Modelling Saturated Induction Machines
with a View to On-line Dynamic Security Analysis

LUCIAN LUPŞA-TĂTARU
Department of Electrical Engineering
Faculty of Electrical Engineering and Computer Science
Transilvania University
Bd. Eroilor No. 29, Braşov, RO-500036
ROMANIA
lucian.lupsa@unitbv.ro lupsa@programmer.net http://www.unitbv.ro

Abstract: - During the dynamic processes, the induction machine, as component part of interconnected power systems, is now exposed to large variations of magnetic stress. To perform an analysis in on-line mode, when the time required for the computation is a crucial consideration, these variations have to be taken into account by means of a dynamic model that has to combine accuracy with structural simplicity. Various dynamic \(d-q \) axis models of induction machine, derived with the purpose of synthesis of the vector-controlled system or with a view to off-line study, come to be inappropriate for the on-line dynamic security assessment. This is mainly due to models complex structure, which incorporates additional saturation-dependent parameters. The approach in literature, wherein the concept of dynamic (differential) inductance predominates over, will be avoided by reconsidering the winding flux linkage state-space model of induction machine. An auxiliary algebraic equation suitable for a solving in relation to magnetizing inductance will be formulated to complete the original structure of flux linkage state-space model. It will be shown that the employment of the well-established Frölich model to describe the machine magnetizing curve makes feasible the magnetizing inductance expressing in terms of only winding flux linkages. Besides, we will advance the procedure of computing the magnetizing inductance when a magnetizing curve piecewise representation based on Frölich type model is employed. The derivation will be carried out without altering the structural equations of the generalised \(d-q \) axis mathematical model of induction machine.

Key-Words: - Modelling, Dynamic Security Analysis, Induction Machine, Main Flux Saturation, Flux Linkage State-space Model, Frölich Model.

1 Introduction
With the increasing emphasis placed on economy, the induction machine is now operated much closer to the security limits [1]-[4]. On the other hand, more and more induction generators are used in variable-speed drives with fast electromagnetic and mechanical transients [5]-[7]. Bus switching for the emergency generators feeding urgent loads leads to large deviation transients. In this context, to support the operating functions, a large number of scenarios must be anticipated and analysed in on-line mode. Decisions are to be made based on the predicted future states of the system [7]-[10].

To date, a large number of contingency cases are solved in the off-line mode to establish operating guidelines, modified by judgement and experience. Since the number of contingency cases to be solved in energy management systems is usually up to a few thousand cases [7], [10], in order to perform the analysis in on-line mode, the time required for the computation is a crucial consideration. With a view to on-line dynamic security assessment, similar to most of electric power components, the induction machine is usually described by means of a linear, reduced-order dynamic model. This is because the implementation of linear models of power system dynamics on parallel or array processors makes the execution of contingency analysis fast enough [10]. However, in the present context, during the dynamic processes, the main flux path (magnetizing circuit) of the induction machine undergoes large variations of the saturation level. To formulate highly accurate dynamic \(d-q \) axis models, these variations have to be taken into account by means of the anhysteretic magnetizing curve [11]-[19], [21], [22]. Having this in view, the attempts to account for main flux path saturation using flux linkages as state variables are rather rare. One can distinguish the model in [15], where the \(d-q \) axis components of magnetizing flux and rotor current space-phasors [23] are selected as state variables. Contribution [16] advances a class of six different mixed current-flux state-space models;
2 Starting Point: The Generalised d-q Axis Model of Induction Machine

The generalised d-q axis mathematical model of the induction machine encompasses two distinctive sets of structural equations:

(i) the differential equations, i.e. voltage and motion equations; (ii) the algebraic correlations between the d-q axis winding flux linkages and d-q axis winding currents, namely the so-called flux equations, which allow the selection of the d-q axis state variables in different variants.

In an arbitrary reference frame, the generalised model of a three-phase induction machine is given by the following structural equations [12]-[16]:

(i) the voltage equations as ordinary differential equations:

\[
\begin{align*}
 u_{sd} &= R_s i_{sd} + \frac{d}{dt} \psi_{sd} - \omega \psi_{sd}, \\
 u_{sq} &= R_s i_{sq} + \frac{d}{dt} \psi_{sq} + \omega \psi_{sd}, \\
 0 &= R_i i_{rd} + \frac{d}{dt} \psi_{rd} - (\omega - \omega_i) \psi_{rd}, \\
 0 &= R_i i_{rq} + \frac{d}{dt} \psi_{rq} + (\omega - \omega_i) \psi_{rd},
\end{align*}
\]

wherein \(u, i, \psi \) denote voltages, currents, and flux linkages, respectively, while subscripts \(s \) and \(r \) are associated with stator and rotor, respectively. The reference frame velocity is \(\omega_{ref} \) with respect to the stator. With respect to the rotor, the reference frame velocity is \(\omega_{ref} - \omega_i \), where \(\omega_i \) represents the rotor angular velocity. Notice that the derivation that is to be performed does not require restrictions regarding the reference frame velocity \(\omega_{ref} \).

(ii) the flux equations as flux linkages-currents algebraic correlations:

\[
\begin{align*}
 \psi_{sd} &= L_s i_{sd} + L_m i_{rd} = L_s i_{sd} + L_m (i_{sd} + i_{rd}), \\
 \psi_{sq} &= L_s i_{sq} + L_m i_{rq} = L_s i_{sq} + L_m (i_{sq} + i_{rq}), \\
 \psi_{rd} &= L_t i_{rd} + L_m i_{sd} = L_t i_{rd} + L_m (i_{sd} + i_{rd}), \\
 \psi_{rq} &= L_t i_{rq} + L_m i_{sq} = L_t i_{rq} + L_m (i_{sq} + i_{rq}),
\end{align*}
\]

wherein \(L_m \) represents the magnetizing inductance, while index \(\sigma \) denotes the stator and rotor leakage inductances.

Notice that rotor quantities are referred to stator.

