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1 Introduction 
The paper presents certain advantageous control 
strategies for the transient state of the electrical 
drives. There are different requirements for the 
transient period and especially for the start of the 
drives. The main demands refer to the productivity 
and to the energy consumption. If one of these 
aspects has a dominant importance for the 
technological process, the optimal control from the 
corresponding point of view can be adopted. If the 
interest is for a great productivity, the minimum 
time control of the electrical drive can be 
introduced, taking also into account that this control 
can be easy achieved. The optimal control from the 
energetic point of view is important because in the 
transient period the energy losses (especially the 
Joule losses) are very high. 

Although the optimal control [1], [2] of the 
electrical drives represents an important way for 
energy saving, the number of applications is 
nowadays very small. We appreciate that a cause of 
the reluctance in this direction is the complexity of 
the algorithm, but certain easy implementable 
procedures were proposed in the last years [3] ,[4], 
[5] and they show that the optimal control of the 
electrical drives is not only necessary, but it is 
possible in the context of the modern control 
technologies. Moreover, the optimization is 
appreciated as a main direction of the developing of 
the drive systems in the future [6]. 

There are numerous studies dedicated to the 
optimal control of the electrical drive systems, for 
different types of motors, criteria, or used methods. 

For instance, we mention [7],..., [19], but many 
other papers can be indicated. 

The minimum energy control must be performed so 
that an acceptable behaviour in the transient state to be 
obtained. Some differences in the adopted criteria can 
occur for different applications. For instance, the 
minimization of the global losses is usually a goal for 
the steady state operation and the establishing of an 
adequate flux level is the most approached technique in 
this direction [10],[16],[19]. Although a similar criterion 
can be also adopted for the transient period, we have to 
take into account that the Joule losses significantly 
overcame all other losses, since the start currents have 
very great values. Therefore, only a criterion based on 
Joule losses for the transient period (eventually 
accompanied by a minimum error condition [4], [8], [9], 
[13], [17]) can be adopted. This is in fact the main 
direction of the present study.  

Other demands are introduced in different papers as 
specific criteria or in combination with the energetic 
aspects. For instance, the increase or obtaining of a 
convenient form of the electromagnetic torque [10], 
[11], the decrease of the harmonics content [12], the 
obtaining of a good robustness [12], the consideration of 
a some especial operating conditions [14] etc. Of 
course, such demands or others can be introduced in the 
design of electrical drives for different applications, but 
the main considerations remain in the most cases the 
energetic and productivity considerations and the 
behaviour in the transient state and these aspects are 
taken into account in the sequel. 

It is known that in many cases the demands of 
energy and time conditions are contradictory [1]. 
Therefore, it is useful in certain applications to consider 
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a combined energy-time criterion. Some particular cases 
of such problems for linear systems are presented in [1] 
and a general study for an extended linear quadratic 
problem is performed in [20]. 

It should be also noticed that the optimal control 
is useful not only for energy saving, but in many 
cases offers the possibility to reduce the motor rated 
power and therefore the weight and volume. Indeed, 
the motor rated power is chosen from heat 
consideration and the optimal control leads just to a 
diminished Joule losses. 

Unfortunately, the design of electrical drives rarely 
take into account these aspects and does not offer users 
the possibility of choice of an adequate operating 
mode, in concordance with the needs of the 
technological process and with the economical 
advantages. 

The main approach of the paper is to consider the 
currents (and not voltages) as control variables. This 
fact allows a significant simplification of the 
algorithm and of the implementation by comparison 
with all above mentioned papers (the currents are 
also considered as control variable in [11], but the 
problem is formulated in other terms – to ensure a 
desired form for electromagnetic torque, being 
imposed the terminal values of the flux) and it is 
justified because the motor currents are usually 
controlled in the drives control structures (one uses 
current control loops or current source inverter). The 
optimal control obtained by this way is an ideal one, 
since the currents cannot have instantaneous 
variations, because of the inductances influences, 
and therefore, the solution is suboptimal. However, 
it is possible to implement a current control loop 
imposing as reference the ideal optimal value. This 
approach leads to a simple structure of the optimal 
system, comparable with a usual cascade one. 

The mentioned simplification allows performing 
the study for a general case, for different motor types, 
while other works are dedicated only to a single motor 
type, for instance [4], [7], [8], [9] to the drive system 
with DC motor, [10], [11], [13] for induction motors, 
[16],..,[19], for permanent synchronous motors. 
 
