freely flow in 

either direction between the ac terminals of the two 

converters, and each converter can independently 

generate (or absorb) reactive power at its own ac 

output terminal. The real power output of the shunt 

converter must be equal to the real power input of 

the series converter or vice versa. In order to 

maintain the power balance between the two 

converters, a DC-voltage regulator is incorporated. 

DC-voltage is regulated by modulating the phase 
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angle of the shunt-converter voltage. By applying 

Park’s Transformation, the three-phase dynamic 

equations of the UPFC are as shown below [2]. 
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Above expressions can be expressed on the d-q co-

ordinate as 

              (9) 
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For the dynamic model of the power system we 

have 
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A linear dynamic model of UPFC is obtained by 

linearizing the non-linear model around an operating 

condition as shown below [6]. 
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Fig.2 shows the modified Phillips-Heffron model of 

the SMIB system with UPFC installed [4]. The 

modified Phillips-Heffron model has 28 constants as 

apposed to 6 constants in the Phillips-Heffron 

model. These constants are functions of the system 

parameters and the initial operating condition. The 

value of the constants of the model are given in 

Appendix –A. 

The control vector u is defined as follows: 

[ ]
T
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 where, 

   ∆mB - deviation in pulse width modulation 

index mB of  series converter. By controlling mB the 
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magnitude of series-injected voltage can be 

controlled, ∆δB – deviation in phase angle of the 

injected voltage. ∆mE – deviation in pulse width 

modulation index mE of the shunt converter. By 

controlling mE, the output voltage of the shunt 

converter is controlled, ∆δE – deviation in phase 

angle of the shunt-converter voltage. 

 

It may be noted that 
pu

K , 
qu

K , 
vuK , 

cuK are 

the row vectors defined below [4]: 
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The dynamic model of the system in state-space 

form is obtained from the transfer-function model 

as: 
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4. Coordinated Tuning of POD and 

UPFC 

In this section, coordinated tuning of UPFC and 

POD Controller is suggested for damping of 

oscillations. In Fig.2, a POD controller is shown 

which is provided to improve the damping of power 

system oscillations [6]. The POD controller may be 

considered as comprising gain KDC, wash out block 

and lag-lead compensator. The parameters of the 

lead-lag compensator are chosen so as to 

compensate for the phase shift between the control 

signal and the resulting electrical power deviation. 

The gain setting of the damping controller is chosen 

so as to achieve the desired damping ratio of the 

electromechanical mode. Optimum parameters for 

the damping controllers are given in Appendix-A. 

The UPFC controllable signals (mE, δE , mB and δB) 

can be modulated in order to produce a damping 

torque. Controllability indices for the different 

Unified Power Flow Controller controllable 

parameters are given in Appendix-A. The washout 

circuit as shown in Fig.2 is provided to eliminate 

steady-state bias in the output of POD Controller. 

The Tω must be chosen in the range of 10 to 20. The 

power-flow controller as shown in Fig.3 regulates 

the power flow on this line where Kpp and Kpi are the 

proportional and integral gain settings of the power-

flow controller as shown in Appendix-A. 

 

 

Fig.2: Modified Phillps-Heffron model of SMIB 

system with Unified Power Flow Controller and 

Power Oscillation Damping Controller  

 

 

Fig. 3: Structure of power flow controller 
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5. Power System Stabilizer (PSS) 

 
The main objective of designing PSS is to provide 

additional damping torque without affecting the 

synchronizing torque at critical oscillation 

frequency. The PSS [3] are designed to stabilize 

local and inter area modes. The transfer function 

block diagram of PSS is shown in Fig.4. which 

comprises of a gain block, signal washout and phase 

compensator. The dynamic compensator is made up 

of lead-lag stages having the following transfer 

function: 

( )

( )( )
1 3

2 4

1 (1 )
( )

1 1

p ssK sT sT
T s

sT sT

+ +
=

+ +

              (36) 

where Kpss is the gain of PSS. The parameters of 

phase compensator are chosen so as to compensate 

the phase shift provided by the forward path of the 

closed loop system. The output of PSS must be 

limited to prevent the PSS acting to counter the 

action of Automatic Voltage Regulator (AVR). The 

gain setting of the damping controller is chosen such 

that, the desired damping of the electomechanical 

mode of concern is obtained, without affecting the 

damping of the other modes. The output of the 

damping controller modulates the reference setting 

of the power flow controller.   