The machine electromagnetic torque is given by

\[
T_{em} = \frac{3p}{2} (\psi_{sq} i_{rq} - \psi_{rq} i_{sq})
\]

wherein \(p \) represents the number of pole pairs. The motion (torque) equation [12]-[16] is irrelevant here and is hence omitted in presentation.
3 Mathematical Modelling

3.1 The Original Structure of Winding Flux Linkage State-space Model

Acknowledged formally as being the oldest one, the winding flux linkage state-space model of induction machine is derived by selecting all d-q axis winding flux linkages as state variables. The model results considerably simpler than the ones with currents interfering as state variables. This is because of the kindly disposed structure of the generalised voltage equations (1)-(4), which incorporate explicitly the winding flux linkages time-related derivatives. To develop the winding flux linkage state-space model, it is necessary to remove the d-q axis currents from the voltage equations. By solving the system of Eqs. (5)-(8) in relation to d-q axis currents, the following currents-flux linkages correlations result:

\[i_{d} = \frac{L_m (\psi_{sd} - \psi_{td}) + L_q \psi_{sd}}{(L_{sa} + L_{ra}) L_m + L_{sa} L_{ta}}, \]
\[i_{q} = \frac{L_m (\psi_{sq} - \psi_{tq}) + L_q \psi_{sq}}{(L_{sa} + L_{ra}) L_m + L_{sa} L_{ta}}, \]
\[i_{d} = \frac{L_m (\psi_{td} - \psi_{sd}) + L_q \psi_{td}}{(L_{sa} + L_{ra}) L_m + L_{sa} L_{ta}}, \]
\[i_{q} = \frac{L_m (\psi_{tq} - \psi_{sq}) + L_q \psi_{tq}}{(L_{sa} + L_{ra}) L_m + L_{sa} L_{ta}}. \]

Thus, the crucial point in the course of derivation of the flux linkage state-space model is typified by the reformulation of the voltage equations. Both d-axis currents in Eqs. (1), (3), and both q-axis currents in Eqs. (2), (4) can easily be replaced by the flux-based expressions (10), (12) and (11), (13), respectively. If one assumes constant machine parameters then the processed voltage equations will provide the flux linkages time-related derivatives just in terms of state variables, i.e. d-q axis winding flux linkages and rotor angular velocity:

\[\frac{d \psi_{sd}}{dt} = \omega_1 \psi_{sd} + \omega_2 \psi_{sq} + \omega_3 \psi_{td} + u_{sd}, \]
\[\frac{d \psi_{sq}}{dt} = -\omega_2 \psi_{sd} + \omega_1 \psi_{sq} + \omega_3 \psi_{tq} + u_{sq}, \]
\[\frac{d \psi_{td}}{dt} = \omega_4 \psi_{sd} + \omega_5 \psi_{td} + \omega_6 \psi_{tq}, \]
\[\frac{d \psi_{tq}}{dt} = \omega_4 \psi_{sq} - \omega_6 \psi_{td} + \omega_5 \psi_{tq} \]

wherein the flux linkages coefficients are:

\[\omega_1 = -\frac{L_m}{L_{sa} + L_{ra}} = \text{const.}, \]
\[\omega_2 = \omega_{\text{ref}}, \]
\[\omega_3 = \frac{R_s (L_{sa} + L_{ra}) L_m + L_{sa} L_{ta}}{L_m} = \text{const.}, \]
\[\omega_4 = \frac{L_m}{L_{sa} + L_{ra}} = \text{const.}, \]
\[\omega_5 = -\frac{L_m}{(L_{sa} + L_{ra}) L_m + L_{sa} L_{ta}} = \text{const.}, \]
\[\omega_6 = \omega_{\text{ref}} - \omega_{\text{r}}. \]

Consequently, with constant parameters, the system analysts deal with a system of (ordinary) differential equations, which is exactly the structure needful for benefiting by a numerical integration routine.

3.2 The Auxiliary Equation

We assume that leakage flux saturation and main flux saturation can be treated independently. Since only saturation of the main flux path is discussed, leakage inductances are constants. In contrast, the main flux saturation is to be taken into account by means of the machine magnetizing curve, described by the following non-linearity [11]-[18]:

\[\psi_m = \psi_{m}(i_m) = L_m (i_m) \cdot i_m \]

wherein the magnetizing flux linkage as well as the magnetizing inductance change to functions of the magnetizing current variable, that is the magnetizing current space-phasor modulus [23]:

\[i_m = \sqrt{i_{md}^2 + i_{mq}^2} = \sqrt{(i_{sd} + i_{td})^2 + (i_{sq} + i_{tq})^2}. \]

As already pointed, to develop the flux linkage state-space model, we have to replace the d-q axis currents in voltage equations (1)-(4) by appropriate expressions in terms of the d-q axis flux linkages, which, in our case, are state variables. However, having in view that the magnetizing inductance is, for the time being, a dependency upon magnetizing current (17), id est:

\[L_m = L_m (i_m), \]

the absolute mathematical formulation of the flux linkage state-space model cannot be accomplished. If one attempts to include the main flux saturation effects by the traditional manner, i.e. by introducing the magnetizing inductance as a non-linear function of magnetizing current, then the structure of flux linkage state-space model becomes useless for the analyst-programmers. This is due to the fact that magnetizing current (17), which decides the value of magnetizing inductance in the set of flux-based expressions (10)-(13), is given just in terms of d-q axis currents, which have to be replaced. With such
an attempt of accounting for main flux saturation, the time-related derivatives of winding flux linkages would be expressed not only in terms of winding flux linkages but also in terms of d-q axis currents, which are not state variables. Obviously, in this case of hypothetical horizon, any procedure of numerical integration would be of no avail. Thus, in order to have recourse to currents-flux linkages correlations (10)-(13), we have to look for a method that allows the magnetizing inductance computation when only the values of the d-q axis winding flux linkages are available. Therefore, we proceed to replace the d-q axis currents in the magnetizing current expression (17) by considering just the correlations (10)-(13). The following relationships successively result:

\[i_{md} = i_s + i_{rd} = \frac{L_s \psi_s + L_o \psi_{rd}}{(L_o + L_{mr}) L_m + L_o L_{mr}} \]
\[i_{mq} = i_s + i_{rq} = \frac{L_s \psi_q + L_o \psi_{rq}}{(L_o + L_{mr}) L_m + L_o L_{mr}} \]
\[i_m = \frac{\lambda_{dq}}{L_m + (L_o + L_{mr})^{-1} L_o L_{mr}} \]

with \(\lambda_{dq} \) (in Weber) as flux-dependent quantity:

\[\lambda_{dq} = \sqrt{(L_o \psi_s + L_o \psi_{rd})^2 + (L_o \psi_q + L_o \psi_{rq})^2} - \frac{L_s}{L_o + L_{mr}} \]

