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Abstract: - During the dynamic processes, the induction machine, as component part of interconnected power 
systems, is now exposed to large variations of magnetic stress. To perform an analysis in on-line mode, when 
the time required for the computation is a crucial consideration, these variations have to be taken into account 
by means of a dynamic model that has to combine accuracy with structural simplicity. Various dynamic d-q 
axis models of induction machine, derived with the purpose of synthesis of the vector-controlled system or with 
a view to off-line study, come to be inappropriate for the on-line dynamic security assessment. This is mainly 
due to models complex structure, which incorporates additional saturation-dependent parameters. The approach 
in literature, wherein the concept of dynamic (differential) inductance predominates over, will be avoided by 
reconsidering the winding flux linkage state-space model of induction machine. An auxiliary algebraic equation 
suitable for a solving in relation to magnetizing inductance will be formulated to complete the original structure 
of flux linkage state-space model. It will be shown that the employment of the well-established Frölich model 
to describe the machine magnetizing curve makes feasible the magnetizing inductance expressing in terms of 
only winding flux linkages. Besides, we will advance the procedure of computing the magnetizing inductance 
when a magnetizing curve piecewise representation based on Frölich type model is employed. The derivation 
will be carried out without altering the structural equations of the generalised d-q axis mathematical model of 
induction machine. 
 
Key-Words: - Modelling, Dynamic Security Analysis, Induction Machine, Main Flux Saturation, Flux Linkage 
State-space Model, Frölich Model. 
 
1 Introduction 
With the increasing emphasis placed on economy, 
the induction machine is now operated much closer 
to the security limits [1]-[4]. On the other hand, 
more and more induction generators are used in 
variable-speed drives with fast electromagnetic and 
mechanical transients [5]-[7]. Bus switching for the 
emergency generators feeding urgent loads leads to 
large deviation transients. In this context, to support 
the operating functions, a large number of scenarios 
must be anticipated and analysed in on-line mode. 
Decisions are to be made based on the predicted 
future states of the system [7]-[10]. 

To date, a large number of contingency cases are 
solved in the off-line mode to establish operating 
guidelines, modified by judgement and experience. 
Since the number of contingency cases to be solved 
in energy management systems is usually up to a 
few thousand cases [7], [10], in order to perform the 
analysis in on-line mode, the time required for the 
computation is a crucial consideration. With a view 

to on-line dynamic security assessment, similar to 
most of electric power components, the induction 
machine is usually described by means of a linear, 
reduced-order dynamic model. This is because the 
implementation of linear models of power system 
dynamics on parallel or array processors makes the 
execution of contingency analysis fast enough [10]. 
However, in the present context, during the dynamic 
processes, the main flux path (magnetizing circuit) 
of the induction machine undergoes large variations 
of the saturation level. To formulate highly accurate 
dynamic d-q axis models, these variations have to 
be taken into account by means of the anhysteretic 
magnetizing curve [11]-[19], [21], [22]. Having this 
in view, the attempts to account for main flux path 
saturation using flux linkages as state variables are 
rather rare. One can distinguish the model in [15], 
where the d-q axis components of magnetizing flux 
and rotor current space-phasors [23] are selected as 
state variables. Contribution [16] advances a class of 
six different mixed current-flux state-space models; 
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the "generalised flux space-phasor" is conceptually 
introduced as a linear combination of selected state-
space variables and, later, bound to be aligned with 
the magnetizing current space-phasor. A number of 
models in [16] are considerably simpler than the 
well-established winding current state-space model 
[12], [14], [17], [18] (derived by selecting all d-q 
axis winding currents as state variables) and, thus, 
more convenient for dynamic security assessment. 

Notwithstanding, a survey of more or less recent 
literature devoted to the formulation of induction 
machine dynamics reveals that various methods of 
including the main flux saturation effects give rise 
to complex structures, which incorporate additional 
saturation-dependent parameters. Essentially, this is 
due exactly to the manner of selecting the state 
variables, which has to be in agreement with the aim 
of the investigation, represented hitherto mostly by 
the control system synthesis and off-line dynamic 
simulation. The approach in literature, wherein the 
concept of saturation-dependent dynamic inductance 
predominates over, will be shunned by improving 
the original structure of the flux linkage state-space 
model. The approach in [19] and [20], materialised 
in formulation of algebraic equations, which allow 
the magnetizing current computation when only the 
values of the d-q axis winding flux linkages are 
available, becomes in this case the most suitable 
one. The treatment in this paper further develops the 
idea of main flux saturation modelling given in [19]. 
Unlike [19], wherein the methodology is aimed at 
magnetizing current computation, this contribution 
is redirected at disclosing the induction machine 
magnetizing inductance as a continuous function of 
the state variables of flux linkage state-space model. 