Fig.4: Transfer Function Block diagram of PSS 

 

6. Optimization of Parameters using 

Nonlinear Control Design (NCD) 

Block Set 

 
Various optimization techniques are available in 

literature for parameter optimization. However, trial 

and error method for parameters selection is very 

time consuming and less accurate whereas available 

optimization tool offers better result. The nonlinear 

control design block set in MATLAB uses the 

optimization tool box and it provides the simple 

approach to optimize model for given target output 

under define constraints and the define time 

intervals. The aim of the parameter optimization is 

to achieve optimal performance. This objective can 

be formulated as follows [12]: 
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where f(x) is objective function, x are the 

parameters of the  controllers. A(x) are the equality 
functions and B(x) are the inequality functions. 

Particularly B(x) indicates the restriction of the 

parameters (i.e Kpp, Kpi etc.) The objective function 

in the simulation is defined as: 
1

0

( ) ( , )

t

f x t x dtω= ∫                                              (40) 

where, ω (t, x) is the speed and the time range of the 

simulation . ω(t, x) changes by changing the 

parameters of x. The M file programme is employed 
to initialize NCD Block, to evaluate the 

performance of various parameters used in 

controllers. In the place of speed, rotor angle 

variation can also be used. The optimization starts 

with the pre-selected initial values of the feed back 

gains. Then the nonlinear algorithm is used  

iteratively to adjust the parameters, until the 

objective function equation (40) is minimized. 

These parameters so determined  are the optimal 
setting of the parameters used as feedback gains. 

The flow chart of the parameter optimization is 

shown in Fig.5. The proposed optimization 
algorithm is realized in a single machine infinite bus 

system. Fig.6 shows the functional diagram of NCD 

for SMIB system with UPFC in which optimization 

of proportional & integral gain controller (Kpp & 

Kpi) has been done by NCD Blockset. 

      

7. Simulation  Results 

7.1. Small Signal Stability Analysis with 

Damping Coefficient, D=0 

 
Independent damping signals with UPFC during 

10% of variation in mechanical power input has 
been demonstrated by using digital simulation with 

Modified Phillips Heffron model in MATLAB 

environment. 

 

7.1.1. Dynamic performance of the system with 

control signal mB 

 
Result shown in Fig.7 indicates that with control 

signal mB, exhibits negative damping. Also with   

coordinated tuning UPFC and PSS exhibits 
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relatively high peak, undamped oscillations whereas 
POD performance is improved with less settling 

time. Also, in the coordinated action of mB and 

POD, when the value of proportional and integral 
setting are optimized, transient response is 

significantly improved.  

 This observation is verified by eigen value analysis 

of system wherein all the eigen values regarding 

POD migrate towards LHS of the complex plane 

while a pair of poles of PSS moves towards RHS of 
the complex plane as shown in Table 1. 

 

 

Fig.5: Flow chart of the parameters optimisation 

 

Fig.6. Functional diagram of UPFC parameters 

optimisation 

 

7.1.2. Dynamic performance of the system with 

control signal mE 

 

From Fig.8 it is clear that with control signal mE, 
system shows negative damping. Also system is not 

amenable with PSS indicates undamped oscillatory 

region, whereas POD Controller can suppress the 
oscillations well with settling time 0.25 sec. Also, in 

the coordinated action of mE and POD, when the  

value of proportional and integral setting are 

optimized, transient response is significantly 

improved and hence gives the better result.  

 This observation is validated by coordinated action 
of UPFC with POD in which all the eigen values are 

driven into the negative real part of axis while one 

of the eigen values with coordinated action of UPFC 
with PSS is driven into the positive real part of axis 

as shown in Table 2. 