With regard to main flux saturation modelling, it has to be emphasised the generality of relationship (19), which is of a form independent on the way of representing the magnetizing inductance in relation to magnetizing current variable. On the other hand, for a specific representation (18) of the magnetizing inductance, we take for granted the feasibleness of drawing out the magnetizing current as quantity in connection with and varying with the magnetizing inductance (variable). Thus, we additionally have:

\[i_m = g(L_m) \]

The generalised relationship (19) coupled with a specific dependency (21) bring forth an auxiliary algebraic equation, its unknown being exactly the magnetizing inductance:

\[\frac{\lambda_{dq}}{L_m + (L_o + L_{mr})^{-1} L_o L_{mr}} = g(L_m) \]

Supposing that a function of type (21), varying with magnetizing inductance, makes feasible the symbolical (analytical) solving of auxiliary equation (22), the magnetizing inductance results as function of the flux-dependent quantity (20), i.e. as function of the d-q axis flux linkages, which are just state variables. To emphasise this, we simply set down:

\[L_m = f(\lambda_{dq}) \]

With a dependency of type (23), the inclusion of the effects of the main flux path saturation remains just a straightforward task-work. Indeed, with the main flux saturation effects taken into consideration by means of a dependency of the type (23), the d-q axis currents (10)-(13) are preserved as functions of d-q axis winding flux linkages:

\[i_s = f (\psi_{sd}, \psi_{sq}, \psi_{rd}, \psi_{rq}) = f (\lambda_{dq}) \cdot (\psi_{sd} - \psi_{rd}) + L_{mr} \psi_{sd} \]
\[(L_o + L_{mr}) \cdot f (\lambda_{dq}) + L_{mr} \psi_{rd} \]
\[i_q = f (\psi_{sd}, \psi_{sq}, \psi_{rd}, \psi_{rq}) = f (\lambda_{dq}) \cdot (\psi_{sq} - \psi_{rq}) + L_{mr} \psi_{sq} \]
\[(L_o + L_{mr}) \cdot f (\lambda_{dq}) + L_{mr} \psi_{rq} \]
\[i_{rd} = f (\psi_{sd}, \psi_{sq}, \psi_{rd}, \psi_{rq}) = f (\lambda_{dq}) \cdot (\psi_{rd} - \psi_{sd}) + L_{mr} \psi_{rd} \]
\[(L_o + L_{mr}) \cdot f (\lambda_{dq}) + L_{mr} \psi_{rd} \]
\[i_{rq} = f (\psi_{sd}, \psi_{sq}, \psi_{rd}, \psi_{rq}) = f (\lambda_{dq}) \cdot (\psi_{rq} - \psi_{sq}) + L_{mr} \psi_{rq} \]
\[(L_o + L_{mr}) \cdot f (\lambda_{dq}) + L_{mr} \psi_{rq} \]

As a consequence, the replacement of the d-q axis currents in the generalised voltage equations (1)-(4) by employing the evolved correlations (24)-(27) will preserve the flux linkages derivatives as expressions in terms of state variables of the original winding flux linkage state-space model:

\[\frac{d \psi_{sd}}{dt} = -R_s \cdot f_{11}(\psi_{sd}, \psi_{sq}, \psi_{rd}, \psi_{rq}) + \omega_{rot} \psi_{sq} + u_{sd} \]
\[\frac{d \psi_{sq}}{dt} = -R_s \cdot f_{12}(\psi_{sd}, \psi_{sq}, \psi_{rd}, \psi_{rq}) - \omega_{rot} \psi_{sd} + u_{sq} \]
\[\frac{d \psi_{rd}}{dt} = -R_s \cdot f_{21}(\psi_{sd}, \psi_{sq}, \psi_{rd}, \psi_{rq}) + (\omega_{rot} - \omega_r) \psi_{rq} \]
\[\frac{d \psi_{rq}}{dt} = -R_s \cdot f_{22}(\psi_{sd}, \psi_{sq}, \psi_{rd}, \psi_{rq}) - (\omega_{rot} - \omega_r) \psi_{rd} \]

Thus, with the effects of the main flux saturation incorporated by means of a non-linearity of the type (23), any derived structure that obeys the evolved form (28)-(31) can lightly be exploited by benefiting by a numerical integration routine [24]-[26].

3.3 Frölich Model of Magnetizing Curve

With a view to off-line analysis, to approximate the magnetizing curve of induction machine, it is in use to call a dedicated curve fitting routine, which is geared toward returning an elaborate differentiable function. However, the evaluation of the returned
expression could become very time consuming if the analysis has to be carried out in on-line mode. Although the computer hardware and programming languages are momentous for maximizing execution speed, they do not represent industrial arts we can change on a day-to-day basis. In comparison, what we do implement can be changed at any time, and can drastically affect how long the software blocks will require to execute. In this context, with a view to the on-line assessment, the power system analysts should avoid the using of transcendental functions (e.g. logarithm, trigonometric, hyperbolic functions) for controlling the magnetizing curve fitting. Since the transcendental functions are implemented as a series of additions, subtractions and multiplications, their expressions require at the least ten times longer series of additions, subtractions and multiplications, than a single multiplication. Besides, the Jacobian of magnetizing inductance (36), i.e. in terms of flux-dependent quantity (20), i.e. in terms of winding flux linkages, which are just state variables. Eqs. (36) and (20) disclose: with magnetizing inductance (36), the c depend solely on leakage inductances and Frölich model parameters and, consequently, designate a set of constants. Relation (36) yields the magnetizing inductance as function of flux-dependent quantity (20), i.e. in terms of winding flux linkages, which are just state variables. Eqs. (36) and (20) disclose: $c_0 = \alpha^{-1} (L_{\sigma} + L_{\tau})^{-1} L_{\sigma} L_{\tau}$, $c_1 = 0.5 (L_{\sigma} + L_{\tau})^{-1} L_{\sigma} L_{\tau} - 0.5 / \alpha$, $c_2 = 0.5 \beta / \alpha$

