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Abstract: - This paper demonstrates the superior effectiveness of utilizing the artificial search technique to 
ascertain parameters optimization of power system stabilizer (PSS), contemplating proportional-integral-
derivative controller (PID) for a multi-machine power system, compared to the customary Ziegler-Nichols 
method. As the PID - PSS parameters are also tuned by the Ziegler-Nichols method at the same operating point. 
Its effectiveness is presented using four machines power system. Acquire settings of PID - PSS which meliorate 
damping frequency of system are optimized by minimizing an objective function using Particle Swarm 
Optimization, an artificial search technique. The results convey eminent efficiency of the proposed PSO based 
PID controller. 
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1 Introduction 

Recently, electricity demands are increasingly in 
every electric utility around the world. Modern 
power system control requires a continuous balance 
between electrical generation and a varying load 
demand, while maintaining system frequency and 
voltage levels. The use of high performance 
excitation systems is essential for maintaining 
steady state and transient stability of modern 
synchronous generators and provides fast control of 
the terminal voltage. 

   It is well known that each generator in an 
interconnected power system is supported by two 
major control loops. These loops are:  Automatic 
Generation Control (AGC) which is responsible for 
power balancing, and Automatic Voltage Regulator 
(AVR) which regulates the terminal voltage by 
controlling the excitation. Since the development of 
interconnection of electric power systems, there 
have been spontaneous system oscillations at low 
frequencies in the order of several cycles per 
seconds. These oscillations may cause operating 
constraints depending on their magnitude and 
location in system, and are classified as local mode 
oscillations that oscillate in the range 0.8 to 3 Hz, 
inter-machine mode oscillations that oscillate in the 
range 0.3 to 1 Hz , and inter-area mode oscillations 

that oscillate in the range 0.1 to 0.7 Hz. These slow 
oscillations could continue to grow causing system 
separation. It is well known that these oscillations 
are due to lack of sufficient damping of the slow 
mechanical modes of the systems. The desired 
additional damping is provided by a supplementary 
control loop known as Power System Stabilizer 
(PSS) [1].   

   A PSS stabilizer provides a supplementary 
control signal to the AVR loop for excitation 
control. This signal improves the transient behavior 
of the generator and provides a damping for the 
slow mode oscillations. This results in an 
enhancement of transient stability limit. The most 
commonly used PSS, referred to as conventional 
PSS(CPSS), is a fixed parameter analog type device 
with lead-lag compensation, wash out, and amplifier 
gains, which are limited and may lose effective 
damping robustness for overall operation. The 
conventional PSS is widely used in power systems, 
contributing to enhancing power system dynamic 
stability. 

   A PSS uses several local measurements and, 
perhaps, remote telemetries measurements to 
augment Stability by supplementary excitation 
control. A PSS has input signals from speed 
deviation (∆ω), accelerating power (∆Pa), actual 
generator speed deviation and reactive power (∆Pg, 
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∆Qg) or current (∆Ig). 
   Up to now, artificial intelligent techniques have 

been adopted to many applications in electrical 
power system[2–9]. Also, optimal tuning of PSSs 
have been considered study by many researcher 
using artificial intelligent techniques [10–13]. 

      In this paper, the Particle Swarm 
Optimization (PSO) algorithm is practical to solve 
the optimal PID tuning for PSS. A description of 
PSO is presented in Section 2. Then a description of 
power system for this study is given in Section 3. 
The optimal PID tuning parameters using PSO for 
PSS is shown in Section 4. Finally, a conclusion is 
specified in Section 5. 
 

2 Particle Swarm Optimization 

Particle swarm optimization (PSO) is one of the 
evolutionary computation techniques. PSO was first 
introduced in year 1995 [14].  It was developed for 
simulation the behavior of social systems such as 
fish schooling and birds flocking. The basic 
assumption behind the PSO algorithm is, birds find 
food by flocking and not individually. This leads to 
the assumption that information is owned jointly in 
flocking. The PSO technique requires less 
computation time and less memory because of the 
simplicity inherent in the above systems. The 
particle swarm optimization (PSO) has been proved 
to be a powerful competitor in the field of 
optimization. It has been recently applied to several 
power system problems and has been shown to 
perform well [7,15]. 

   PSO algorithm is basically developed for two-
dimension solution space. The position of each 
individual is represented by xy axis position and its 
velocity is expressed by ux in x  direction and uy in y 
direction.  Modification of the individual position is 
realized by the velocity and position information of 
system. PSO algorithm for N dimensional problem 
formulation based on the above concept can be 
described as follows.  