  

 

Fig.7:Dynamic response of linearized SMIB system  

a. control signal mB    b. mB with POD  c. mB with PSS  
d. mB with PSS 

 

Table1: Eigen  value  analysis  of  linearized SMIB  
system  with control signal mB for D=0 

 

7.1.3. Dynamic performance of the system with 

control signal δB 

 

From Fig. 9 it can be inferred that with coordinated 

tuning of UPFC and PSS, system is unstable, 
whereas POD performed well with settling time 0.2 

sec. Also, in the coordinated action of δB and POD, 
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when the value of proportional and integral setting 
are optimized, transient response is significantly 

improved.  

Table 3 shows the location of eigen values of the 
system wherein all the values with coordinated 
action of POD moves towards left half of the 

complex plane while one of the pair with the 

coordinated action of PSS moves towards right half 

of the complex plane which shows unstable 

oscillatory region. 

 

Fig.8:Dynamic response of linearized SMIB system 

a. control signal mE     b. mE with POD  c. mE with PSS 

d. mE with optimized POD 
 
Table 2: Eigen  value  analysis  of  linearized SMIB 

system  with control signal mE  for D=0 

 

 

7.1.4. Dynamic performance of the system with 

control signal δE 

 

Fig. 10 shows the instability of UPFC with PSS, 

whereas POD ensures better performance with less 

settling time. Also, in the coordinated action of δE 

and POD, when the value of proportional and 

integral setting are optimized, transient response is 

significantly improved and hence gives the better 

result.  

Table 4 shows the eigen value analysis of system 
which shows that the all eigen values with 

coordinated action of POD lies in the negative real 
part of the axis, hence ensures that system is stable 

while in case of PSS, a pair of pole will eventually 

migrate towards the RHS of the complex plane and 
maintains instability.   

 

Fig.9:Dynamic  response of linearized SMIB system 

a. control signal δB      b. δB  with POD   c. δB  with PSS 
d. δB  with optimized POD 

 

Table 3: Eigen  value  analysis  of  linearized SMIB 
system  with control signal δB for D=0 

 

7.2. Small Signal Stability Analysis With 

Damping Coefficient, D=4  

 
Digital Simulation has been carried out with 

Modified Phillips Heffron model in MATLAB 

environment. Independent damping signals, POD 

and PSS with UPFC has been demonstrated. The 

simulation result of the Modified Phillips Heffron 
model with four different input control signals under 

10% of variation in mechanical power input is 

considered for analysis. 

 

7.2.1. Dynamic performance of the system with 

control signal mB 

 
Result as shown in Fig.11 indicates that with the 

coordinated action of UPFC and PSS, first peak of 
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speed deviation is reduced with settling time 0.35 
sec. whereas, with coordinated action of UPFC and 

POD Controller, first peak of speed deviation is 

reduced and steady state error has been significantly 
improved with settling time 0.1 sec. When the value 

of proportional and integral setting are optimized, 

the coordinated action of UPFC in coordination with 

Optimized POD Controller shows the highest 

improvement in transient response of the system. 

Table 5 shows the eigen value analysis of Single 
Machine Infinite Bus System system with UPFC in 

coordination with POD and PSS, in which all the 

eigen values lies on negative part of real axis which 
indicates that system is stable. 

 

 
Fig.10:Dynamic response of linearized SMIB 

system 

a. control signal δE      b. δE with POD   c. δE with PSS 
d. δE with optimized POD 

 

 

 

Table 4: Eigen value analysis of linearized SMIB 

system with control signal δE  for D=0 
 

 
 

 

 

Fig.11:Dynamic response of linearized SMIB 

system 

a. control signal mB     b. mB with POD   c. mB with 

PSS d. mB with optimized POD 

 

 

Table5: Eigen  value  analysis  of  linearized SMIB 

system  with control signal mB for D=4 

 

7.2.2. Dynamic performance of the system with 

control signal mE 

 
With coordinated action of UPFC and POD, 

reduction in peak amplitude, settling time and 

steady error are evident in Fig.12. With coordinated 

action of UPFC and PSS, first peak of speed 
deviation is reduced. Hence the coordinated action 

of UPFC with control signal mE and Optimized 

POD Controller shows the improvement in the 
transient response of the system.  