In this context, non-linearity (36) is to be used as a replacement for non-linearity (33) that traditionally yields the magnetizing inductance as function of magnetizing current (17), i.e. in terms of $d-q$ axis currents. Thus, with magnetizing inductance (36), the $d-q$ axis currents and the time-related derivatives of $d-q$ axis winding flux linkages get their evolved expressions in terms of only state variables, i.e. the expressions (24)-(27) and (28)-(31), respectively. Besides the fact that the dynamic (differential) inductance does not interfere, the encompassing of two parameters within the Frölich model (32) makes allowable a convenient method for the anhysteretic magnetizing curve fitting. More precisely, one can simply employ the Frölich type model to construct a continuous piecewise representation made up of n constitutive segments:

$$(L_{\sigma} + L_{\tau})^{-1} L_{\sigma} L_{\tau} = \text{const.} = b(\lambda_{dq}) \cdot L_m + \alpha L_m^2$$ \hspace{1cm} (35)$$

with b as the flux-dependent coefficient:

$$b(\lambda_{dq}) = \alpha (L_{\sigma} + L_{\tau})^{-1} L_{\sigma} L_{\tau} - 1 + \beta \lambda_{dq}.$$ \hspace{1cm} (36)$$

The positive defined solution of Eq. (35) can be brought before in the following algebraic form:

$$L_m = f(\lambda_{dq}) = \sqrt{c_0 + (c_1 + c_2 \lambda_{dq})^2} - c_1 - c_2 \lambda_{dq}$$ \hspace{1cm} (37)$$

wherein quantities:

$$c_0 = \alpha^{-1} (L_{\sigma} + L_{\tau})^{-1} L_{\sigma} L_{\tau},$$ \hspace{1cm} (38)$$

$$c_1 = 0.5 (L_{\sigma} + L_{\tau})^{-1} L_{\sigma} L_{\tau} - 0.5 / \alpha,$$ \hspace{1cm} (39)$$

$$c_2 = 0.5 \beta / \alpha$$ \hspace{1cm} (40)$$

In this context, non-linearity (36) is to be used as a replacement for non-linearity (33) that traditionally yields the magnetizing inductance as function of magnetizing current (17), i.e. in terms of $d-q$ axis currents. Thus, with magnetizing inductance (36), the $d-q$ axis currents and the time-related derivatives of $d-q$ axis winding flux linkages get their evolved expressions in terms of only state variables, i.e. the expressions (24)-(27) and (28)-(31), respectively. Besides the fact that the dynamic (differential) inductance does not interfere, the encompassing of two parameters within the Frölich model (32) makes allowable a convenient method for the anhysteretic magnetizing curve fitting. More precisely, one can simply employ the Frölich type model to construct a continuous piecewise representation made up of n constitutive segments:

$$i_m = g(L_m) = (1 - \alpha L_m) / (\beta L_m).$$ \hspace{1cm} (41)$$
where each pair of parameters α_k and β_k relies on the sampled points $(i_{m,k}, \psi_{m,k})$ and $(i_{m,k+1}, \psi_{m,k+1})$ as follows:

$$\alpha_0 = \frac{i_{m,1}}{\psi_{m,1}}, \quad \beta_0 = 0,$$

simply agreed to a linear interpolation, and further:

$$\alpha_k = \frac{\psi_{m,k+1} - \psi_{m,k}}{i_{m,k+1} - i_{m,k}}, \quad \frac{i_{m,k+1} - i_{m,k}}{i_{m,k+1} - i_{m,k}} > 0; \quad k \neq 0,$$

$$\beta_k = \frac{1}{\psi_{m,k}} \left(\frac{\psi_{m,k+1} - \psi_{m,k}}{i_{m,k+1} - i_{m,k}} \right); \quad k \neq 0.$$

It is quite obvious that if one employs a piecewise approximation of type (40) instead of the Frölich model (32), the accuracy of the magnetizing curve representation can lightly be controlled whatever the specified limit. If (40) is being considered then the magnetizing inductance will result also as piecewise specified limit. If (40) is being considered then the approximation can lightly be controlled whatever the form, remaining valid for any dependency described by Eq. (36). In the previous subsection, dependency (23) is made available by employing Frölich model of magnetizing curve as well as by employment of a magnetizing curve piecewise representation based on the Frölich type model. This section deals with the improved structure of the winding flux linkage state-space model in the developed form. This is to be obtained by gathering the results in subsections 3.2 and 3.4. The electromagnetic torque (9) can be expressed in terms of winding flux linkages using correlations (24), (25) to replace the stator d-q axis currents (Appendix A). Hence, the motion (torque) equation will be omitted in presentation.

Eqs. (28)-(31) can be expanded by employing the correlations (24)-(27) in which dependency (23) can now be given by Eq. (36) or Eq. (41). One obtains:

$$\frac{d\psi_{sd}}{dt} = -R_s f(\lambda_{dq}) \left((\psi_{sd} - \psi_{cq}) + L_{sr} \psi_{sd} \right),$$

$$\frac{d\psi_{sq}}{dt} = -R_s f(\lambda_{dq}) \left((\psi_{sq} - \psi_{cq}) + L_{sr} \psi_{sq} \right),$$

$$\frac{d\psi_{rd}}{dt} = -R_r f(\lambda_{dq}) \left((\psi_{rd} - \psi_{rq}) + L_{sr} \psi_{rd} \right),$$

$$\frac{d\psi_{rq}}{dt} = -R_r f(\lambda_{dq}) \left((\psi_{rq} - \psi_{cq}) + L_{sr} \psi_{rq} \right),$$

wherein, for $k \in [0, n-1]:$

$$f_k(\lambda_{dq}) = \left\{ \begin{array}{ll}
 f_0(\lambda_{dq}) & ; \lambda_{dq,0} < \lambda_{dq,1} \\
 f_1(\lambda_{dq}) & ; \lambda_{dq,1} < \lambda_{dq,2} \\
 \vdots & ; \vdots \\
 f_n(\lambda_{dq}) & ; \lambda_{dq,k} < \lambda_{dq,k+1} \\
 \vdots & ; \vdots \\
 f_{n-1}(\lambda_{dq}) & ; \lambda_{dq,n-1} < \lambda_{dq,n} \\
\end{array} \right.$$

(41)

and, in accordance to Eq. (19), for $k \in [0, n]:$

$$\lambda_{dq,k} = \psi_{m,k} + (L_{sa} + L_{ra})^{-1} L_{sa} L_{ra} \cdot i_{m,k}.$$

The results in this subsection suggest that structure (28)-(31) can be applied in conjunction with Frölich model, as well as in conjunction with a piecewise construct based on the Frölich type model (32).