 
2 Problems Formulation 
The mechanical equilibrium equation for a drive 
system is  

1 2
1( ) [ ( ( ), ( )) ( )]et M I t I t M
J

Ω = −& t  (1) 

where Ω is the angular speed, J is the inertia, Me is 
the electromagnetic torque (depending on the stator 
and rotor currents I1 and I2 or on certain components 

of these currents) and M is the load torque (we 
suppose that its dependence on Ω can be neglected). 

Since I1 and I2 are control variables, no other 
equation is necessary for the drive system model, 
which is a simple first order system. The dependence 
of the electromagnetic torque on currents has specific 
forms for different motor types. In all cases, we 
suppose that the iron is non-saturated and therefore, 
the flux is proportional with the corresponding current. 
Also, the transient electromagnetic process will be 
neglected; in this situation, the small delay of the flux 
is neglected, but the main conclusions remain valid. 
- For DC motors, 

1 2eM cI I= , (2) 

where I1 and I2 are the rotor and stator currents, 
respectively, and c is a constant of the machine (in 
all below equations, c has a similar significance). 
- For permanent magnet synchronous machines 
(PMSM), 

1eM cI= ,  (3) 

where I1= I1q is the stator active current in a d-q 
frame (usually, I1d= 0) 

A similar formula is used for brushless DC motors. 
- For induction motors 

1 2 1 2(e q d d )qM c I I I I= − , (4) 

where I1 and I2 correspond to the stator and rotor 
currents and the indices q and d denote the active 
and reactive components in the d-q frame. The 
choice of the currents depends on the used control 
technique. We shall consider in the sequel that the 
indirect rotor flux orientation is applied and in this 
case I2d=0. Since the transient electromagnetic 
process is neglected,  ( L  - 
magnetizing inductance,  - rotor self inductance) 
and thus the electromagnetic torque is 

2 1 , /q q m rLI I L= −β β = m

d

rL

1 1e qM c I I= β . (5) 

For synchronous motors with excitation winding, 
the electromagnetic torque can be expressed as a 
sum of terms with the above forms and therefore, 
the conclusions regarding the optimal control can be 
extended to this case [5], but this application will 
not be presented in the paper. 

Summarising, the electromagnetic torque has the 
forms (2) or (3) for different motor types. We shall 
adopt in the sequel for I1 the significance of the current 
creating the torque and for I2 the current creating the 
flux. Therefore, the control can be performed using 
one control variable (for PMSM, brushless DC motors 
and DC motors with constant excitation flux), or two 
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control variables (for induction motors and for DC 
motors with variable excitation current). 

In the sequel we shall use the normalized 
(relative) values of the variables. In this respect, we 
introduce the normalized variables 

1 1 1 2 2 2/ , / , /
/ , / , /

N N

N N e e

i I I i I I m M M
t T m M M

= = =

ω = Ω Ω τ = =

,N

N

N

N

d

, (6) 

where the subscript N refers to the rated 
corresponding values, and  

/N NT J M= Ω  (7) 

is a nominal time of the system. We shall use 
however in the sequel the notation t for the 
normalized time (instead τ). 

In the steady state with rated values, 

NcI M= . (8) 

Taking into account (6), (7) and (8), the equation 
(1) becomes 

1 2( ) ( ) ( ) ( )t i t i t m tω = −&  (9) 
(Of course, the term m corresponds to the load 
torque and the term me = i1i2 to the electromagnetic 
torque.) 

The solution to the equation (9) is 

0 0

( ) (0) ( ) ( ) .
t t

et m d mω − ω = θ θ − θ θ∫ ∫  (10) 

If the final desired value ωd of the speed is 
imposed, and if we consider ( )0 0ω = , the equation 
(10) leads to 

0 0

( ) ( ) ( )
T T

d T i d m dω = ω = θ θ − θ θ∫ ∫ . (11) 

Remark 1: In many control problems, the 
adopted value for current depends on the load torque 

. ( )m t
The equation (11) indicates that in certain cases 

it is necessary to know especially the mean value 

0

1 ( )
T

mm m t
T

= ∫ dt

m

 (12) 

on the interval [0,T]. This fact implies to beforehand 
know at least the shape of  and to 
measure or estimate the magnitude of the load 
torque at the beginning of the control process. This 
aspect occurs in the optimal energy control problem 
(independent of the used method), but not in the 
minimum time problem. 