The main stages within the progression of the 
derivation procedure will be the following: 
→ Adoption of the induction machine (winding) 

flux linkage state-space model in the original 
pattern, which includes only state differential 
equations; 

→ Replacement of the d-q axis currents in the 
magnetizing current expression (magnetizing 
current space-phasor modulus) by employing 
appropriate flux-based expressions; 

→ Formulation, in a general form, of an auxiliary 
algebraic equation that allows the magnetizing 
inductance computing when only the values of 
d-q axis winding flux linkages are available; 

→ Employing the well-established Frölich model 
of the anhysteretic magnetizing characteristics 
[21], [22] to describe the magnetizing curve of 
the machine, and carrying out a symbolical 
(analytical) solving of the auxiliary algebraic 
equation. 

2 Starting Point: The Generalised d-q 
Axis Model of Induction Machine 

The generalised d-q axis mathematical model of the 
induction machine encompasses two distinctive sets 
of structural equations: 
(i) the differential equations, i.e. voltage and motion 
equations; (ii) the algebraic correlations between the 
d-q axis winding flux linkages and d-q axis winding 
currents, namely the so-called flux equations, which 
allow the selection of the d-q axis state variables in 
different variants. 

In an arbitrary reference frame, the generalised 
model of a three-phase induction machine is given 
by the following structural equations [12]-[16]: 
(i)  the voltage equations as ordinary differential 
equations: 

,
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wherein u , , i ψ  denote voltages, currents, and flux 
linkages, respectively, while subscripts  and s r  are 
associated with stator and rotor, respectively. The 
reference frame velocity is refω  with respect to the 
stator. With respect to the rotor, the reference frame 
velocity is rref ωω − , where rω  represents the rotor 
angular velocity. Notice that the derivation that is to 
be performed does not require restrictions regarding 
the reference frame velocity refω ; 
(ii)  the flux equations as flux linkages-currents 
algebraic correlations: 

,)( rsmsσsrmsss dddddd iiLiLiLiL ++=+=ψ  (5)
,)( rsmsσsrmsss qqqqqq iiLiLiLiL ++=+=ψ  (6)
,)( rsmrσrsmrrr dddddd iiLiLiLiL ++=+=ψ  (7)

,)( rsmrσrsmrrr qqqqqq iiLiLiLiL ++=+=ψ  (8)
wherein  represents the magnetizing inductance, 
while index  denotes the stator and rotor leakage 
inductances. 

mL
σ

Notice that rotor quantities are referred to stator. 
The machine electromagnetic torque is given by 

)(
2

3
ssssem dqqd iipT ψψ −=  (9)

wherein p  represents the number of pole pairs. The 
motion (torque) equation [12]-[16] is irrelevant here 
and is hence omitted in presentation. 
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3 Mathematical Modelling 
 
 
3.1 The Original Structure of Winding 

Flux Linkage State-space Model 
Acknowledged formally as being the oldest one, the 
winding flux linkage state-space model of induction 
machine is derived by selecting all d-q axis winding 
flux linkages as state variables. The model results 
considerably simpler than the ones with currents 
interfering as state variables. This is because of the 
kindly disposed structure of the generalised voltage 
equations (1)-(4), which incorporate explicitly the 
winding flux linkages time-related derivatives. To 
develop the winding flux linkage state-space model, 
it is necessary to remove the d-q axis currents from 
the voltage equations. By solving the system of Eqs. 
(5)-(8) in relation to d-q axis currents, the following 
currents-flux linkages correlations result: 
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Thus, the crucial point in the course of derivation of 
the flux linkage state-space model is typified by the 
reformulation of the voltage equations. Both d-axis 
currents in Eqs. (1), (3), and both q-axis currents in 
Eqs. (2), (4) can easily be replaced by the flux-based 
expressions (10), (12) and (11), (13), respectively. If 
one assumes constant machine parameters then the 
processed voltage equations will provide the flux 
linkages time-related derivatives just in terms of 
state variables, i.e. d-q axis winding flux linkages 
and rotor angular velocity: 
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wherein the flux linkages coefficients are: 
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Consequently, with constant parameters, the system 
analysts deal with a system of (ordinary) differential 
equations, which is exactly the structure needful for 
benefiting by a numerical integration routine. 
 