3.5 The Improved Structure of Winding Flux Linkage State-space Model

The derivation in subsection 3.2 shows the course to receiving a winding flux linkage state-space model with the main flux saturation effects incorporated by means of a dependency of the type (23). The state equations (28)-(31) are advanced in the most general form, remaining valid for any dependency described by Eq. (23). In the previous subsection, dependency (23) is made available by employing Frölich model of magnetizing curve as well as by employment of a magnetizing curve piecewise representation based on the Frölich type model. This section deals with the improved structure of the winding flux linkage state-space model in the developed form. This is to be obtained by gathering the results in subsections 3.2 and 3.4. The electromagnetic torque (9) can be expressed in terms of winding flux linkages using correlations (24), (25) to replace the stator d-q axis currents (Appendix A). Hence, the motion (torque) equation will be omitted in presentation.

Eqs. (28)-(31) can be expanded by employing the correlations (24)-(27) in which dependency (23) can now be given by Eq. (36) or Eq. (41). One obtains:

$$\frac{d\psi_{sd}}{dt} = -R_s f(\lambda_{dq}) \left((\psi_{sd} - \psi_{cq}) + L_{sr} \psi_{sd} \right),$$

$$\frac{d\psi_{sq}}{dt} = -R_s f(\lambda_{dq}) \left((\psi_{sq} - \psi_{cq}) + L_{sr} \psi_{sq} \right),$$

$$\frac{d\psi_{rd}}{dt} = -R_r f(\lambda_{dq}) \left((\psi_{rd} - \psi_{rq}) + L_{sr} \psi_{rd} \right),$$

$$\frac{d\psi_{rq}}{dt} = -R_r f(\lambda_{dq}) \left((\psi_{rq} - \psi_{cq}) + L_{sr} \psi_{rq} \right),$$

wherein it is possible to have:

$$f(\lambda_{dq}) = \sqrt{c_0 + (c_1 + c_2 \lambda_{dq})^2} - c_1 - c_2 \lambda_{dq}$$

if the dependency given by (36) is implemented, or

$$f(\lambda_{dq}) = \sqrt{c_0 + (c_1 + c_2 \lambda_{dq})^2} - c_1 - c_2 \lambda_{dq}$$

if one implements a piecewise construct of type (41) and the present value of the flux-dependent quantity (20) is detected within the subinterval of extremities $\lambda_{dq,k}$ and $\lambda_{dq,k+1}$. In comparison with the situation of implementing dependency (36), implementation of a piecewise representation given by (41) expects the analyst-programmer to provide a way to change the program flow in order to select the appropriate piecewise segment. This plainly requires a loop that always executes once, e.g. a "repeat…until" looping construct [27], [28] to detect the subinterval wherein the present value of quantity (20) is contained.

Closer inspection of derived structure (42) shows that the flux linkages coefficients, which in original structure (14) have constant values, come now to be saturation-dependent but by means of quantity (20) only, in accordance with Eq. (36) or Eq. (41):
\[
\omega_1 \leftarrow -R_s \frac{f(\lambda_{dq}) + L_s \omega}{(L_s + L_r) \cdot f(\lambda_{dq}) + L_s L_r},
\]
\[
\omega_3 \leftarrow R_s \frac{f(\lambda_{dq})}{(L_s + L_r) \cdot f(\lambda_{dq}) + L_s L_r},
\]
\[
\omega_4 \leftarrow R_s \frac{f(\lambda_{dq})}{(L_s + L_r) \cdot f(\lambda_{dq}) + L_s L_r},
\]
\[
\omega_5 \leftarrow -R_s \frac{f(\lambda_{dq})}{(L_s + L_r) \cdot f(\lambda_{dq}) + L_s L_r}.
\]

Equation (43)

Having in view that (41) is composed only of pieces of the type (36), we may expand:

\[
\omega_1 \leftarrow \omega_1(\lambda_{dq}) = -R_s \left(\sqrt{c_0 + (c_1 + c_2 \lambda_{dq})^2} - c_1 - c_2 \lambda_{dq} + L_r / [(L_s + L_r)] \right) + \left(\sqrt{c_0 + (c_1 + c_2 \lambda_{dq})^2} - c_1 - c_2 \lambda_{dq} + L_s L_r / [(L_s + L_r)] \right) \]
\[
\omega_3 \leftarrow \omega_3(\lambda_{dq}) = R_s \left(\sqrt{c_0 + (c_1 + c_2 \lambda_{dq})^2} - c_1 - c_2 \lambda_{dq} / [(L_s + L_r)] \right) + \left(\sqrt{c_0 + (c_1 + c_2 \lambda_{dq})^2} - c_1 - c_2 \lambda_{dq} + L_s L_r / [(L_s + L_r)] \right) \]
\[
\omega_4 \leftarrow \omega_4(\lambda_{dq}) = R_s \left(\sqrt{c_0 + (c_1 + c_2 \lambda_{dq})^2} - c_1 - c_2 \lambda_{dq} / [(L_s + L_r)] \right) + \left(\sqrt{c_0 + (c_1 + c_2 \lambda_{dq})^2} - c_1 - c_2 \lambda_{dq} + L_s L_r / [(L_s + L_r)] \right) \]
\[
\omega_5 \leftarrow \omega_5(\lambda_{dq}) = -R_s \left(\sqrt{c_0 + (c_1 + c_2 \lambda_{dq})^2} - c_1 - c_2 \lambda_{dq} + L_s L_r / [(L_s + L_r)] \right) \]

Equation (44)

mentioning, however, that if a piecewise construct (41) is adopted then the appropriate substitutions

\[c_0 \leftarrow c_{0,k}, \quad c_1 \leftarrow c_{1,k}, \quad c_2 \leftarrow c_{2,k}\]

have to be made. Emphasising the new flux linkages coefficients, one can straightforwardly find out that the improved structure (42) can be put forward in a form similar to the original one, given by Eqs. (14):

\[
\frac{d\psi_{sd}}{dt} = \omega_1(\lambda_{dq}) \cdot \psi_{sd} + \omega_2(\lambda_{dq}) \cdot \psi_{sq} + \omega_3(\lambda_{dq}) \cdot \psi_{rd} + u_{sd},
\]
\[
\frac{d\psi_{sq}}{dt} = -\omega_2(\lambda_{dq}) \cdot \psi_{sd} + \omega_1(\lambda_{dq}) \cdot \psi_{sq} + \omega_3(\lambda_{dq}) \cdot \psi_{rq} + u_{sq},
\]
\[
\frac{d\psi_{rd}}{dt} = \omega_4(\lambda_{dq}) \cdot \psi_{sd} + \omega_5(\lambda_{dq}) \cdot \psi_{sq} + \omega_3(\lambda_{dq}) \cdot \psi_{rq} + u_{rd},
\]
\[
\frac{d\psi_{rq}}{dt} = \omega_4(\lambda_{dq}) \cdot \psi_{sq} - \omega_5(\lambda_{dq}) \cdot \psi_{rd} + \omega_5(\lambda_{dq}) \cdot \psi_{rq}.
\]