   For N dimensional space, let p be the particle 
position and u  is the velocity in a search space. Let 
i be a particle in the total population. Position of the 
i th particle can be represented as pi = (pi1, pi2, …, pin). 
The best previous position of the i th particle is stored 
and represented as pbest,i = (pbest,i1, pbest,i2, …, pbest,in). 
The entire bestp  are evaluated by using a fitness 

function, which differs for different problems. The 
best particle among all pbest is represented as gbest 
The velocity of the i th particle is represented as ui = 

(ui1, ui2, …, uin).  
   The modified velocity of each particle can be 

calculated using the information, (i) the current 
velocity (ii) the distance between the current 
position and pbest and (iii) the distance between the 
current position and gbest. This can be formulated as 
an equation. 
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 The use of linearly decreasing inertia weight 

factor w has provided improved performance in all 
the applications. Its value is decreased linearly from 
about 0.9 to 0.4 during a run. Suitable selection of 
the inertia weight provides a balance between global 
and local exploration and exploitation, and results in 
fewer iterations on average to find a sufficiently 
optimal solution. Its value is set according to the 
following equation: 
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where maxw  and minw  are both random numbers 

called initial weight and final weight respectively. 

maxiter is the maximum iteration number. iter is the 

current iteration number. 
   In Equation (1), the first term indicates the 

current velocity of the particle, second term 
represents the cognitive part of PSO where the 
particle changes its velocity based on its own 
thinking and memory. The third term represents the 
social part of PSO where the particle changes its 
velocity based on the social-psychological 
adaptation of knowledge. More detail of PSO 
algorithm describe in [7].      
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3 Power System Consideration Study   

    The power system considered in this paper is a 
four machines 10-bus power system as shown in 
Fig. 1[16].  Machine data and excitation system data 

are shown in Table 1 and Table 2, respectively. 
Fully details of this system can be found in [16]. 
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Fig. 1   Four-machine 10-bus power system 

 
 

Table 1   Machine Data 

Variables Gen. # 1 Gen. # 2 Gen. # 3 Gen. # 4 

X1  (pu) 0.022 0.022 0.022 0.022 

Ra  (pu) 0.00028 0.00028 0.00028 0.00028 

Xd  (pu) 0.2 0.2 0.2 0.2 

'
dX (pu) 0.033 0.033 0.0033 0.0033 

0
'
dT (sec) 8.0 8.0 8.0 8.0 

Xq   (pu) 0.19 0.19 0.19 0.19 

'
qX  (pu) 0.061 0.061 0.061 0.061 

0
'
qT (sec) 0.4 0.4 0.4 0.4 

H    (sec) 54.0 54.0 63.0 63.0 

D    (pu) 0 0 0 0 

 
Table 2  Excitation System Data 

Variables Gen. # 1 Gen. # 2 Gen. # 3 Gen. # 4 

KA  (pu) 200 200 200 200 

TA  (sec) 0.02 0.02 0.02 0.02 

 
All components in excitation systems are static.  

Static rectifiers supply the excitation current directly 
to the field of the generator. Due to the very high 
exciter ceiling voltage of some static excitation 

systems, additional field current limiter circuits may 
be employed to protect the generator rotor and 
exciter. The IEEE type ST1A model is adopted in 
this paper [17].  List of parameters for ST1A model 
and PSS with PID compensator, as shown in Fig. 2, 
are illustrated in Table 3 and Table 4. 

Generally, traditional method of tuning doesn’t 
guarantee optimal parameters and in most cases the 
tuned parameters needs improvement through trial 
and error. Although in this paper, the PID controller 
parameters were obtained using PSO technique. For 
comparison, however, the PID controller parameters 
were also obtained using the conventional Ziegler-
Nichols tuning technique [18]. 

      Table 3   List of ST1A model parameters 

200=AK  02.0=AT s 0.1=BT s 0.1=CT s 

0=FK  0.1=FT s 04.0=CK  54.4=LRK  

5=LRI  0.7, =MaxRV  4.6, −=MinRV  

Table 4   List of PID – PSS model parameters 

200=SK  02.0=RT s 0.1=WT s 5700 =a  

351 =a  1.0, =MaxSV  1.0, −=MinSV  
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(a) Voltage Regulator and Exciter Block Diagram 

 

(b)  PID – PSS Block Diagram 

Fig. 2   Block Diagram of Consideration Power system 

 

4 Simulation Results and Discussions  

It is recognized that the highest magnitude of 
power system disturbance which disturbing power 
system stability caused by three phase fault.  

 For the purposed optimization technique, the 
objective function is investigated for each individual 
by simulating the example power system, 
considering a severe disturbance. For objective 
function calculation, a three phase short-circuit fault 
in one of the 3 parallel transmission lines is 
considered. Three phase fault occurred at bus 9. 
Circuit breaker at bus 9 disconnected L1 for fault 
clearing time at 0.1 s. 

 The fitness function came from time-domain 
simulation of power system. Using each set of 
controllers’ parameters, the time domain simulation 
is performed and the fitness value is determined. 
Table 5 shows the specified parameters for the PSO 
algorithm. Table 6 shows the optimal PID 
parameters for PSS tuning obtained by using the 
conventional Ziegler-Nichols tuning technique (ZN 
– PID).  Table 7 shows the optimal PID parameters 
for PSS tuning obtained by using the PSO algorithm 
(PSO – PID).  