( ), [0, ]m t t T∈

In many applications, the load torque can be 
considered constant on the short interval of the start, 
and in this case, of course . For simplicity, 

in the sequel, we shall consider const. If this 
condition is not satisfied, the above remark referring 
to the mean value has to be considered and m will 
be replaced with m

mm =

( )m t =

m. 
From the energetic point of view, the interest is 

to minimize the Joule losses on the interval [0, tf], 
tacking into account that these ones are significantly 
greater than other losses in the transient period. For 
this reason, the criterion is 

2
1

0

( )
ft

I r I t d= ∫ t  (13) 

if only a variable current is used, or 

2 '2
1 2

0

[ ( ) ( )]
ft

I r I t r I t= +∫ dt

f N

dt

t

 (14) 

for two variable currents. Of course, if I’=const., the 
second term in (14) can be neglected, since it does 
not influence the minimum conditions and the form 
(13) is obtained. 

The normalized energy loss is introduced 
dividing (13) through nominal winding losses 

. Using the normalized current value, 
the performance index from the energetic point of 
view becomes 

2
N 1 N NW =r I T

2

0

( ) , /
T

EI i t dt T t T= =∫  (15) 

If one performs a similar normalization for the 
two variables case, the criterion is 

2 2 2
1 2

0

[ ( ) ( )]
T

EI i t i t= + γ∫  (16) 

where γ is a constant parameter. Details referring 
this index are presented in the Section 5. 

One can now formulate the minimum energy 
problem: 

P1: Find i(t) and ω(t) which minimize the 
criterion (15) (or i1(t), i2(t) and ω(t) associated with 
(16)) and satisfy the equation (9) and the terminal 
conditions ω(0)=0, ω(T)= ωd. 

 
On the other hand, from the productivity point of 

view, the interest is to minimize the transfer time T, 
or the index 

0

T

TI T d= = ∫ . (17) 

(In all equations, the subscript T is adopted for 
minimum time problem and the subscript E refers to 
the optimal energy consumption problem). 
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It is obviously know [1] that certain restrictions 
have to be introduced in minimum time problem, 
that is 

( ) Mi t i≤ , (18) 

where Mi  is a maximum acceptable value of the 
current. The minimum time problem is 

P2: Find the control variable  (or i( )i t 1(t) and 
i2(t)) and the state variable  so that the criterion 
(17) to be minimized, subject to the constraints (9) 
and (18). 

( )tω

 
 
3 Optimal control using one control 
variable 
As it was mentioned in the Section 2, in this case the 
current I2 does not appears in the formula of the 
electromagnetic torque and therefore the system 
equation (9) can be written in the form . i mω = −&

We shall firstly present the solution to the P2 
problem, which can easy be find from the 
Pontryagin minimum principle [1] and it is 

* ( ) , [0, ]T Mi iτ = τ∈ T . (19)  

The minimum time is 

* d
T

M
T

i m
ω

= τ =
−

 (20) 

and the normalized dissipated energy is 

* d
T

M
w

i m
ω

=
−

2
Mi . (21) 

In (21), , where W is the Joule 
losses on the interval [0,T] and W

* / Nw W W=
N was defined 

above. The control variable does not depend on the load 
torque (it is always iM), but the transfer time *

Tτ  
depends on m.  

The solution for the P1 problem can be established 
starting from the Hamitonian [1] ; 
using Hamilton conditions, yields 

2 ( )H i i m= + λ −

( ) . and ( ) .const i i constλ τ = λ = τ = =  (22) 

In this case, the index (15) becomes IE = i2T= 
i2ωd/(i-m), where T = ωd/(i-m) was replaced from 
(11). Further, the condition /EI i 0∂ ∂ = leads to 

* 2Ei = m

d

, (23) 

the minimum Joule losses 
* 4Ew m= ω  (24) 

and the corresponding transfer time 
* /E d mτ = ω . (25) 

Remark 2: We conclude from (23) that the 
optimal current must ensure an electromagnetic 
torque being twice the mean value of the load 
torque. This is a general feature of the electrical 
machine, valid for any motor type, using one control 
variable; with a good approximation, (23) is also 
valid for the two control variable case.  