Equation (45)

4 Dynamic Simulation

The transient selected for validation of the improved structure of flux linkage state-space model has been the switching-in, for grid-connected operation, of a 3.5 kW cage-rotor induction machine having, in per unit (p.u.) system, the following parameters:

\[R_s = 0.0524 \text{ p.u. and } R_r = 0.0418 \text{ p.u.}, \]
\[L_s = 0.086 \text{ p.u. and } L_r = 0.1175 \text{ p.u.}\]

The energy for machine magnetization is provided from the power grid in this typical situation. In order to investigate the machine dynamic response, the reference frame fixed to rotor \((\omega_{ed} = \omega_r)\) has been considered. The process simulation has been carried out under the initial condition of super-synchronous constant velocity. Therefore, the motion (torque) equation that yields the time-related derivative of the rotor angular velocity, and the linking equation between rotor lead angle and rotor angular velocity [12]-[16] have been added to Eqs. (45).

Notice that the outcomes are all provided in per unit (p.u.) system and that the association of positive signs corresponds to generator operating mode.

4.1 Software Environment

With a view to a fast and highly accurate numerical integration, we had implemented [27] an eight-order Adams-Bashforth scheme (Appendix B), a novelty with respect to available data in literature.

The start-up was carried out by the fourth-order Runge-Kutta method [24]-[26]. The small truncation error of the integrator, coupled with a 10-bytes data representation (of type "extended") [27], ensure high numerical integration accuracy.

At each step of numerical integration, the logical sequence of executing the main blocks [27] of the developed software environment is the following:

\[\text{Employment of the Adams-Bashforth scheme in order to update the state vector of the } d-q \text{ axis winding flux linkages, having in view the developed form encompassing Eqs. (45):}\]

\[\Psi_{n+1} = \Psi_n + h \sum_{k=n-1}^{n} B_k (\Omega_k \Psi_k + U_k)\]

wherein:

\[\Psi = [\psi_{sd}, \psi_{sq}, \psi_{rd}, \psi_{rq}]^T,\]

\[\Omega = \begin{bmatrix}
\omega_1 & \omega_2 & \omega_3 & 0 \\
-\omega_2 & \omega_1 & 0 & \omega_3 \\
\omega_4 & 0 & \omega_5 & \omega_6 \\
0 & \omega_4 & -\omega_5 & \omega_3
\end{bmatrix},\]

\[U = [u_{sd}, u_{sq}, 0, 0]^T;\]
Evaluation of quantity (20) that now decides the present value of magnetizing inductance; Updating the magnetizing inductance value by means of the dependency given by Eq. (36); Computation of winding currents by means of currents-flux linkages correlations (24)-(27).

4.2 Depicting Magnetizing Inductance

Fig.1 depicts the machine magnetizing inductance in the traditional manner, i.e. as non-linear dependency on magnetizing current (17). The representation in Fig.1 corresponds to expression (33) of magnetizing inductance, wherein Frölich model parameters are: \(\alpha = 0.219 \) and \(\beta = 0.322 \).

Taking now into account the values of the machine leakage inductances, constants (37)-(39) result:

\[
\begin{align*}
 c_0 &= 0.22673981578091167,
 c_1 &= -2.2582770130030404,
 c_2 &= 0.73515981735159817.
\end{align*}
\]

Thus, dependency given by Eq. (36) is established, being also plotted in Fig.2.

![Fig.1: Magnetizing inductance of induction machine utilised in simulation, traditionally given as function of magnetizing current (17).](image1)

![Fig.2: Machine magnetizing inductance, depicted as dependency on flux-dependent quantity (20).](image2)

![Fig.3: Coefficients (44), which interfere in improved structure (45), depicted (in p.u.) as dependencies on flux-dependent quantity (20).](image3)

Fig.3 illustrates coefficients (44) as dependencies on quantity (20). Since these coefficients interfere in winding flux linkages derivatives (45), they have to be updated at each step of numerical integration.
From the mathematical point of view, the curves shown in Fig.1 and Fig.2 are equivalent. However, while representation shown in Fig.1 requires, in the traditional manner, the magnetizing current (17) as the independent variable, the representation in Fig.2 provides the magnetizing inductance as function of quantity (20), i.e. as function of the \(d-q\) axis winding flux linkages, which are just state variables.

As a consequence, the representation depicted in Fig.2 is to be regarded as a substitute for the original representation, depicted in Fig.1, which traditionally provides the magnetizing inductance as function of magnetizing current (17), i.e. as function of \(d-q\) axis currents. At the same time, the new quantity (20), only expressed in terms of selected state variables, and now deciding the present value of magnetizing inductance, is now to be regarded as a substitute for magnetizing current (17).

4.3 Simulation Results

For the situation corresponding to the switching-in of the 3.5 kW cage-rotor induction machine with the super-synchronous angular velocity of 1.05 p.u., in Fig.4 and Fig.5 are shown the time-related evolution curves of several characteristic quantities.

The dynamic simulation has been carried out in accordance with the assumption of rated power grid r.m.s. voltage and angular frequency. Thus, in the case study here, the machine stator phase voltages, making up a symmetrical system enforced by the power grid, can be described, in the per unit system, by the following expressions:

\[
\begin{align*}
 u_A &= \sin(\omega_{bus} t + \alpha_A) , \\
 u_B &= \sin(\omega_{bus} t + \alpha_A - 2\pi/3) , \\
 u_C &= \sin(\omega_{bus} t + \alpha_A - 4\pi/3) ; \\
 \omega_{bus} &= 1 \text{ p.u.}
\end{align*}
\]

wherefrom, by means of Park-Gorev transform [29], one obtains the \(d-q\) axis voltages, interfering in state equations (45):

\[
\begin{align*}
 u_{sd} &= \sin(t + \alpha_A + \gamma_r) , \\
 u_{sq} &= -\cos(t + \alpha_A + \gamma_r)
\end{align*}
\] \hspace{1cm} (46)

with \(\gamma_r\) as the rotor lead angle.

