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Abstract: - In the present paper the analysis based on state equations method is applied to the transient study of 
interrupted single- and three-phase networks. The proposed approach is independent on the mathematical 
model adopted to represent the electric arc. 
In the three-phase case, the Clarke transformation allows us to perform the energy analysis of the three-phase 
electric arc during any balanced or unbalanced transient conditions. The Clarke energy balance related to the 
imaginary power concept permits to design the breaker under study without the use of empirical coefficients 
normally adopted in literature. 
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1   Introduction 
The analysis based on the use of state-equations and 
graph theory is the standard approach to the network 
dynamic analysis [1]. In fact, it allows a direct 
formulation of the network mathematical model, not 
only in case of linear systems, but also in case of 
non-linear ones, i.e. magnetic circuits, electronic 
devices and interrupted networks.  

Clarke transformation [2] allows the application, 
in instantaneous form, of the symmetrical 
components algebra and the sequence networks to 
study the three-phase symmetrical network. Also, 
under the energy point of view, it brings to a 
formulation of the energy balance suitable for 
generic waveform and related to the imaginary 
power concept [3]. 

Moreover, the circuital analysis of electric arc − 
that, in the past, was very simplified because of the 
very modest available computation power [4] − 
requires some corrective factors that have to be 
applied to the obtained results [5]. The more useful 
methods [6] are based on numeric simulations 
where the arc models are advanced respect to the 
Mayr [7] and Cassie [8] classic models. Assigning 
the network structure and choosing some basic 
parameters, the solution are deduced with a 
procedure, useful from an applicative point of view, 
that does not allow to analyze the system and the 
topological aspects of the interruption phenomena 
[9]-[12], [16], [17]. 

On the other hands, the three-phase interrupted 
networks are studied, by a circuital and energy point 
of view, with the method of equivalent single-phase 
circuit. As a matter of fact, in this way it is ignored 
the fact that the electric arc imposed an 
instantaneous unbalanced condition that invalidates 
the use of this type of algorithm. This influences 
also the energy balance: in fact, the obtained results 
are normally corrected with empirical coefficients 
deduced by experimental methods. 

In the present paper an innovative approach to 
the transient study of interrupted single- and three-
phase networks is proposed. It is based on state-
equations and it is independent on the mathematical 
model adopted to represent the electric arc in the 
breaker. Concerning the three-phase networks, it is 
also proposed an energy analysis based on the use of 
Clarke transformation: the obtained results do not 
need the application of corrective factors. 

The paper is organized as follows. In Section 2 
the systemic, topological and energy approach to the 
single-phase electric arc are recalled. In Section 3 a 
new equivalent three-phase bipole, the “Clarke 
breaker”, is introduced and used for obtain more 
information from the energy balance, neglecting the 
use of empirical coefficients. Finally, in Section 4, 
some numeric examples show the validity of the 
proposed approach. 
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2   Single-Phase Case 
 
 
2.1 Arc empirical models 
Even if some evolutes models of electric arc have 
been proposed in the present paper, as an example, 
the classic model of Mayr [7] and Cassie [8] are 
adopted. This assumption, justified by the 
independence of the proposed approach on the 
considered arc model, permits to referring to well-
known used models. The further extension of the 
developed approach to other types of arc models is 
always possible. 

Generally, the electric arc is described by one of 
the following equivalent representation: 

( ) ( )1 1p , , par ar ar ar ar arr F v i g G v i= = ,  (1) 

where rar, gar, var and iar are, respectively, the 
resistance, the conductance, the voltage and the 
current of the arc. F1 and G1 are two functionals and 
p=d/dt is the Heaviside operator. 

The Cassie’s model postulates that the arc has a 
constant current density and that the cross-sectional 
area varied directly with the current [8]. It also has a 
constant resistivity and stored energy per unit 
volume. In this case, the (1) becomes:  
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where q  is the arc time constant, coinciding to the 
energy stored per unit volume and Var0 is the 
constant steady-state arc voltage. 

As anyway it results ar ar arv r i= ⋅ , it is possible 
to rewrite the (2) as: 
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In Mayr’s model, the heat loss is assumed to 
occur from the periphery of the arc only, and the 
conductance of the arc varied with the energy stored 
in it [7]. So, in this case, the (1) becomes: 
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where Par0 is the steady-state constant power loss. 