 
3.2 The Auxiliary Equation 
We assume that leakage flux saturation and main 
flux saturation can be treated independently. Since 
only saturation of the main flux path is discussed, 
leakage inductances are constants. In contrast, the 
main flux saturation is to be taken into account by 
means of the machine magnetizing curve, described 
by the following non-linearity [11]-[18]: 

mmmmmm )()( iiLi ⋅==ψψ  (16)
wherein the magnetizing flux linkage as well as the 
magnetizing inductance change to functions of the 
magnetizing current variable, that is the magnetizing 
current space-phasor modulus [23]: 

rsmm iiii +==  

.)()( 2
rs

2
rs

2
m

2
m qqddqd iiiiii +++=+=

(17)

As already pointed, to develop the flux linkage 
state-space model, we have to replace the d-q axis 
currents in voltage equations (1)-(4) by appropriate 
expressions in terms of the d-q axis flux linkages, 
which, in our case, are state variables. However, 
having in view that the magnetizing inductance is, 
for the time being, a dependency upon magnetizing 
current (17), id est: 

,)()( mmmmmm iiiLL ψ==  (18)
the absolute mathematical formulation of the flux 
linkage state-space model cannot be accomplished. 
If one attempts to include the main flux saturation 
effects by the traditional manner, i.e. by introducing 
the magnetizing inductance as a non-linear function 
of magnetizing current, then the structure of flux 
linkage state-space model becomes useless for the 
analyst-programmers. This is due to the fact that 
magnetizing current (17), which decides the value of 
magnetizing inductance in the set of flux-based 
expressions (10)-(13), is given just in terms of d-q 
axis currents, which have to be replaced. With such 
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an attempt of accounting for main flux saturation, 
the time-related derivatives of winding flux linkages 
would be expressed not only in terms of winding 
flux linkages but also in terms of d-q axis currents, 
which are not state variables. Obviously, in this case 
of hypothetical horizon, any procedure of numerical 
integration would be of no avail. Thus, in order to 
have recourse to currents-flux linkages correlations 
(10)-(13), we have to look for a method that allows 
the magnetizing inductance computation when only 
the values of the d-q axis winding flux linkages are 
available. Therefor, we proceed to replace the d-q 
axis currents in the magnetizing current expression 
(17) by considering just the correlations (10)-(13). 
The following relationships successively result: 
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with dqλ  (in Weber) as flux-dependent quantity: 
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With regard to main flux saturation modelling, it 

has to be emphasised the generality of relationship 
(19), which is of a form independent on the way of 
representing the magnetizing inductance in relation 
to magnetizing current variable. On the other hand, 
for a specific representation (18) of the magnetizing 
inductance, we take for granted the feasibleness of 
drawing out the magnetizing current as quantity in 
connection with and varying with the magnetizing 
inductance (variable). Thus, we additionally have: 

.)( mm Lgi =  (21)
The generalised relationship (19) coupled with a 
specific dependency (21) bring forth an auxiliary 
algebraic equation, its unknown being exactly the 
magnetizing inductance: 
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Supposing that a function of type (21), varying 
with magnetizing inductance, makes feasible the 
symbolical (analytical) solving of auxiliary equation 
(22), the magnetizing inductance results as function 
of the flux-dependent quantity (20), i.e. as function 
of the d-q axis flux linkages, which are just state 
variables. To emphasise this, we simply set down: 

.)(m dqfL λ=  (23)

With a dependency of type (23), the inclusion of the 
effects of the main flux path saturation remains just 
a straightforward task-work. Indeed, with the main 
flux saturation effects taken into consideration by 
means of a dependency of the type (23), the d-q axis 
currents (10)-(13) are preserved as functions of d-q 
axis winding flux linkages: 
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As a consequence, the replacement of the d-q axis 
currents in the generalised voltage equations (1)-(4) 
by employing the evolved correlations (24)-(27) will 
preserve the flux linkages derivatives as expressions 
in terms of state variables of the original winding 
flux linkage state-space model: 
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Thus, with the effects of the main flux saturation 
incorporated by means of a non-linearity of the type 
(23), any derived structure that obeys the evolved 
form (28)-(31) can lightly be exploited by benefiting 
by a numerical integration routine [24]-[26]. 
 
 
3.3 Frölich Model of Magnetizing Curve 
With a view to off-line analysis, to approximate the 
magnetizing curve of induction machine, it is in use 
to call a dedicated curve fitting routine, which is 
geared toward returning an elaborate differentiable 
function. However, the evaluation of the returned 
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expression could become very time consuming if 
the analysis has to be carried out in on-line mode. 
Although the computer hardware and programming 
languages are momentous for maximizing execution 
speed, they do not represent industrial arts we can 
change on a day-to-day basis. In comparison, what 
we do implement can be changed at any time, and 
can drastically affect how long the software blocks 
will require to execute. In this context, with a view 
to the on-line assessment, the power system analysts 
should avoid the using of transcendental functions 
(e.g. logarithm, trigonometric, hyperbolic functions) 
for controlling the magnetizing curve fitting. Since 
the transcendental functions are implemented as a 
series of additions, subtractions and multiplications, 
their expressions require at the least ten times longer 
to evaluate than a single multiplication. Besides, 
most programming languages only provide a few 
built-in transcendental functions and expect the 
analyst-programmers to implement the others by 
means of several extra calculations. 

