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Abstract: - This paper presents an alternative approach to evaluate voltage stability indices in electric power systems 
by using Monte Carlo simulation (MCS). Fast voltage stability index (FVSI), line stability index (Lmn) and line 
stability factor (LQP) are used as indicators to determine the capability of reactive power loading at a given bus 
position. Conventionally, loading the test bus with pure reactive power is not realistic because power system load 
changes randomly at every load bus in both real and reactive powers. In this paper, MCS was introduced to simulate 
load increment of all load buses with appropriate random numbers and their probability. From this approach, all the 
indices mentioned above can be calculated repeatedly with a large number of trials. To evaluate its use, a small five-
bus, and the standard IEEE 30- and 57-bus test systems were employed for demonstration. As a result, comparing 
among these indices, the weakest bus of the test system can be identified with some degree of confidence. 
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1   Introduction 
In recent years, major power system failures (system 
blackout) have occurred more frequently around the 
world [1]. Some of these failures have been caused by 
voltage instability problems. These circumstances lead, 
the voltage stability issues, to an important and urgent 
concern for electric utilities. Solving this problem is not 
the right thing to be proceeded because an power system 
under the voltage-instability event is typically 
unpredictable. It is difficult or impossible to correct this 
problem when it occurred. Prevention of voltage 
instability is probably moderate one. Many researchers 
in power system voltage stability devote their works to 
identify the weakest bus of the system. The weakest bus 
is considered as the bus that is likely to be the first bus 
of the system facing voltage collapsed. The prevention 
of voltage instability relies on locating the system 
weakest bus. Some efficient actions can be employed to 
put an operating point of the system far from the voltage 
collapsing point with an acceptable margin. Static 
voltage stability can be determined by using 
continuation power flow calculations [2]. Many static 
voltage evaluation methods have been proposed, for 
example, the minimum singularity value method, mode 
analysis method and sensitivity method [1,3,4]. The 
major disadvantages of the continuation power flow-
based methods are computing efforts that make 
difficulty of implementation in on-line applications and 
experiences of solution divergence due to the numerical 
instability in power flow calculations. Moreover, 
inconsistency between off-line model and real-life 

situation leads incapability of identifying the weakest 
bus that causes the system voltage collapse  
     In this paper, modification based on MCS for 
evaluation of voltage stability indices (e.g. FVSI, Lmn 
and LQP) to identify weak buses in electric power 
systems has been proposed. Statistical load models with 
appropriate random numbers and their probability are 
used to predict electrical demand growth of all load 
buses. With their positive mean and variance of the 
statistical load models, the power system is driven to 
increase its total loading with some considerable 
momentum. By performing the system load increment 
with a moderate time span and computing all the voltage 
stability indices, weak buses of the system can be 
observed. This simulation can typically involve over 
10,000 trials to pretend a real-world power system 
operation. The results from this simulation can be used 
to evaluate the weakest bus with a certain degree of 
confidence. 
     In this paper, Section 2 gives a brief explanation of 
voltage stability indices used in this paper as mention 
earlier. It notes that the full Newton-Raphson power 
flow calculation [5] was applied to solve for system 
voltage solutions. It is well-known and widely-accepted 
as the most powerful tool for this purpose. Therefore, 
the method of Newton Raphson power flow calculation 
was not included here. Monte Carlo simulation was 
reviewed and summary of its use to evaluate weak buses 
of the system were reviewed in Section 3. For test, a 
small five-bus, the standard IEEE 30- and 57-bus power 
systems were employed. To simulate the demand growth 
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of the system, appropriate statistical load models were 
assigned to all load buses. Simulation results were 
illustrated in Section 4. Section 5 provided adequate 
conclusion remark. 
 
 
2   Voltage Stability Indices 
Voltage stability indices can be evaluated by using a 
two-machine coupling model. There exist many useful 
indices from literature. In this paper, only FVSI, Lmn and 
LQP are reviewed as follows.  
 
 
2.1 FVSI (fast voltage stability index) [6-9] 
Calculation of current flowing through the line in Fig. 1 
gives primary expression of this index. 

 

1 0V ∠
2V δ∠
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R + jX

1 1 1, ,P Q S 2 2 2, ,P Q S

 
Fig. 1 Simple two-bus power system for FVSI 

 
Given that bus 1 is the sending-end bus and bus 2 is the 
receiving-end bus. FVSI can be expressed in (1). 
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Where Z is the line impedance 

 X is the line reactance  
 Q2 is the reactive power at bus 2  
 V1 is the voltage magnitude at bus 1  
 

FVSI is used to indicate a stable operating region of the 
load. According to this index, the system becomes 
unstable if FVSI is equal to or greater than unity [6].   
 