This inference has been checked by obtaining eigen 

value analysis of control signal mE and coordinated 
tuning of POD Controller and PSS as shown in 

Table 6 in which all the eigen values lies on 

negative part of real axis which indicates that the 

system is stable. 
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Fig.12:Dynamic response of linearized SMIB 
system 

a. control signal mE     b. mE with POD  c. mE with PSS 

d.mE with optimized POD 
 

Table 6: Eigen  value  analysis  of  linearized SMIB 

system  with control signal mE  for D=4 

 

 

7.2.3. Dynamic performance of the system with 

control signal δB 

 

The digital simulation as shown in Fig.13 

demonstrates the satisfied performance of 

coordinated effect of UPFC, POD Controller and 

PSS. Result indicates that the coordinated action of 

UPFC and Optimized POD Controller reduces first 

peak of speed deviation, settling time and steady 

state error has been significantly improved.  

  Result of eigen value computation is tabulated in 
Table 7 in which all the eigen values regarding 

coordinated action of UPFC with POD and PSS 

respectively lies on negative part of real axis which 
ensures that the system is stable. 

 

.  

7.2.4. Dynamic performance of the system with 

control signal δE  

 

Result as shown in Fig.14 indicates that coordinated 
tuning of UPFC and Optimized POD Controller 

shows the improvement in the transient response of 

the system as compared with PSS. 
 This result can be confirmed by Table 8 which 

indicates that all the eigen values lies on negative 

part of real axis which ensures that system is stable.   

 

Fig.13:Dynamic response of linearized SMIB 

system a. control signal δB      b. δB  with POD   c. δB  

with PSS d. δB  with optimized POD 

Table 7: Eigen  value  analysis  of  linearized SMIB 

system  with control signal δB for D=4 

 

7.3. Small Signal Stability Analysis with 

Variation of Change in Mechanical Power  

 
Simulation result of the Modified Phillips Heffron 
Model with independent tuning of POD Controller 

and PSS under zero damping coefficient and 20% 

deviation in mechanical power input has been 
demonstrated. 

Control signals  mB and δB are more effective 

therefore they are considered for test under different 
system conditions. 
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7.3.1. Dynamic performance of the system with 

control signal mB 

 

Response shown in Fig. 15 indicates that Optimized 
POD Controller  performance is far better than PSS 

with settling time 0.15 sec.  

Eigen value analysis of system as shown in Table 1 

indicates that results are similar as demonstrated for 

10% deviation of mechanical power input. 

 

 

Fig.14: Dynamic  response of linearized SMIB 

system 

a. control signal δE      b. δE with POD   c. δE with PSS 

d. δE with optimized POD 

 

Table 8: Eigen value analysis of linearized SMIB 

system with control signal δE  for D=4 

 

 

7.3.2. Dynamic performance of the system with 

control signal δB 

 

Response shown in Fig. 16 indicates that Optimized 

POD Controller provides highest improvement in 
stability. Eigen value analysis of system as shown in 

Table 3 indicates that results are similar as 

demonstrated for 10% deviation of mechanical 
power input. 

 

Fig.15: Dynamic  response of linearized SMIB 

system with D=0 and  Pm=0.2 
a. control signal mB     b. mB with POD   c. mB with 

PSS d. mB with optimized POD 

 

 

Fig.16: Dynamic  response of linearized SMIB 

system with D=0 and  Pm=0.2 
a. control signal δB    b. δB  with POD   c. δB  with PSS 

d. δB  with optimized POD 

 

7.4. Small Signal Stability Analysis with 

Variation of Change in Mechanical Power  
Simulation result of the Modified Phillips Heffron 

Model with independent tuning of POD Controller 

and PSS under 20% deviation in mechanical power 

input and damping coefficient=4 has been 
demonstrated. Control signals  mB and δB are more 

effective therefore they are considered for test under 

different system conditions. 
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7.4.1. Dynamic performance of the system with 

control signal mB 

Response shown in Fig. 17 indicates that POD 

Controller  performance is far better than Power 
System Stabilizer with settling time 0.1 sec. Also, in 

the coordinated action of mB and POD, when the 

value of proportional and integral setting are 

optimized, transient response is significantly 

improved and hence gives the better result.  

Eigen value analysis of system as shown in Table 5 
indicates that results are similar as demonstrated for 

10% deviation of mechanical power input. 