With the purpose of describing the anhysteretic 
magnetizing characteristics, it is generally accepted 
that a good mutual concession between accuracy 
and the simplicity of the expressing is attained by 
employing the Frölich model [21], [22] that is given 
by means of the following rational function: 

.0,0;)()( mmmm >>+= βαβαψ iii  (32)
One perceives that for low values of magnetizing 
current variable, the magnetizing inductance: 

1
mmm )()( −+= iiL βα  (33)

approaches to the unsaturated value that is inversely 
proportional to parameter α  of the Frölich model, 
while at high values of magnetizing current variable, 
the magnetizing flux approaches to saturation: 
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From the specific representation (33) of magnetizing 
inductance, we straightforwardly draw out: 
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3.4 Magnetizing Inductance Expressing 

in Terms of State Variables 
With magnetizing current (34), connected with and 
varying with magnetizing inductance, the auxiliary 
equation (22) becomes: 
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Thus, in this case, the auxiliary equation comes into 
sight as a second order algebraic one: 
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with b as the flux-dependent coefficient: 
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brought before in the following algebraic form: 
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depend solely on leakage inductances and Frölich 
model parameters and, consequently, designate a set 
of constants. Relation (36) yields the magnetizing 
inductance as function of flux-dependent quantity 
(20), i.e. in terms of winding flux linkages, which 
are just state variables. Eqs. (36) and (20) disclose: 
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In this context, non-linearity (36) is to be used as a 
replacement for non-linearity (33) that traditionally 
yields the magnetizing inductance as function of 
magnetizing current (17), i.e. in terms of d-q axis 
currents. Thus, with magnetizing inductance (36), 
the d-q axis currents and the time-related derivatives 
of d-q axis winding flux linkages get their evolved 
expressions in terms of only state variables, i.e. the 
expressions (24)-(27) and (28)-(31), respectively. 

Besides the fact that the dynamic (differential) 
inductance does not interfere, the encompassing of 
two parameters within the Frölich model (32) makes 
allowable a convenient method for the anhysteretic 
magnetizing curve fitting. More precisely, one can 
simply employ the Frölich type model to construct a 
continuous piecewise representation made up of  
constitutive segments: 
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where each pair of parameters kα  and kβ  relies on 
the sampled points ),( m,m, kki ψ  and ),( 1m,1m, ++ kki ψ  
as follows: 
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simply agreed to a linear interpolation, and further: 
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It is quite obvious that if one employs a piecewise 
approximation of type (40) instead of the Frölich 
model (32), the accuracy of the magnetizing curve 
representation can lightly be controlled whatever the 
specified limit. If (40) is being considered then the 
magnetizing inductance will result also as piecewise 
approximation but in relation to the flux-dependent 
quantity (20), with the mention that each piecewise 
segment will be accordingly described by means of 
a non-linearity of the type (36). Thus: 
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wherein, for : ]1,0[ −∈ nk
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and, in accordance to Eq. (19), for : ],0[ nk∈
.)( m,σrσs

1
σrσsm,, kkkdq iLLLL ⋅++= −ψλ  

The results in this subsection suggest that structure 
(28)-(31) can be applied in conjunction with Frölich 
model, as well as in conjunction with a piecewise 
construct based on the Frölich type model (32). 
 
 
3.5 The Improved Structure of Winding 

Flux Linkage State-space Model 
The derivation in subsection 3.2 shows the course to 
receiving a winding flux linkage state-space model 
with the main flux saturation effects incorporated by 
means of a dependency of the type (23). The state 
equations (28)-(31) are advanced in the most general 
form, remaining valid for any dependency described 

by Eq. (23). In the previous subsection, dependency 
(23) is made available by employing Frölich model 
of magnetizing curve as well as by employment of a 
magnetizing curve piecewise representation based 
on the Frölich type model. This section deals with 
the improved structure of the winding flux linkage 
state-space model in the developed form. This is to 
be obtained by gathering the results in subsections 
3.2 and 3.4. The electromagnetic torque (9) can be 
expressed in terms of winding flux linkages using 
correlations (24), (25) to replace the stator d-q axis 
currents (Appendix A). Hence, the motion (toque) 
equation will be omitted in presentation. 