 
2.2 Lmn (line stability index) [6,9,10]   
Calculation of current flowing through the line in Fig. 1 
gives primary expression of this index. 
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Fig. 2 Simple two-bus power system for Lmn 

 
Consider Fig. 2. Using relation between voltage and 
current of the transmission line, line stability index 

(Lmn) can be clearly defined as follows.  
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 (2) 

 
Where x is the line reactance 
     Qr is reactive power at the receiving-end  
 Vs is voltage at the sending-end  
 θ is the phase angle of the line impedance  
 δ  is the voltage phase difference of bus s and r  

 
Lmn is used to indicate a stable operating region of the 
load. According to this index, the system becomes 
unstable if Lmn is equal to or greater than unity. 
 
 
2.3 LQP (line stability factor) [6,11]   
LQP uses the same concept of FVSI and Lmn. It is 
derived from power transfer equations describing the 
system in Fig. 3. LQP can be expressed in (3). 

 

iV jV

I
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i i iP ,Q , S j j jP ,Q , S

 
Fig. 3 Simple two-bus power system for LQP 
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Where Pi is the real power flow from bus i 
 X is the line reactance  
 Qj is the reactive power flow to bus j  
 Vi is the voltage magnitude at bus i 

 
The system is stable as long as LQP is less than 1.0 [6]. 
 
 
2.4 Procedure to compute voltage stability indices   
All three voltage stability indices can be obtained in 
each power flow calculation loop driven by the 
incremental reactive power loading at a particular load 
bus. By increasing only the reactive power of this bus 
until the indices greater than unity, the maximum 
reactive power loading ability can be calculated. The 
following step-by-step procedure describes the 
computation algorithm for voltage stability indices. 
      
START: 
Step 0 
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Fig. 6 FVSI results 

 

 
Fig. 7 Lmn results 

 

 
Fig. 8 LQP results 

 
Again, Figs 11-13 illustrated the change of each index 
during the random load incremental. This set of figures 

was set the time counter as the x axis.  Although the 
shape of curves was different, the conclusion drawn 
from these graph was the same as described earlier. 
 
Table 4 Summary of simulation results  

Load at bus 5 FVSI Lmn LQP 
Base load 0.61 0.61 0.61 

Increasing load 3.97 3.96 4.12 
% increasing 550.82 549.18 575.41 
% confidence 95.7 55.4 95.0 

 
Table 5 Summary of the conventional index evaluation  

Load bus Maximum loading (p.u.) Rank 
2 9.826 4 
3 4.789 2 
4 3.664 1 
5 8.558 3 

 
 

 
Fig. 9 Voltage magnitude of bus 5 versus load power  

 

 
Fig. 10 Voltage magnitude of bus 5 versus time counter  
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Fig. 11 FVSI results 

 

 
Fig. 12 Lmn results 

 

 
Fig. 13 LQP results 

 
 
 

4.2 Standard IEEE 30-bus test system 
In this test case, complexity of interconnection of 30 
buses required spaces for explanation. Briefly, the test 
system was given in Fig. 14. This test case used the 
same procedure in order to evaluate voltage stability 
indices of the system. By increasing MVA loads at 
every single bus within a certain time step, system 
voltage profiles were characterized. Based on an 
appropriately statistical load model for each load bus, 
Monte Carlo simulation for voltage stability indices 
were carried out. Statistical models of all load buses 
used in this test case was Gaussian distribution in which 
10% of each base-case power was set as its mean and 
0.9 was a typical value of its variance. The test started 
from the base case. Random load increasing was 
repeatedly performed with a uniform time step until the 
system voltage collapses. This operation was defined as 
one trial. To achieve realistic results, the test must be 
performed as many as possible. In this work, the test 
was conducted with 30,000 trials to ensure a normal 
distribution of the output variable outcome. Table 6 
showed a summary of simulation results for this test 
case. It noted that the total number of system buses was 
thirty, therefore it was inconvenient to present results of 
all buses or all lines as given in the first test case. Only 
two first ranks were demonstrated.         
 