2.2 The system interpretation 
The electric arc is formally considered as any other 
one port of the network, a priori non-linear and 
time-varying, of which is known the input-output 
relation. During the opening phases, the analysis 
adopt as electrical state variables the flux ψ or the 
current i for the inductors and the charge q or the 
voltage v for capacitors. In addition, a suitable state 
variable rar that represents the component circuit 
breaker now seen as a dynamic element is added up 
(see Fig. 1). 

The arc black box models bring to the 
introduction of the following sets of equations: 

( )1p ( ) ( ), ( )
( ) ( ) ( )

ar ar ar

ar ar ar

r t F r t i t
v t r t i t
⎧ =
⎨

= ⋅⎩  (6) 
where the functional F1 depends on the used arc 
models. 
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( )pq t
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Fig. 1. The systemic interpretation of a single-phase 
network in which an electric arc is present. 
 
 
2.3  The topological approach 
In case of non-degenerating network, the dynamic 
one port breaker can be  insert on the tree or co-tree 
branches: its position does not depend on any 
preliminary rule and it is carried out time by time 
according to the topology of the network in which is 
located. This comes from the algebraic 
characteristic of the voltage-current relation express 
by the second of (6), that matches formally the 
dynamic component arc to any other resistance of 
the network. 

In Fig. 2a, as an example, the elementary case of 
a series RLC circuit during the opening process is 
presented. In this case, the breaker is positioned on 
the tree. 
 The following state model is correspondingly 
deduced: 
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 The network in Fig. 2b, of the fifth order, is 
instead referred to an electrical line during the 
opening stage. In such a case, given the presence of 
the two capacitors on the tree, the breaker is 
necessarily located on the co-tree. Its model is the 
following: 
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Fig. 2. Interrupted single-phase network. Case in which 
the electric arc must be put on the tree (a) and on the co-
tree (b). 
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Fig. 3. Considered single-phase example. 
 
 
2.4 The energy aspect 
The numerical integration of the complete network 
model brings to the descriptive port quantities 
{var(t),iar(t)} associated to the breaker. In such 
conditions, naming ti and tf, respectively, the starting 
and the ending instants of the interrupting process, 
the maximum arc current Iar,M, related to the 
requested interruption power, and the recovery 
voltage var,r(t), from which depends the potential 
subsequent restart of a new arc [5], can be deduced 
as follows: 

( ){ }
( )

ar,M i

,

=max t

( )
ar f

ar r ar i

I i t t

v t v t t t

⎧ t≤ ∀ ≤⎪
⎨

= ∀ ≥⎪⎩
 (9) 

With reference to the electrical energy of the 
interruption phenomenon, the Joule integral is then 
defined [5]: 

( ) ( )2 2 2
, ,

ft

ar ar RMS f i ar RMS
ti

i d I t t Iξ ξ T⋅ = ⋅ − =∫ ⋅  (10) 

linked to the rms arc current Iar,RMS and to the total 
time T=ti−tf  of the interrupting process. 

The electric work elaborated by the breaker can 
be adopted as a measure of the thermal stress of the 
component: 

( ) ( ) ( )
f

i

t

ar ar ar f i ar
t

L v t i t dt P t t P T= ⋅ = ⋅ − =∫ ⋅  (11) 

where Par is the average power elaborated by the 
arc. 

In Fig. 3 is reported, as an example, a simple 
single-phase network in presence of a breaker, 
represented by the Cassie model [8]. This network, 
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which numerical parameters are deduced by [14], 
can be represented by the following state equations:  

3 2

2
0

1
0

p 1
1

1p

sh ar

ar arsh ar

arL L

ar ar
ar ar

ar

R r
v v eR r C C

ii iR
L

L L
r ir r
Vθ

⎧ +⎡ ⎤− ⎡ ⎤⎪ ⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎪ ⎢ ⎥= ⋅ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎪ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎪ − − ⎣ ⎦⎨ ⎢ ⎥⎣ ⎦⎪
⎪ ⎛ ⎞⋅

= −⎪ ⎜ ⎟
⎪ ⎝ ⎠⎩

⋅
 (12) 

The results reported in Fig. 4 are obtained 
integrating these equations by numeric techniques. 
In particular, Fig. 4a shows the arc voltage and 
current, Fig. 4b shows the instantaneous and 
average arc power, and Table 1 summarized some 
obtained results. All these data are necessary for the 
breaker design. 