Eqs. (28)-(31) can be expanded by employing the 
correlations (24)-(27) in which dependency (23) can 
now be given by Eq. (36) or Eq. (41). One obtains: 
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wherein it is possible to have: 

dqdqdq cccccf λλλ 21
2

210 )()( −−++=  

if the dependency given by (36) is implemented, or 

dqkkdqkkkdq cccccf λλλ ,2,1
2

,2,1,0 )()( −−++=  

if one implements a piecewise construct of type (41) 
and the present value of the flux-dependent quantity 
(20) is detected within the subinterval of extremities 

kdq,λ  and 1, +kdqλ . In comparison with the situation 
of implementing dependency (36), implementation 
of a piecewise representation given by (41) expects 
the analyst-programmer to provide a way to change 
the program flow in order to select the appropriate 
piecewise segment. This plainly requires a loop that 
always executes once, e.g. a "repeat…until" looping 
construct [27], [28] to detect the subinterval wherein 
the present value of quantity (20) is contained. 
 Closer inspection of derived structure (42) shows 
that the flux linkages coefficients, which in original 
structure (14) have constant values, come now to be 
saturation-dependent but by means of quantity (20) 
only, in accordance with Eq. (36) or Eq. (41): 
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Having in view that (41) is composed only of pieces 
of the type (36), we may expand: 

⎜
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mentioning, however, that if a piecewise construct 
(41) is adopted then the appropriate substitutions 

kkk cccccc ,22,11,00 ,, ←←←  
have to be made. Emphasising the new flux linkages 
coefficients, one can straightforwardly find out that 
the improved structure (42) can be put forward in a 
form similar to the original one, given by Eqs. (14): 
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ψ
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(45) 

4 Dynamic Simulation 
The transient selected for validation of the improved 
structure of flux linkage state-space model has been 
the switching-in, for grid-connected operation, of a 
3.5 kW cage-rotor induction machine having, in per 
unit (p.u.) system, the following parameters: 

p.u. 0.0524s =R  and , p.u. 0.0418r =R
p.u. 0.086σs =L  and  p.u. 0.1175σr =L

The energy for machine magnetization is provided 
from the power grid in this typical situation. In order 
to investigate the machine dynamic response, the 
reference frame fixed to rotor )( rref ωω ≡  has been 
considered. The process simulation has been carried 
out under the initial condition of super-synchronous 
constant velocity. Therefore, the motion (torque) 
equation that yields the time-related derivative of 
the rotor angular velocity, and the linking equation 
between rotor lead angle and rotor angular velocity 
[12]-[16] have been added to Eqs. (45). 

Notice that the outcomes are all provided in per 
unit (p.u.) system and that the association of positive 
signs corresponds to generator operating mode. 
 
 
4.1 Software Environment 
With a view to a fast and highly accurate numerical 
integration, we had implemented [27] an eight-order 
Adams-Bashforth scheme (Appendix B), a novelty 
with respect to available data in literature. 

The start-up was carried out by the fourth-order 
Runge-Kutta method [24]-[26]. The small truncation 
error of the integrator, coupled with a 10-bytes data 
representation (of type "extended") [27], ensure high 
numerical integration accuracy. 

At each step of numerical integration, the logical 
sequence of executing the main blocks [27] of the 
developed software environment is the following: 
→ Employment of the Adams-Bashforth scheme 

in order to update the state vector of the d-q 
axis winding flux linkages, having in view the 
developed form encompassing Eqs. (45): 
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→ Evaluation of quantity (20) that now decides 
the present value of magnetizing inductance; 

→ Updating the magnetizing inductance value by 
means of the dependency given by Eq. (36); 

→ Computation of winding currents by means of 
currents-flux linkages correlations (24)-(27). 

 
 
4.2 Depicting Magnetizing Inductance 
Fig.1 depicts the machine magnetizing inductance in 
the traditional manner, i.e. as non-linear dependency 
on magnetizing current (17). The representation in 
Fig.1 corresponds to expression (33) of magnetizing 
inductance, wherein Frölich model parameters are: 

219.0=α  and 322.0=β . 
Taking now into account the values of the machine 
leakage inductances, constants (37)-(39) result: 

735159817.0.73515981
30030404,2.25827701-

578091167,0.22673981

2

1

0

=
=
=

c
c
c

 

Thus, dependency given by Eq. (36) is established, 
being also plotted in Fig.2. 
 

 
Fig.1: Magnetizing inductance of induction machine 
utilised in simulation, traditionally given as function 
of magnetizing current (17). 
 

 
Fig.2: Machine magnetizing inductance, depicted as 
dependency on flux-dependent quantity (20). 

Fig.3 illustrates coefficients (44) as dependencies 
on quantity (20). Since these coefficients interfere in 
winding flux linkages derivatives (45), they have to 
be updated at each step of numerical integration. 
 

 

 

 

 
Fig.3: Coefficients (44), which interfere in improved 
structure (45), depicted (in p.u.) as dependencies on 
flux-dependent quantity (20). 
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From the mathematical point of view, the curves 
shown in Fig.1 and Fig.2 are equivalent. However, 
while representation shown in Fig.1 requires, in the 
traditional manner, the magnetizing current (17) as 
the independent variable, the representation in Fig.2 
provides the magnetizing inductance as function of 
quantity (20), i.e. as function of the d-q axis winding 
flux linkages, which are just state variables. 