Remark 3: If the load torque has a small value, 
the transfer time (25) increases very much. This 
time must be limited in many applications to a 

maximum value Mτ  and in this case d
E

M
i m ω

= +
τ

 

and variation of the current is 

* 0d
E E E

M
i i i mω

Δ = − = − >
τ

, since *
M Eτ < τ .  

Corresponding, the copper losses increase with  
* 2 * *2

2 .

E E E M E E e

d
M M

M

w w w i i

m iE

Δ = − = τ − τ

⎛ ⎞ω
= τ − = τ Δ⎜ ⎟τ⎝ ⎠

=
 (26) 

The comparison between P1 and P2 problems 
can be performed referring to the time transfer and 
the energy losses in the two cases. 

Firstly, it is easy to remark that the solutions for 
both problems coincide if it is chosen 2Mi = . 

The differences between the two cases depend on 
the ratio / Mm iμ = . One obtains from (20) and (25)  

*

*
1 1E M

T

i m
m

τ −
= = −

μτ
, (27) 

with 1μ < , since the motor cannot start if i m< . 
This variation is presented in Fig. 1. 
 

 

1 

2 

3 

3/4 1/2 1/4 1 

* */E Tτ τ

μ  
Fig. 1 

 
Similarly, from (21) and (24), yields 

*

* 2
4 ( ) 4 (1 )E M

T M

w m i m
w i

−
= = μ − μ  

and this variation is indicated in Fig. 2. 
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1 

1/2 1 

* */E Tw w  

μ  
Fig. 2 

The Fig. 1 and 2 show again the coincidence of 
the solutions for P1 and P2 problems if iM=2m. 
From energetic point of view, any other choice of 

Mi  is unfavourable. The choice 1  (or 
) is not recommended from both point 

of view. If the productivity considerations have 
priority, one can adopt , but the 
energy losses increase in this case. 

/ 2 1< μ <
2Mm i m< <

2 ( 1 / 2)Mi m> μ <

 
 

4 Optimal control with combined 
criterion 
Taking into account the contradictions between time 
and energy demands, it is not lack of interest to 
consider an optimal control with combined criterion 
and to formulate the following problem: 

P3: Find  and  which minimize ( )i τ ( )tω

2

0

( )
T

cI i⎡= α + τ τ⎣∫ d⎤⎦

]

0

, (28) 

subject to (9) and . (0) 0, ( ) dTω = ω = ω
The coefficient α represents in (28) the weight 

for minimum time control problem: for , one 
obtains the P1 problem and for α very great, the 
problem becomes the minimum time one (a 
restriction for i have to be introduced in this case). 

0α =

The Hamiltonian of the problem is 
. Using a similar way 

as in Section 3, it results an optimal constant current 
and from the condition , one obtain the 
optimal control current 

[2 ( ) ( ) ( )H i i m= α + τ + λ τ − τ

/I i∂ ∂ =

* 2
ci m m= + + α  (29) 

and then, the optimal transfer time 
* 2/c d mτ = ω + α  (30) 

and minimal losses 

( )* *2 * 2
c c c dw i m m= τ = ω + + α . (31) 

These energy losses are greater then in the P1 
case (16): 

( )2
* * 2 2
c E dw w m m m− = ω − + α + α  

and  if * *
c Ew w= 0α = . 

Also, from (25) and (30), it results 
* * 2/ 1E c m mτ τ = + α > . 

Of course, for P3 problem, the transfer time is 
improved, but the energy losses increase by 
comparison with P1 case. Similarly, the transfer 
time increases and energy loss decreases in 
comparison with P2 problem. 

 
 

5 Optimal control using two control 
variables  
As it was exemplified in the Section 2, this problem 
arises in the cases of drive systems with separately 
excited DC motors or with induction motors.  

There are no differences for the P2 problem, 
because the currents must be maintained at their 
maximal values as in the Section 3. 

For the unconstrained P1 problem, we shall 
firstly establish in this Section the expression of the 
performance index for normalized variables. 

For the both cases, the total Joule losses are 
expressed by (14), where the two terms express the 
stator and rotor losses. 