The obtained results are in agreement with those 
presented in [14]. 
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Fig. 4. (a) Arc voltage and current and (b) instantaneous 
power for the breaker in the single-phase network of Fig. 
2. 
 
 
 
 

Table 1. Numeric Results Obtained for the Example in 
Fig. 3. 

Quantities Values 
RMS value of arc voltage (Var,RMS) 555.61 V 

RMS value of current voltage (Iar,RMS) 1.7355 A 
Arc active power (Par) 82.150 W 
Sizing arc power (Sar) 963.13 VA 

Electric work (L) 0.8215 mJ 
 
 
3   Three-Phase Case 
 
 
3.1 Preliminary considerations 
The considerations presented in Section 2 are valid 
in three-phase case too: the most important case 
from the applications point of view. 

In the case of three-phase networks with electric 
arc (Fig. 5a), an approach based on the 
instantaneous symmetrical components cannot be 
used. This comes from the fact that, even although 
the three distinct arcs may be considered (for 
construction symmetry) with the same constitutive 
relation rar,k=F2(var,k,iar,k) (with k=a,b,c), as a matter 
of fact the non-linearity of the functional F2 
introduces in the three arc resistances a condition of 
instantaneous asymmetry of the following type: 

( )
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, 2 , ,

, 2 , ,
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for which is not possible to define the equivalent 
single-phase sequence circuits. In fact, expressing 
the relations between arc voltages and currents as 
(see Fig. 5b): 
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this implies that is not possible a reformulation of 
(14) in the following terms: 
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related to {α,β,o} variables, that has to be write as: 
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The dynamical analysis, not anymore single-
phase as in the case of symmetric networks, must 
then be exclusively referred to the arc three-phase 
port variables. The application of the Clarke 
transformation to these quantities permits, as it is 
shown in the following, to take into account some 
fundamental aspects of the energetic balance of the 
three-phase arc. 
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Fig. 5. Genesis of the “Clarke breaker”. 
 
 
3.2 The “Clarke breaker” 
Once integrated the model of the interrupted three-
phase network, the matrix functions [iarc,abc(t)] and 
[varc,abc(t)] are obtained as port variables of the three-
phase arc (see Fig. 5b). Eq. (9) can be read in the 
following three-phase form: 

{ }, , , , , , , i

, , , ,

max , , t
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 (17) 
where: 

{ }, , ,( ) max ( ) , ,ar k M ar ki t i t k a b= c=  (18) 

The transformation to the Clarke variables 
{α,β,o} can be achieved only after the integration 
process and in an exclusive energy range. 

The three arc currents [ia,b,c] can be matched to 
the corresponding three-phase Clarke arc current [2] 
(see Appendix A): 
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Also to the three arc voltages [varc,abc(t)] corresponds 
the three-phase Clarke voltage: 
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As can be observed, even although it is a 
resistive one-port, the Clarke arc voltage results to 
be instantaneously shifted of the angle 

( ) ( ) ( )i vt tϑ ϑ ϕ− =  respect to the Clarke arc current. 
Even although it is not related to any process of 
energy storage, it is consequence of the 
instantaneous arc asymmetry introduced by the non-
linearity.  

The Clarke approach confirms anyhow its 
conceptual and practical importance under the 
energy aspect. Once associated to the three-phase 
arc functions [iarc,abc(t)] and [varc,abc(t)], the 
corresponding Clarke quantities (19), (20), it is 
possible to introduce a new circuital component, the 
“Clarke breaker” (see Fig.5d). Basing on the 
previous considerations, this component can be 
exclusively used for the external effects studies. 
 