As a consequence, the representation depicted in 
Fig.2 is to be regarded as a substitute for the original 
representation, depicted in Fig.1, which traditionally 
provides the magnetizing inductance as function of 
magnetizing current (17), i.e. as function of d-q axis 
currents. At the same time, the new quantity (20), 
only expressed in terms of selected state variables, 
and now deciding the present value of magnetizing 
inductance, is now to be regarded as a substitute for 
magnetizing current (17). 
 
 
4.3 Simulation Results 
For the situation corresponding to the switching-in 
of the 3.5 kW cage-rotor induction machine with the 
super-synchronous angular velocity of 1.05 p.u., in 
Fig.4 and Fig.5 are shown the time-related evolution 
curves of several characteristic quantities. 

The dynamic simulation has been carried out in 
accordance with the assumption of rated power grid 
r.m.s. voltage and angular frequency. Thus, in the 
case study here, the machine stator phase voltages, 
making up a symmetrical system enforced by the 
power grid, can be described, in the per unit system, 
by the following expressions: 

,)(sin AbusA αω += tu  
,)3π2(sin AbusB −+= αω tu  

p.u. 1;)3π4(sin busAbusC ≡−+= ωαω tu  
wherefrom, by means of Park-Gorev transform [29], 
one obtains the d-q axis voltages, interfering in state 
equations (45): 

)(cos
,)(sin

rAs

rAs

γα
γα
++−=

++=
tu

tu

q

d  (46)

with rγ  as the rotor lead angle. 
For the circumstance corresponding to 0A =α  in 

Eqs. (46), Fig.4 depicts the quantities usually used 
to assess the switching-in transient. The peak values 
of stator currents through phases A and B occur at 
the first pulse, while the peak value of the phase C 
current occurs at the second pulse. More precisely, 
the peak values of the phase A and phase B currents 
are 5.6714 p.u. (absolute value) and 4.9811 p.u., and 
occur at instant 2.82 rad. and 1.8 rad., respectively. 
In contrast, the first pulse of phase C current occurs 

at the instant 0.96 rad., however the peak value of 
4.0572 p.u. being reached at 4.08 rad. At a later 
instant, the machine electromagnetic torque, plotted 
in Fig.4(d), reaches the peak value of 2.0781 p.u. 
 

 
Fig.4(a) Stator phase A current 

 

 
Fig.4(b) Stator phase B current 

 

 
Fig.4(c) Stator phase C current 

 

 
Fig.4(d) Electromagnetic torque 
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Fig.4(e) Rotor angular velocity 

 
Fig.4: The time-related curves of the characteristic 
quantities at switching-in of the 3.5 kW cage-rotor 
induction machine. 
 
Fig.5 displays the time-related curves of quantities 
in connection with magnetizing circuit. The set of 
curves in Fig.5(a)-(c) wholly depicts the behaviour 
of machine magnetizing circuit. The curves merged 
in Fig.5(d) point out the effects of the variation of 
magnetic stress on the non-linearity extent of state 
equations (45). Moreover, Fig.5(c) clearly indicates 
that the time-related curves of magnetizing current 
and of flux-dependent quantity (20) take the same 
shape. Besides, both quantities in Fig.5(c) increase 
rapidly up to their peak values, which correspond to 
an under-rated magnetizing inductance (Fig.5(b)). 
 

 
Fig.5(a) Flux-dependent quantity (20) 

 

 
Fig.5(b) Magnetizing inductance 

 
Fig.5(c) Flux-dependent quantity (20) 

together with magnetizing current 
 

 

 

 

 
Fig.5(d) Coefficients (44) in improved structure (45) 
 
Fig.5: Evolution of the quantities in connection with 
magnetizing circuit, occurring at switching-in of the 
3.5 kW cage-rotor induction machine. 
 

Since the magnetizing curve is provided here by 
means of a differentiable function of magnetizing 
current variable, i.e. function (32), all the additional 
saturation-dependent parameters that interfere in the 
well-established structure of winding current state-
space model (developed by selecting all the d-q axis 
winding currents as state variables) can be computed 
[14], [17], [18]. The computation of each additional 
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parameter in the compass of the structure of winding 
current state-space model asks for the present value 
of dynamic (differential) inductance: 

.
d
d)(

m

m
m i

iLL ψ
==  (47)

For instance, the well-known saturation-dependent 
crosscoupling inductance of winding current state-
space model, namely: 

2
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is just at hand since, in our case study, the dynamic 
inductance (47) gets the expression: 
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Thus, the winding current state-space model being 
usable, it has to be emphasised that its employment 
has led to simulation results identical to those in 
Fig.4, previously discussed. A zoomed-in picture of 
results received by application of winding current 
state-space model is presented in Fig.6. 
 