 

 

Fig.17: Dynamic  response of linearized SMIB  

system with D=4 and  Pm=0.2 

 a. control signal mB     b. mB with POD   c. mB with 

PSS d. mB with optimized POD 

 

7.4.2. Dynamic performance of the system with 

control signal δB 

Response shown in Fig. 18 indicates that POD 

Controller  dynamic performance is improved than 

PSS with settling time 0.12 sec. Also, in the 

coordinated action of δB and POD, when the value 

of proportional and integral setting are optimized, 
transient response is significantly improved and 

hence gives the better result. Result also indicates 

that oscillations are completely damped. 
With Eigen value analysis of system as shown in 

Table 7 indicates that results are similar as 

demonstrated for 10% deviation of mechanical 
power input and the damping coefficient D=4 which 

shows that all the eigen values regarding 

coordinated action of UPFC with POD and PSS 

respectively lies on negative part of real axis which 

ensures that the system is stable. 

 

 

Fig.18: Dynamic  response of linearized SMIB 

system with D=4 and  Pm=0.2 

a. control signal δB      b. δB  with POD   c. δB  withPSS 

d. δB  with optimized POD 

 

 

8. Conclusion 

 
In this paper, the relative effectiveness of Unified 

Power Flow Controller (UPFC) control signals (mE, 

δE, mB, δB) in damping low frequency oscillations 

has been examined. The linearized power system 

model of Single Machine Infinite Bus system for 

analyzing the performance comparison of UPFC in 
coordination with Power Oscillation Damping 

(POD) Controller and Power System Stabilizer 

(PSS) has been considered. These control signals 
gives the significant improvement in performance of 

system for damping of power system oscillations. 

Investigations have revealed that UPFC control 
signals mB and δB shows the robust performance 

over other signals. Also, POD Controller shows the 

improvement in transient response of the system as 

compared to PSS. Optimized system parameters 

further improves the transient response of the 

system. Optimized results of control signals mB and 

δB in coordination with POD shows that oscillations 

are completely damped. Hence the series control 

signals are more effective than shunt control signals. 
The proposed controller fulfils the main objective of 

this paper. Time domain analysis and eigen value 

analysis results validated the performance of various 

Unified Power Flow Controller control strategy 

under variation of system parameters. This work can 

be continued with Artificial Intelligence (AI) 

application for improved dynamic performance. 
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Also optimal tuning method for multi-controller 
parameters can be implemented in large power 

system i.e. in multimachine system.  
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Appendix-A 
 
A.1. Generator   

  

M=2H=0.1787,Tdo
1
=5.044, Vb=1 p.u. 

A.2. Excitation system       

Ka=50.0, Ta=0.05 

A.3.Constants                     

K1=0.9849, K2=4.0896, K3=2.4422, K4=0.1792,K5=-

0.0476, K6=0.3514, K7=-0.2697, K8=0.2061, 

K9=0.0397   

A.4. Unified Power Flow Controller Parameters      

 

Kpδe=1.u,   Kqδe=0.5803,    Kvδe=-0.0036,   

Kcδe=0.6206 

 

Kpδb=-0.0089,  Kqδb=-0.5388,   Kvδb=-0.0029, 

Kcδb=0.0175 

 

Kpe=0.3800,  Kqe=-1.0858,    Kve=0.5468,    Kce=-

0.0696, 
 

Kpd=0.01931,   Kqd=-0.5388,    Kvd=0.2730, ,  Kpp=1, 

Kpi=0.5 
 

A.5.Controllability   indices    

                                  

∆mB=0.0133, ∆δE=0.1916, ∆mE=0.4013, 

∆δB=0.00036 

 

 

For Damping controller mB       

                               
KDC=41.1419,  T1s=0.2860, T2s=0.2082 
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For Damping controller mE                   

                                      

KDC=14.8813,  T1s=0.3383, T2s=0.1761     

 

 

For Damping controller δB    

       

KDC=182.4410, T1s=0.2266, T2s=0.2694 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

For Damping controller δE      

               

KDC=18.0960,   T1s=0.2296, T2s=0.2516  

6.PSS                

Kpss=21.31 , Tω=10, T1=0.31, T2=0.22, Kpp=0.55, 

Kpi=0.75 
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