For the circumstance corresponding to \(\alpha_A = 0\) in Eqs. (46), Fig.4 depicts the quantities usually used to assess the switching-in transient. The peak values of stator currents through phases A and B occur at the first pulse, while the peak value of the phase C current occurs at the second pulse. More precisely, the peak values of the phase A and phase B currents are 5.6714 p.u. (absolute value) and 4.9811 p.u., and occur at instant 2.82 rad. and 1.8 rad., respectively. In contrast, the first pulse of phase C current occurs at the instant 0.96 rad., however the peak value of 4.0572 p.u. being reached at 4.08 rad. At a later instant, the machine electromagnetic torque, plotted in Fig.4(d), reaches the peak value of 2.0781 p.u.
Fig. 4: The time-related curves of the characteristic quantities at switching-in of the 3.5 kW cage-rotor induction machine.

Fig. 5 displays the time-related curves of quantities in connection with magnetizing circuit. The set of curves in Fig. 5(a)-(c) wholly depicts the behaviour of machine magnetizing circuit. The curves merged in Fig. 5(d) point out the effects of the variation of magnetic stress on the non-linearity extent of state equations (45). Moreover, Fig. 5(c) clearly indicates that the time-related curves of magnetizing current and of flux-dependent quantity (20) take the same shape. Besides, both quantities in Fig. 5(c) increase rapidly up to their peak values, which correspond to an under-rated magnetizing inductance (Fig. 5(b)).

Since the magnetizing curve is provided here by means of a differentiable function of magnetizing current variable, i.e. function (32), all the additional saturation-dependent parameters that interfere in the well-established structure of winding current state-space model (developed by selecting all the d-q axis winding currents as state variables) can be computed [14], [17], [18]. The computation of each additional
cross-coupling

For instance, the well-known saturation-dependent inductance (47) gets the expression:

$$L = L(i_m) = \frac{d\psi_m}{di_m}.$$ (47)

For instance, the well-known saturation-dependent cross-coupling inductance of winding current state-space model, namely:

$$L_{dq} = (L - L_m)(i_{sd} + i_{sq})(i_{sd} + i_{sq})/i_{im}^2$$

is just at hand since, in our case study, the dynamic inductance (47) gets the expression:

$$L = \frac{d}{di_m} \left(\frac{i_m}{\alpha + \beta i_m} \right) = \frac{\alpha}{(\alpha + \beta i_m)^2}.$$

Thus, the winding current state-space model being usable, it has to be emphasised that its employment has led to simulation results identical to those in Fig.4, previously discussed. A zoomed-in picture of results received by application of winding current state-space model is presented in Fig.6.

![Fig.6: Switching-in simulation results, received by application of winding current state-space model.](image)

5 Discussion and Conclusions

Induction machine is now operated in the immediate nearness of the security limits and, thus, is exposed to large variations of magnetic stress. Having this in view, the present paper advances an effecting and accurate procedure of improving the winding flux linkage state-space model of induction machine by including the main flux saturation effects. Tending towards a method of magnetizing inductance on-line updating, we placed the emphasis on the necessity of replacing the magnetizing current, given in terms of \(d-q\) axis currents, by a quantity only expressed in terms of winding flux linkages. In opposition to the research works already stated in literature, the \(d-q\) axis currents in magnetizing current expression have been here replaced by flux-based expressions. Such a manipulation made feasible the formulation of an auxiliary algebraic equation suitable for solving in relation to magnetizing inductance as being here the only saturation-dependent machine parameter. We found that the employment of the well-established Frölich model to describe the machine magnetizing curve causes the auxiliary equation to change to a second order algebraic one. As a result of symbolic solving of this particular equation, the magnetizing inductance comes forth as function of only \(d-q\) axis winding flux linkages, which are just state variables of original structure of winding flux linkage state-space model. Thus, the sole intervention the system analysts have to perform into the original structure of the winding flux linkage state-space model is to substitute the magnetizing inductance, being there constant parameter, by expression (36) in the paper.

The formulation of the auxiliary equation has been carried out without altering the generalised \(d-q\) axis mathematical model of the induction machine. Consequently, although incorporating the main flux saturation effects, the improved structure possesses both the structural simplicity of original flux linkage state-space model and the intrinsic accuracy of the commonly accepted picture of induction machine. Besides, as it solely involves elementary algebraic operations, the evaluation of (algebraic) expression (36) is not very time consuming for on-line updating of magnetizing inductance, so that if the main flux saturation level varies, the improved model keeps track of this variation. Thus, the improved model is prepared for integration into software environments dedicated for power systems on-line assessment.

Furthermore, since the dynamic inductance does not interfere, magnetizing curve fitting can easily be controlled by employing Frölich type model (32) to describe each piece of a piecewise representation. In this case, magnetizing inductance is to be computed also by means of a piecewise representation, with the mention that each piecewise segment has to be described by means of a non-linearity of type (36).

Although of easy accessibility and accurate, the derivation is validated by performing the dynamic simulation of an induction machine switching-in to the effect of grid-connected operating. The detailed case study here indicates that the improved winding flux linkage state-space model leads to the same results as the existing winding current state-space model also applied in conjunction with Frölich type model of anhysteretic magnetizing curve. Moreover, the results received from the model developed in the paper clearly indicate that the time-related curves of magnetizing current and quantity (20) take the same shape. Therefore, we may conclude that, besides the magnetizing current (17), the new quantity (20) also intimates the saturation level of the main flux path.
6 List of Main Symbols

\(u \) instantaneous voltage;
\(i \) instantaneous current;
\(\psi \) instantaneous flux linkage;
\(R \) resistance;
\(L \) inductance;
\(\omega \) angular velocity; coefficient in structure of winding flux linkage state-space model;
\(t \) time variable;
\(\alpha, \beta \) Frölich model parameters;
\(\lambda_{dq} \) quantity connected with \(d-q \) axis winding flux linkages, deciding the present value of magnetizing inductance, i.e. quantity that acts as a substitute for magnetizing current;
\(f \) function pointing a quantity (magnetizing inductance, \(d- \) or \(q \)-axis winding current) connected with and varying with \(d-q \) axis winding flux linkages;
\(g \) function pointing the magnetizing current as quantity connected with and varying with magnetizing inductance;
\(c \) constants of value decided by the leakage inductances and Frölich model parameters;

Sub-/Super-scripts:
\(s, r \) variables and parameters associated with stator and rotor, respectively;
\(m \) variables and parameters associated with main flux path (magnetizing circuit);
\(\sigma \) suffix to denote leakage inductances;
\(d \) suffix to denote \(d \)-axis components;
\(q \) suffix to denote \(q \)-axis components;
\(k \) index;
\(T \) transposed vector.