For DC motor, we denote with I1=I the rotor 
current and with I2=I’ the stator one and we refer 
the losses to the nominal rotor losses . 
In this case, the performance index can be written in 
the form (16), with 

2
1N 1 1N NW = r I T

2
2 2N2

2
1 1N

Ir=
r I

γ  (32) 

For an induction motor, we denote in (14) with 
I1=I and I2=I’ the stator and rotor currents, 
respectively and then we express (14) in the form 

2 2 2 2
1 1 1 2 2 2

0

{ [ ( ) ( )] [ ( ) ( )]}
ft

q d q dI r I t I t r I t I t= + + +∫ dt

rL

 

where the d-q components of the currents were 
introduced. Taking into account the conditions I2d=0 
and 2 1 , /q q mI I L= −β β = , introduced in the 
Section 2, one can write 

2 2
1 2 1 1 1

0

[( ) ( ) ( )]
ft

q dI r r I t r I t= + β +∫ dt  (33) 
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The normalization of the energy is defined 
dividing (33) to the nominal losses caused by the 
active stator current  and the same 
form (16) for the performance index is obtained, 
with 

2
1qN 1 1qN NW = r I T

1 1 1 2 1 1

2 2
1 1 1 2 1

/ , / , /

/ , ( ) /
q qN d dN

dN qN

i I I i I I

I I r r r

= = γ =

μ = ρ = + β

,μ ρ

( )

 (34) 

The presented transformations lead to a 
multiplying factor ρ2 in the performance index, 
which is not considered in (16), because its presence 
does not affect the minimum conditions. 

Therefore, for the both cases (DC and induction 
motor) we refer to an optimal control from energetic 
point of view with the same equation (9) of the 
system and the same criterion (16) and these cases 
can be simultaneously discussed. 

The Hamiltonian of the problem is 
2 2 2
1 2 1 2( ) ( ) ( )[ ( ) ( ) ( )]H i t i t t i t i t m t= + γ + λ −  (35) 

and the necessary optimality conditions 
, ,  lead to  1/ 0H i∂ ∂ = 2/ 0H i∂ ∂ = /H t∂ ∂ω = −λ&

( ) 1 2. and ( ) ( )t  const   i t i tλ = = ±γ   (36) 

Only the sign plus will be considered in the 
sequel, corresponding to the motor operating mode 
of the machine. The equation of the drive system is 
in this condition 

2
2 ( ) ( ) ( )i t t m tγ = ω +&  or  (37) 2

1 ( ) [ ( ) ( )]i t t m t= γ ω +&

and the solution to this system, for ω(0)=0 and 
ω(T)= ωd, is 

2
2

0

( )
T

di t dt mTγ = ω +∫  (38) 

We remember that m is the mean value of the 
normalized torque on the interval [0,T]. 

The minimum value of the criterion is 

* 2 2 2
1

0 0

2 ( ) 2 ( )
T T

I i t dt i t dt= = γ∫ ∫ 2

mT

)

 (39) 

and, using (38), it can be expressed as 
* 2( )dI = ω +  (40) 

This relation shows that the minimum energy 
losses have two components: one corresponding to 
the acceleration torque and one corresponding to the 
load torque. For given ωd and m, the both 
components are constant if the final time T is 
imposed. If T is free, the Joule losses can be 
diminished if T decreases. Of course, the decrease of 
T implies to increase the charge of the motor and the  

currents will have great values. Therefore an inferior 
limit has to be imposed ( ). These aspects 
will be discussed below. 

limT T≥

The variation form for currents is not imposed by 
necessary condition (14); only a constant ratio 
between the currents must be ensured. But it results 
from (21) that T must have the smallest possible 
value and this condition can be achieved if the 
currents have the maximal values; in other words, 
the currents must be constant and in this case 

2 2
1 2(I T i i= + γ  (41) 

and the minimum value is 
* 2 2

12 2I Ti T i2
2= = γ  (42) 

The transfer time results from (11) 

1 2

dT
i i m

ω
=

−
. (43) 

Replacing this value in (42), one deduce from the 
condition *

1/ 0I i∂ ∂ =  
* *
1 2 2i i m=  (44), 

that is a similar condition as for one control 
variable: the optimal electromagnetic torque must 
have a double value as the mean load torque. The 
corresponding optimal values for optimal currents 
are 

*
1 2i m= γ  and *

2 2 /i m= γ  (45) 

The above obtained optimal control can be used 
only when the load torque has small values or the 
final time is not too big, otherwise the problems 
become constrained. Two main types of restrictions 
can be introduced: referring to the currents and to 
the time, respectively. 