 
Fig. 14 Standard IEEE 30-bus test system 

 
Table 6 Simulation results for a total of 30,000 trials  

Line FVSI Lmn LQP 
2 3582 6699 10336 
5 15124 13808 8180 
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In contrast, 30,000 trials did not give the outscore 
outcome. According to FVSI and Lmn indices line 
number 5 was the most critical line and resulted in bus 
4 as the weakest bus. With LQP, the most critical line 
moved to line number 2 that pointed other bus as the 
weakest bus. However, FVSI and Lmn had higher degree 
of confidences (80.85% and 67.33% respectively) 
whereas LQP dropped to 55.82%. Figs 15-17 illustrated 
the change of each index during the random load 
incremental. From these figures, maximum power load 
ability can be evaluated although the weakest bus 
among them were not the same.  
     Figs 18-20 illustrated the change of each index 
during the random load incremental. This set of figures 
was set the time counter as the x axis.  Although the 
shape of curves was different, the conclusion drawn 
from these graph was the same as described earlier. 
 

Fig. 15 FVSI results 
 

 
Fig. 16 Lmn results 

 

 
Fig. 17 LQP results 

 

 
Fig. 18 FVSI results 

 

 
Fig. 19 Lmn results 
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Fig. 20 LQP results 

 
4.3 Standard IEEE 57-bus test system 
The test system was given in Fig. 21. This test case 
used the same procedure in order to evaluate voltage 
stability indices of the system. By increasing MVA 
loads at every single bus within a certain time step, 
system voltage profiles were characterized. Based on an 
appropriately statistical load model for each load bus, 
Monte Carlo simulation for voltage stability indices 
were carried out. Statistical models of all load buses 
used in this test case was Gaussian distribution in which 
10% of each base-case power was set as its mean and 
0.9 was a typical value of its variance. The test started 
from the base case. Random load increasing was 
repeatedly performed with a uniform time step until the 
system voltage collapses. This operation was defined as 
one trial. To achieve realistic results, the test must be 
performed as many as possible. In this work, the test 
was conducted with 30,000 trials to ensure a normal 
distribution of the output variable outcome. Table 7 
showed a summary of simulation results for this test 
case. It noted that the total number of system buses was 
thirty, therefore it was inconvenient to present results of 
all buses or all lines. Only two first ranks were given. 
 

 
Fig. 21 Standard IEEE 57-bus test system 

Table 7 Simulation results for a total of 30,000 trials 
Line FVSI Lmn LQP 
16 691 35 219
73 23083 28007 21867

 
Table 8 Summary of simulation results 

Load at bus 5 FVSI Lmn LQP 
Base load (p.u.) 0.8805 0.8805 0.8805 
Increasing load 2.205 1.950 1.395 
% increasing 150.43 121.47 58.43 
% confidence 97.09% 99.88% 99.01% 

 
As can be seen in Tables 7 and 8, by using the FVSI, 
the weakest bus was bus 2 with 97.09% of confidence. 
The LQP also told the similar result with 99.88% of 
confidence. By using the Lmn, the degree of confidence 
was as high as 99.01%. Figs 22-24 illustrated the 
change of each index during the random load 
incremental. From these figures, maximum power load 
ability can be evaluated 
 

 
Fig. 22 FVSI results 

 

 
Fig. 23 Lmn results 
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Fig. 24 LQP results 

 
     Figs 25-27 illustrated the change of each index 
during the random load incremental. This set of figures 
was set the time counter as the x axis.  Although the 
shape of curves was different, the conclusion drawn 
from these graph was the same as described earlier. 
 

 
Fig. 25 FVSI results 

 

 
Fig. 26 Lmn results 

 
Fig. 27 LQP results 

 
Apart from the MCS, the test power systems were also 
challenged with the conventional approach to determine 
the voltage stability indices. In this test category, only 
reactive power was assumed to be increased, bus-by-
bus, until voltage collapsed. By measuring the 
maximum loading ability, all load buses can be ranked 
according to this value.  
 
 
5   Conclusion 
This paper presents a random-based approach to 
calculate voltage stability indices in electric power 
systems by using fast voltage stability index (FVSI), line 
stability index (Lmn) and line stability factor (LQP) as 
indicators to identify the point of voltage collapses at a 
given bus position. The Monte Carlo simulation was 
employed to situate realistic growth of electrical demand 
at all load buses instead of just increasing the reactive 
power at a single load bus. To evaluate this proposed 
method, a five-bus, the standard IEEE 30- and 57-bus 
test systems were emploed. As a result, the voltage 
stability margins according to each index were 
calculated and, therefore, the weakest bus of the system 
was identified. Obviously, when using the old fashion 
way to evaluate the weakest bus of the system by 
increasing only the reactive powers, the result gave the 
different bus number as the weakest bus. The old fashion 
method relied on the decouple assumption that the 
reactive power strongly affects the voltage change. In 
fact, there may be some slight interaction made by the 
real power that cannot be neglected.        
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