Appendix A

Replacing the stator \(d-q \) axis currents in generalised expression (9), using correlations (24) and (25), we eventually get the electromagnetic torque expression in terms of only \(d-q \) axis winding flux linkings:

\[
T_{em} = \frac{3}{2} \left(f(\lambda_{dq}) \cdot (\psi_{sq} \psi_{rd} - \psi_{sd} \psi_{rq}) \right).
\]

with the main flux saturation effects to be included straightforwardly, i.e. by means of dependency (36), or by means of a piecewise construct, given by (41). Having in view that (41) is composed only of pieces of the type (36), we may expand:

\[
T_{em} = \frac{3}{2} \left[\left(\sqrt{c_0 + (c_1 + c_2 \lambda_{dq})^2} - c_1 - c_2 \lambda_{dq} \right) \cdot (\psi_{sq} \psi_{rd} - \psi_{sd} \psi_{rq}) \right] \cdot \left(\sqrt{c_0 + (c_1 + c_2 \lambda_{dq})^2} - c_1 - c_2 \lambda_{dq} \right) + L_{sa} L_{ra}.
\]

with the mention that if a piecewise representation (41) is adopted then the appropriate substitutions

\[c_0 \leftarrow c_{0,k}, \quad c_1 \leftarrow c_{1,k}, \quad c_2 \leftarrow c_{2,k} \]

have to be performed in the previous expression. It has to be emphasised that, in per unit (p.u.) system, the expression of machine electromagnetic torque does not include the coefficient \(\frac{3p}{2} \).

Appendix B

For the ODE of the general form:

\[
\frac{d\psi}{dt} = \varphi(t, \psi),
\]

the eight-order Adams-Bashforth scheme [24], [25] gets the specific form:

\[
\psi_{n+1} = \psi_n + h \sum_{k=n-7}^{n} B_k \varphi(t_k, \psi_k)
\]

with \(h \) as the integration stepsize. For \(k \in [n-7, n] \), we have obtained [30]:

\[
B_k = \frac{(-1)^{n-k}}{((n+7)!) \cdot ((n-k)!) \cdot \int_0^1 (\tau + 7) \cdots \tau \cdot d\tau},
\]

that is:

\[
B_{n-7} = \frac{-36799}{120960}, \quad B_{n-6} = \frac{295767}{120960},
\]

\[
B_{n-5} = \frac{1041723}{120960}, \quad B_{n-4} = \frac{2102243}{120960},
\]

\[
B_{n-3} = \frac{2664477}{120960}, \quad B_{n-2} = \frac{2183877}{120960},
\]

\[
B_{n-1} = \frac{-1152169}{120960}, \quad B_n = \frac{434241}{120960}.
\]

The source code of Delphi.NET/FreePascal unit that implements the eight-order integrator is given next. We have designed the unit with the main purpose of maximizing execution speed.

```delphi
UNIT online_integrator;
// fast eight-order Adams-Bashforth integrator
// Delphi source file: online_integrator.pas

INTERFACE

type vector = array[byte] of extended;
var num_of_statevar: byte;

h: extended; // integration stepsize
t: extended; // time variable
tend: extended; // ending value of time variable

statevar: vector;
```

statevar
```delphi
```

ISSN: 1790-5060
401
Issue 5, Volume 3, May 2008
statevarder: vector;
 // vector of state variables derivatives
compute_statevar_derivatives: procedure;
 // yields the state variables derivatives as
 // expressions in terms of state variables
startup: procedure;
 // seven Runge-Kutta steps; vector statevarder7 is
 // not to be computed within this procedure
compute_quanti: procedure;
 // yields the characteristic quantities as
 // functions of state variables statevar[i]
procedure ab8;
 // the eight-order Adams-Bashforth scheme

IMPLEMENTATION
const b0: extended = -36799.0 / 120960.0;
b1: extended = -1041723.0 / 120960.0;
b2: extended = 2102243.0 / 120960.0;
b3: extended = -2664477.0 / 120960.0;
b4: extended = 2183877.0 / 120960.0;
b5: extended = -1152169.0 / 120960.0;
b6: extended = 434241.0 / 120960.0;
// Adams-Bashforth coefficients
var i: byte;
h_b0, h_b1, h_b2, h_b3, h_b4,
h_b5, h_b6, h_b7: extended;
 // Adams-Bashforth coefficients
 // multiplied by the stepsize h
statevarder0, statevarder1, statevarder2,
statevarder3, statevarder4, statevarder5,
statevarder6, statevarder7: vector;
 // memorize state variables derivatives
 // at eight successive integration steps
procedure multiplication;
 // multiplies Adams-Bashforth coefficients
 // by the stepsize h
begin
 h_b0 := h * b0; h_b1 := h * b1; h_b2 := h * b2;
h_b3 := h * b3; h_b4 := h * b4; h_b5 := h * b5;
h_b6 := h * b6; h_b7 := h * b7;
end; // multiplication
procedure onestep_adamsbashforth8;
var m0, m1, m2, m3, m4,
m5, m6, m7: extended;
begin
 // memorize the present values of
 // the state variables derivatives
 // yields the vector statevarder for present
 // values statevar[i] of state variables
for i := 1 to num_of_statevar do
 statevarder7[i] := statevarder[i];
end; // onestep_adamsbashforth8

// update state variables and
// vectors statevarder0 ... statevarder6

References:
 for voltage security enhancement, WSEAS Transactions on Power Systems, Vol.1,
 performance study under different voltage unbalance conditions, WSEAS Transactions

WSEAS TRANSACTIONS on POWER SYSTEMS
Lucian Lupsa-Tataru
ISSN: 1790-5060

402
Issue 5, Volume 3, May 2008