Current restrictions must be introduced for the 
component  (in order to avoid the saturation of the 
machine) and for the component  (depending 
especially on the inverter capabilities). Usually, the 
restriction for  firstly becomes active and only this 
case is presented below (

2i

1i

2i

2 2| | Mi i≤ ); the case when 
the both restrictions are active is usually avoided, 
since it corresponds to an overloaded machine. 

If  is fixed, it results from the optimality 
condition that the  component must be constant. In 
this case, the performance criterion has the form 
(41), but the relation (36) cannot be applied and the 
condition 

2i

1i

1/I i 0∂ ∂ =  leads to  
2
1 2 1 22i i i m i3 0− − γ =  (46) 

The electromagnetic torque is in this case 
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3
2

1 2
1

2 ii i m
i

= + γ  (47) 

The last term can be usually neglected for load 
torque greater than 1/2 and then (44) is satisfied 
with a good approximation. 

The positive solution to the equation (46) is 
2 4

1 (i m m i i= + + γ 2 2) /  (48) 

The limit value  for  when the maximal 
allowed value for  is reached results from the 
second expression (45). 

lm m

2i

For , the component  has to be 
restricted and the relations (47) and (48) hold (with 

lm m≥ 2i

2 2Mi i= ). 
If , the established values (45) for 

currents in the unconstrained case can be used. But 
the simulation and experimental results show that 
there are small differences in this case by 
comparison with the situation when the  
component is maintained at its maximal value 

lm m<

2i

2Mi  
and the  component is obtained from (36). The 
explanations is based on the fact that the 
electromagnetic torque has a greater value in the last 
variant and therefore, the transient time T decreases 
(see, for instance (40)), that is, the increase of 
currents is compensated by the decrease of the 
transfer time. 

1i

Moreover, if one adopts 2 2Mi i= , the  
component can be chosen from (48) in all situations, 
because the condition (36) is verified with a good 
approximation even for small values of 

(unconstrained case). This alternative has the 
advantage of an easier implementation, because the 
control law algorithm must not be changed 
depending on the value of m . 

1i

m

Time restrictions: one can remark from (40) that 
the decrease of transition time T leads to a smaller 
energy losses. But the decrease of the time implies 
the increase of currents. On the other hand, if the 
currents are adopted as it is indicated above, the 
time transfer can have a very large value, not 
satisfactory from technological point of view, in 
order to obtain a greater productivity. In such 
situations a superior limit sT  for T can be imposed, 
but it is preferable to specify the superior and 
inferior limits for acceleration . Of 
course, the decrease of T leads to the increase of the 
energy losses, by comparison with the optimal 
control. 

/d Tε = ω

 

6 System implementation and 
experimental results 
As it was mentioned in the Section 1, the above 
established control is an ideal optimal control. The fact 
that the ideal optimal values of the currents are known 
offers a possibility for an easy implementation: the 
controller must ensure the desired value of the currents 
with a great accuracy and a better accuracy ensures a 
better proximity to the ideal optimal control. Of 
course, a task for load torque estimation and for 
computing of the desired current values has to be 
introduced in the minimum energy problem. This task 
is not necessary in the minimum time problem. Our 
attention will be focused in the sequel on the proper 
optimal controller, described above. There are 
different ways in this direction and we shall present 
only a structure based on a cascade control with PI 
controllers. This specific part (the internal current loop 
of the cascade) is presented in Fig.3: the output i0 of 
the speed controller is transmitted to the input of the 
current controller via a saturation bloc S. The level of 
the saturation is variable and corresponds to the 
desired value of the current, depending on the 
estimated value of the torque m. The control loop 
contains the controller C and the controlled plant P. If 
it is necessary, a similar structure is introduced for the 
current i2. The level of saturation of the block S is iM for 
minimum time problem (in fact, in this case a usual 
cascade structure is adopted) or it is established in 
dependence of the load torque m, in the minimum energy 
problem. 
 

C P 
i* 

+ 

_ 

i0 i 

m 

S 

 
Fig. 3  

Since the block S is saturated in the most part of 
the transient state, the (energy or time) optimal 
control is ensured in all this period. Only in the final 
part of the transient state the block S and all system 
becomes linear and it is ensured a smooth achieving 
of the desired value dω  of the speed. 