      

 

Table 5   Parameters used for PSO algorithm 

PSO parameters Value/Type 

Swarm size : 50 

No. of Generations : 200 

c1, c2 : 1.7 , 1.7 

wstart, wend : 0.9,  0.4 

Table 6   Optimal ZN – PID Parameters  

Parameters Gen. #1 Gen. #2 Gen. #3 Gen. #4 
Td 11.2 11.2 11.2 11.2 
Tf 2.8 2.8 2.8 2.8 
Ti 2.8 2.8 2.8 2.8 
Kp 2.975 2.975 2.975 2.975 

Table 7   Optimal PSO – PID Parameters  

Parameters Gen. #1 Gen. #2 Gen. #3 Gen. 
#4 

Td 2.3974 6.1594 9.4851 5.9602 
Tf 4.2360 9.9121 6.1551 7.1733 
Ti 7.6341 4.8217 0.1254 1.8560 
Kp 6.3511 3.6074 9.6508 9.0330 

    
 
 

1
A

A

K

sT+
Σ 

fd ,minE  

fd ,maxE  

fdE  

tV

−
  - 

SV

−−−−
 

refV +    

1

1 RsT+ 1
W

W

sT

sT+
 PID  0

2
1 0

a

s a s a+ +
 sK  

s,minV  

s,maxV  

sV

 

Washout Circuit 
Filter 

Gain 

Limiter 

Compensator 

∆ω  

WSEAS TRANSACTIONS on POWER SYSTEMS
Anant Oonsivilai and  
Boonruang Marungsri

ISSN: 1790-5060 468 Issue 6, Volume 3, June 2008



 In order to review significance and robustness of 
proposed technique, simulation studies are carried 
out for three phases fault disturbances and fault 
clearing sequence. The performance of proposed 
controller under transient and dynamic condition is 
verified using the optimal PID tuning parameters.  

 
  The results shown in Fig. 3, Fig. 4, Fig. 5 and 

Fig. 6, by comparing with and without PSS, 
obviously unstable of the power system via the 
excitation voltage, slip speed and rotor angle, could 
be notified in the both cases.  Although with PSS, 
the power system can not reach the stable point.  

 
 In Fig. 7, Fig. 8, Fig. 9  and Fig. 10, obviously 

the effectiveness of the purpose technique can be 
seen when comparing with the conventional 

technique. All generators with PSS having ZN - PID 
tuning can not reach the steady state condition. Only 
the two generators close to fault bus reach the 
steady state while the other generators still have no 
stable.  In case of PSO-PID tuning parameters, all 
generators of the power system with PSS having 
PSO-PID tuning reached the steady state condition 
faster than that in case of ZN – PID tuning.   
 

From four transient responses of the 
consideration multi-machine power system, the 
effectiveness of PSS with optimal PID parameter 
tuning using particle swarm optimization is validate. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Without PSS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) With PSS 

Fig. 3   Excitation Voltage Response to a Three Phase Short Circuit Fault at bus 9 
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(a) Without PSS 
 

 
 
 
 
 
 
 
 
 
 
 

(b) With PSS 

Fig. 4   Slip Speed Response to a Three Phase Short Circuit Fault at bus 9 
 

 
 

 
 
 
 
 
 

 
 
 

(a) Without PSS 
 
 
 
 
 
 
 
 
 
 
 

(b) With PSS 

Fig. 5   Rotor Angle Response to a Three Phase Short Circuit Fault at bus 9 
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(a)  Without PSS 

 
 
 
 
 
 
 
 
 
 
 

 

(b) With PSS 

Fig. 6   Rotor Angle Response to a Three Phase Short Circuit Fault at bus 9 
 

 
 
 
 
 
 

 

 

 

 

(a) With ZN – PID - PSS 
 
 
 
 
 
 
 
 
 
 
 
 

(b) With PSO – PID - PSS 
Fig. 7  Excitation Voltage Response to a Three Phase Short Circuit Fault at bus 9 With PID Tuning 
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(a) With ZN – PID - PSS 

 
 
 
 
 
 
 
 
 
 
 

(b) With PSO – PID - PSS 

Fig. 8 Slip Speed Response to a Three Phase Short Circuit Fault at bus 9 With PID Tuning 

 

 

 

 

 

 

 

(a) With ZN – PID - PSS 
 
 
 

 
 
 
 
 
 

(b) With PSO – PID - PSS 

Fig. 9  Rotor Angle Response to a Three Phase Short Circuit Fault at bus 9 With PID Tuning 
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(a)  With ZN – PID - PSS 

 
 
 
 
 
 
 
 
 

 
(b)   With PSO – PID - PSS 

Fig. 10  Electrical Torque Response to a Three Phase Short Circuit Fault at bus 9 With PID Tuning 

 
 
5  Conclusion 

Stability enhancement of multi-machine power 
system by power system stabilizer is presented in 
this paper. Particle swarm optimization technique is 
implemented to search for optimal PID controller 
parameters. The success of proposed optimal PID 
tuning technique, multi–machine power system 
stability improvement, is established by a weakly 
connected example power system subjected to three 
phases fault disturbances. The dynamic performance 
of proposed optimal PID tuning technique for PSS 
was compared with a conventionally designed 
optimal PID tuning for PSS to demonstrate its 
advantage as well. In conclusion, the effectiveness 
of proposed optimal PSO – PID tuning for PSS and 
its ability to afford proficient damping of multi-
machine power system transient and dynamic 
disturbance is definite. 
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