 
Fig.6: Switching-in simulation results, received by 
application of winding current state-space model. 
 
 
5 Discussion and Conclusions 
Induction machine is now operated in the immediate 
nearness of the security limits and, thus, is exposed 
to large variations of magnetic stress. Having this in 
view, the present paper advances an effecting and 
accurate procedure of improving the winding flux 
linkage state-space model of induction machine by 
including the main flux saturation effects. Tending 
towards a method of magnetizing inductance on-line 
updating, we placed the emphasis on the necessity 
of replacing the magnetizing current, given in terms 
of d-q axis currents, by a quantity only expressed in 
terms of winding flux linkages. In opposition to the 
research works already stated in literature, the d-q 
axis currents in magnetizing current expression have 
been here replaced by flux-based expressions. Such 
a manipulation made feasible the formulation of an 

auxiliary algebraic equation suitable for solving in 
relation to magnetizing inductance as being here the 
only saturation-dependent machine parameter. We 
found that the employment of the well-established 
Frölich model to describe the machine magnetizing 
curve causes the auxiliary equation to change to a 
second order algebraic one. As a result of symbolic 
solving of this particular equation, the magnetizing 
inductance comes forth as function of only d-q axis 
winding flux linkages, which are just state variables 
of original structure of winding flux linkage state-
space model. Thus, the sole intervention the system 
analysts have to perform into the original structure 
of the winding flux linkage state-space model is to 
substitute the magnetizing inductance, being there 
constant parameter, by expression (36) in the paper. 

The formulation of the auxiliary equation has 
been carried out without altering the generalised d-q 
axis mathematical model of the induction machine. 
Consequently, although incorporating the main flux 
saturation effects, the improved structure possesses 
both the structural simplicity of original flux linkage 
state-space model and the intrinsic accuracy of the 
commonly accepted picture of induction machine. 
Besides, as it solely involves elementary algebraic 
operations, the evaluation of (algebraic) expression 
(36) is not very time consuming for on-line updating 
of magnetizing inductance, so that if the main flux 
saturation level varies, the improved model keeps 
track of this variation. Thus, the improved model is 
prepared for integration into software environments 
dedicated for power systems on-line assessment. 

Furthermore, since the dynamic inductance does 
not interfere, magnetizing curve fitting can easily be 
controlled by employing Frölich type model (32) to 
describe each piece of a piecewise representation. In 
this case, magnetizing inductance is to be computed 
also by means of a piecewise representation, with 
the mention that each piecewise segment has to be 
described by means of a non-linearity of type (36). 

Although of easy accessibility and accurate, the 
derivation is validated by performing the dynamic 
simulation of an induction machine switching-in to 
the effect of grid-connected operating. The detailed 
case study here indicates that the improved winding 
flux linkage state-space model leads to the same 
results as the existing winding current state-space 
model also applied in conjunction with Frölich type 
model of anhysteretic magnetizing curve. Moreover, 
the results received from the model developed in the 
paper clearly indicate that the time-related curves of 
magnetizing current and quantity (20) take the same 
shape. Therefore, we may conclude that, besides the 
magnetizing current (17), the new quantity (20) also 
intimates the saturation level of the main flux path. 
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6 List of Main Symbols 
u  instantaneous voltage; 
i  instantaneous current; 
ψ  instantaneous flux linkage; 
R  resistance; 
L  inductance; 
ω  angular velocity; coefficient in structure of 

winding flux linkage state-space model; 
t  time variable; 

βα ,  Frölich model parameters; 

dqλ  quantity connected with d-q axis winding 
flux linkages, deciding the present value of 
magnetizing inductance, i.e. quantity that 
acts as a substitute for magnetizing current; 

f  function pointing a quantity (magnetizing 
inductance, d- or q-axis winding current) 
connected with and varying with d-q axis 
winding flux linkages; 

g  function pointing the magnetizing current 
as quantity connected with and varying 
with magnetizing inductance; 

c  constants of value decided by the leakage 
inductances and Frölich model parameters; 

Sub-/Super-scripts: 
rs,  variables and parameters associated with 

stator and rotor, respectively; 
m  variables and parameters associated with 

main flux path (magnetizing circuit); 
σ  suffix to denote leakage inductances; 
d  suffix to denote d-axis components; 
q  suffix to denote q-axis components; 
k  index; 
T transposed vector. 
 
 
Appendix A 
Replacing the stator d-q axis currents in generalised 
expression (9), using correlations (24) and (25), we 
eventually get the electromagnetic torque expression 
in terms of only d-q axis winding flux linkages: 
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dq
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with the main flux saturation effects to be included 
straightforwardly, i.e. by means of dependency (36), 
or by means of a piecewise construct, given by (41). 
Having in view that (41) is composed only of pieces 
of the type (36), we may expand: 
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⎛ −−++⋅ LLccccc dqdq λλ  

with the mention that if a piecewise representation 
(41) is adopted then the appropriate substitutions 

kkk cccccc ,22,11,00 ,, ←←←  
have to be performed in the previous expression. It 
has to be emphasised that, in per unit (p.u.) system, 
the expression of machine electromagnetic torque 

does not include the coefficient 
2

3p . 