 
3.3 The energy aspect 
Confirming the formalism introduced in Section 2 
for the single-phase case, the “Clarke breaker” 
allows to derive the three-phase Joule integral as: 

( ) ( ) ( )* 2
, , , ,

2
, ,

f

i

t

ar ar ar RMS f i
t
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i i d I t t

I T

αβ αβ αβ

αβ

ξ ξ ξ⋅ ⋅ = ⋅ − =

= ⋅

∫  (21) 

where the three-phase rms value  of the arc 
current is considered (see Appendix A). 

, ,ar RMSI αβ

Concerning on the energy aspects of three-phase 
arc, the “Clarke breaker” model allows the 
calculation of the following instantaneous complex 
power: 

*
, ,( ) ( ) ( ) ( ) ( )ar ar ar ar ara t v t i t p t jq tαβ αβ= ⋅ = +  (22) 
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The real component of the power can be deduced 
as: 

{ } , ,( ) Re ( ) ( ) ( )

1Re ( )
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t

 (23) 

where the on-phase component , ( )ar fi t  of Clarke arc 
current is introduced (Fig. 4c). 

The imaginary power component − linked both 
to the distortion of the waveforms and the 
asymmetry introduced by the non-linearity of the 
three-phase electric arc − can be also introduced as 
follows: 
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where , ( )ar qi t  is the quadrature component of Clarke 
arc current (Fig. 5c). 

The imaginary power affects, as index of the 
“three-phase unbalance” instantaneously caused by 
the arc, the three-phase Joule integral, as results 
from the following expression: 
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The three-phase electric work, due to the 
presence of the quadrature component , ( )ar qi t , 
becomes 
complex:
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which module: 
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results bigger than the single-phase electric work 
that can be obtained considering a single-phase 

equivalent representation. Together with the sizing 
classical three-phase power: 
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it could be a useful element for the breaker design. 
 
 
4   Numeric Examples 
Without lack of generality, the case reported in Fig. 
6 is considered. When the breaker is closed, the 
network is linear and symmetric, so the voltage 
between the two star centers is nil. In these 
conditions the network admits a representation 
based on Clarke equivalent networks. 

The breaker opening introduces the three non-
linearities due to the electric arc, and, together with 
them, the asymmetry. In such a case the three arc 
resistors must be placed onto the tree. By the 
systemic point of view, the inductive cut set 
introduce degeneracy and makes two the order of 
the network, which is three without the opening 
process. For the topological aspect, this implies that 
one of the three inductances must be placed on the 
three. With reference to the graph reported in Fig. 
6b, it is obtained: 
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The three-phase degeneracy of the network 
impose that this model is not in normal form. But 
the inverse of the inductances network always exist 
and the model can be resolved. 

It can be also investigated in the phase domain 
with a numerical algorithm. As an example, we have 
used the “SimPower System” Toolbox of MatLab-
Simulink.  

Once performed the numeric integration of the 
model and obtained the phase arc voltages and 
currents (see Fig. 7), applying the Clarke 
transformation the {α,β} Clarke voltages and 
currents are obtained. By the application of the 
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procedure (23)−(28) and of what is reported in 
Appendix A, the numerical results summarized in 
Table 2 and the imaginary power shown in Fig. 8 
can be obtained.  

From these data is clear that the proposed 
approach allows more sophisticated and correctly 
breakers’ design. In particular, the possibility to 
derive the value of the three-phase electric work and 
of the sizing three-phase power without the use of 
empirical coefficients permits a more rigorous 
approach to the technical problem of the project of 
the component.  
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Fig. 6. Considered three-phase interrupted network. (a) 
Three-phase network and (b) adopted graph. 
 
Table 2. Numeric Results Obtained for the Network in 
Fig. 5. 

Quantities Values 
RMS value of arc voltage (Var,αβ,RMS) 2.6495 kV 
RMS value of arc current (Iar,αβ,RMS) 6.0245 A 

Arc active power (Par) 14.6355 kW 
Average arc imaginary power (Qar) 6.3707 kVAr 

Arc sizing power (Sar) 15.9619 kVA 
Time length of interruption process 0.005 s 

Electric work (Lαβ) 79.8095 J 
 

In Fig. 9 the voltage between the two star centers 
is reported. It confirms the invalidity of the 
approach based on the equivalent single-phase 
network during the interrupting process: in fact, the 
voltage assumes values different from zero during 
the opening stage, even if it is nil before and after 
the process. 
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(b) 

Fig. 7. Arc voltages (a) and arc currents (b) obtained for 
the opening process of the network in Fig. 6.  
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Fig. 8. Imaginary power obtained for the opening process 
of the network in Fig. 6.  
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Fig. 9. Voltage between the star centers during the three-
pole interruption of the network in Fig. 6. 
 