The next figures present a selection of simulation 
and experimental tests, performed for the proposed 
structure, for DC, PMSM or induction motors and 
for different operation conditions. We have 
supposed in all cases that the load torque is known. 

For a drive system with DC motor (having rated 
data 1.7kW, 110V, 20A, 1500rpm) and for ωd=125 
rad/s,  J=0.05Nms2/rad and normalized load torque 
m=0.2, the simulation results are presented in Fig.4.  
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Fig. 4 

 
The prescribed value of the speed  and the 

obtained variation for the minimum energy system 
( ) and for the minimum time system ( (in the 
case i

*ω

Eω )Tω
M=2) are presented. For both cases, the energy 

losses (EE and ET) are indicated on the figure. The 
expected result is obtained: the minimum time 
control ensure a smaller transient time, but an 
increase of the energy losses, because the current is 
forced too much. 

The Fig. 5 presents the experimental results for 
energy optimal control for the same conditions as in 
previous case, being indicated the speed and active 
current variations. 

 

 
Fig. 5 

 
Fig. 6 illustrates the important aspect underlined 

in the paper: the optimal control of the drive system 
from the energetic point of view depends on the 
mean value of the load torque and not on their 
instantaneous values. 

 

 
Fig 6 

A step variation of the load torque (from m=0.5 
to m=1) was introduced at the moment t = 1.5 s. The 
first figure presents the variations of the speed and 
of the active current when the control variable is 
computed with formula (48) for optimal control, but 
using the instantaneous values of the load torque. 
The second figure presents the same variations, but 
for true optimal control, depending on the mean 
value of the load torque. A small decrease of the 
transient time was obtained in the last case, but it is 
more important the significant decrease of the 
energy losses EE. This difference in energy losses is 
higher when the step variation of the load torque is 
bigger (this fact can be theoretical proved and was 
experimentally verified). 

Fig. 7 indicates the simulation and experimental 
results (similarly with Fig. 4 and 5) for a PMSM 
with rated data 2kW, 330V, 4.4A, 4500rpm, 225Hz 
and for normalized values m= 0.25 and iM = 2.5. 

The last figures show the experimental results 
referring to the variations for speed, active current 
and phase currents for the energetic optimal control 
of an induction motor with rated data 4kW, 380V, 
8.64A,  1430rpm,  fN = 50Hz.  The behaviours of the 
minimum time and minimum energy systems are 
presented in Fig. 8 and Fig. 9, respectively. The load 
torque was 0.2mN in both cases. The stator losses 
were 29J for the minimum energy control and 42J 
for the minimum time control. 
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Fig. 7 
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Fig. 8 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

sp
ee

d[
ra

d/
s]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-5

0

5

i a,
i b 

[%
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

i q 
[%

]

time[s]
 

Fig. 9 
 

The experimental tests were performed in each 
case on a corresponding set-up containing two 
electrical machines: a drive motor and a loading 
machine. The last one was also used for emulating 
the inertia of the drive system. It should be noticed 
that it was not possible to achieve a step variation of 
the load torque because of the inertia of the load 
machine. A good concordance among the 
theoretical, simulation and experimental results was 
obtained for all motor type. 
 
 
7 Conclusion 
The minimum energy control and minimum time 
control of the electrical drives have in many cases 
contradictory demands. Generally, the endeavour of 
the decrease of the transfer time leads to the 
increase of the energy losses. 

In all cases, the minimum time control can be 
achieved using only one variable control. For 
optimal energy control, the use of two variables 
presents interest only for very small load torque. 

The structure of the optimal control is not 
complicated and is based on a usual cascade one, if 
we adopt the currents as control variable. This 
choice has a practical justification, based on the fact 
that the motor currents are frequently controlled in 
the variable speed drives. 

There is a great similitude (theoretical and 
experimental) in optimal control of different motor 
types. 

The performed simulation and experimental tests 
show a very good behaviour of the optimal control 
systems which represents an opportunity for energy 
consumption decrease in the transient period of an 
electrical drive. 
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	3 Optimal control using one control variable
	4 Optimal control with combined criterion
	5 Optimal control using two control variables 
	As it was exemplified in the Section 2, this problem arises in the cases of drive systems with separately excited DC motors or with induction motors. 