 
 
Appendix B 
For the ODE of the general form: 

,),(
d
d ψϕψ t

t
=  

the eight-order Adams-Bashforth scheme [24], [25] 
gets the specific form: 
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with  as the integration stepsize. For h ],7[ nnk −∈ , 
we have obtained [30]: 
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that is: 
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36799
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The source code of Delphi.NET/FreePascal unit that 
implements the eight-order integrator is given next. 
We have designed the unit with the main purpose of 
maximizing execution speed. 
 
UNIT online_integrator; 

// fast eight-order Adams-Bashforth integrator 
// Delphi source file: online_integrator.pas 

 
INTERFACE 
type vector = array[byte] of extended; 
var num_of_statevar: byte; 

// number of state variables 
h: extended;  // integration stepsize 
t: extended;  // time variable 
tend: extended; 

// ending value of time variable 
statevar: vector; 

// state variables vector 
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statevarder: vector; 
// vector of state variables derivatives 

compute_statevar_derivatives: procedure; 
// yields the state variables derivatives as 
// expressions in terms of state variables 

startup: procedure; 
// seven Runge-Kutta steps; vector statevarder7 is 
// not to be computed within this procedure 

compute_quanti: procedure; 
// yields the characteristic quantities as 
// functions of state variables statevar[i] 

procedure ab8; 
// the eight-order Adams-Bashforth scheme 

 
IMPLEMENTATION 
const b0: extended = - 36799.0 / 120960.0; 

b1: extended = 295767.0 / 120960.0; 
b2: extended = - 1041723.0 / 120960.0; 
b3: extended = 2102243.0 / 120960.0; 
b4: extended = - 2664477.0 / 120960.0; 
b5: extended = 2183877.0 / 120960.0; 
b6: extended = - 1152169.0 / 120960.0; 
b7: extended = 434241.0 / 120960.0; 

// Adams-Bashforth coefficients 
var i: byte; 

h_b0, h_b1, h_b2, h_b3, h_b4, 
h_b5, h_b6, h_b7: extended; 

// Adams-Bashforth coefficients 
// multiplied by the stepsize h 

statevarder0, statevarder1, statevarder2, 
statevarder3, statevarder4, statevarder5, 
statevarder6, statevarder7: vector; 

// memorize state variables derivatives 
// at eight successive integration steps 

 
procedure multiplication; 

// multiplies Adams-Bashforth coefficients 
// by the stepsize h 

begin 
h_b0 := h * b0; h_b1 := h * b1; h_b2 := h * b2; 
h_b3 := h * b3; h_b4 := h * b4; h_b5 := h * b5; 
h_b6 := h * b6; h_b7 := h * b7 

end; // multiplication 
 
procedure onestep_adamsbashforth8; 
var m0, m1, m2, m3, m4, 

m5, m6, m7: extended; 
begin 

// memorize the present values of 
// the state variables derivatives 
compute_statevar_derivatives; 

// yields the vector statevarder for present 
// values statevar[i] of state variables 

for i := 1 to num_of_statevar do 
statevarder7[i] := statevarder[i]; 

// update state variables and 
// vectors statevarder0 ... statevarder6 
t := t + h;  // updates time variable 
for i := 1 to num_of_statevar do begin 

m0 := statevarder0[i]; m1 := statevarder1[i]; 
m2 := statevarder2[i]; m3 := statevarder3[i]; 
m4 := statevarder4[i]; m5 := statevarder5[i]; 
m6 := statevarder6[i]; m7 := statevarder7[i]; 
// Adams-Bashforth scheme to update 
// the state variable of index i 
statevar[i] := statevar[i] 

+ h_b0 * m0 + h_b1 * m1 + h_b2 * m2 
+ h_b3 * m3 + h_b4 * m4 + h_b5 * m5 
+ h_b6 * m6 + h_b7 * m7; 

// update statevarder0[i] ... statevarder6[i] 
statevarder0[i] := m1; 

// statevarder0 is lost 
statevarder1[i] := m2; statevarder2[i] := m3; 
statevarder3[i] := m4; statevarder4[i] := m5; 
statevarder5[i] := m6; statevarder6[i] := m7 

// transfer 
end; 
compute_quanti 

end; // onestep_adamsbashforth8 
 
procedure ab8; 
begin 

multiplication; 
startup; 
repeat 

onestep_adamsbashforth8 
until t >= tend; 

end; // ab8 
 
end. // UNIT online_integrator 
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