The same three-phase network is analyzed in 
case of single-pole opening. This case cannot be 
studied by means of the equivalent single-phase 
network, so the three-phase state equations approach 
is mandatory. Assuming that the opening happen on 
phase a, it is sufficient to impose that the values of 
arc equivalent resistances on phase b and c remain 
to their initial values. The equivalent arc resistance 
on phase a follows the trend represented by 
empirical Mayr or Cassie models.  

In Figs. 10, 11 and 12 the obtained diagrams are 
reported; in Table 3 the corresponding energetic 
values are summarized. 

The comparison between the results shown in 
Table 2 and Table 3 confirms that the three-phase 
opening is more onerous than the single-phase 
opening. 
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(b) 

Fig. 10. Arc voltages (a) and arc currents (b) in term of 
phase variables for the single-phase interruption of the 
network in Fig. 6. 
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Fig. 11. Imaginary power obtained for the single-phase 
interruption process of the network in Fig. 6.  
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Fig. 12. Voltage between the star centers for the single-
phase interruption of the network in Fig. 6. 
 
 
Table 3. Numeric Results Obtained for the a-Phase 
Opening of Three-phase Network in Fig. 6. 

Quantities Values 
RMS value of arc voltage (Var,αβ,RMS) 823.6657 V 
RMS value of arc current (Iar,αβ,RMS) 7.2492 A 

Arc active power (Par) 4.5692 kW 
Average arc imaginary power (Qar) 3.8437 kVAr 

Arc sizing power (Sar) 5.9709 kVA 
Time length of interruption process 0.0015 s 

Electric work (Lαβ) 8.9563 J 
 
 
 
5   Conclusion 
The arc phenomena analysis has been included in 
the state equations approach to study the dynamic of 
single-phase and three-phase interrupted electric 
networks. The obtained results show new 
perspectives of investigation. In particular, given the 
flexibility and computational power of the method, 
there is no limitation for the arc model and the 
network complexity.  

Under the energy point of view, the three-phase 
energy balance is analyzed by Clarke 
transformation. As a matter of fact, it shows the role 
of the three-phase arc as an “imaginary power 
source”. Accordingly, the sizing power and electric 
work are greater than those calculated by the 
equivalent single-phase model usually adopted. By 
means of these energy results, it is possible to 
design the breaker under study without the use of 
empirical coefficients. 

The Clarke-based energy analysis presented in 
the paper can be applied independently on the 
considered three-phase arc model and on the 

software used to perform the simulation of the 
network.  
 
 
Appendix A. The Clarke 
Transformation 

The information associated to a three-phase set 
{ya(t), yb(t), yc(t)} can be retrieved in the 
combination of a three-phase vector and a zero-
sequence scalar component expressed as [2], [18]: 

{ }

{ }

22( ) ( ) ( ) ( )
3

1( ) ( ) ( ) ( )
3

a b c

o a b c

y t y t y t y t

y t y t y t y t

αβ α α
⎧

= + ⋅ + ⋅⎪⎪
⎨
⎪ = + +⎪⎩

 

where exp( 2 / 3)jα π=  is the Fortescue operator.  
Their knowledge in the time domain allows to 

derive, by applying the inverse Clarke 
transformation, the phase quantities [2]: 

2

1( ) 1
1 1( ) Re ( ) 1 ( )
3 3 1( )

a

b o

c

y t
y t y t y t
y t

αβα
α

⎧ ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥⎢ ⎥ ⎢ ⎥= ⋅ +⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎩ ⎭

⋅  

Basing on the Clarke transformation, it is 
possible to introduce the RMS three-phase value as: 

* 2

0 0

1 1( ) ( ) ( )
T T

RMS oW w t w t dt w
T T

= ⋅ +∫ ∫ t dt  
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