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Abstract-Voltage sag or unbalance conditions at the input rectifier stage of the ac-dc-ac rectifier-inverter induction 
motor drive can cause the significant amounts of harmonic voltage at twice the line frequency 2f1. This voltage ripple 
can have a degrading effect on the induction-machine performance characteristics. This paper presents an analytical 
closed-form mathematical model and analysis of the impact of DC-bus ripple voltage of the three-phase voltage 
source inverter (VSI) with the space-vector PWM (SVPWM) on the induction machine phase voltages, currents and 
torque pulsations. The analytical expressions for the voltage and current space-vectors as a function of the DC-bus 
voltage pulsation are derived. From the current space vectors the torque behavior is estimated, again as a function of 
DC-link voltage pulsation. Next, it is shown, that DC-link voltage ripple components may cause large torque 
pulsation. The proposed analytical method is based on the mixed p-z approach [13], enabling presentation of the 
results in lucid and closed-form. To verify the effectiveness of the proposed analytical model, experimental results 
based on laboratory setup were performed.  

 
Key-Words—PWM inverter, mathematical model, induction motor, torque pulsation.  
 
1 Introduction  
In most of the industrial applications the induction 
machine        is supplied by a voltage source inverter 
(VSI).The inverter experiences in some situations a 
substantial ripple of the dc bus voltage that may 
negatively affect the supply of the connected electric 
drives. Input voltage unbalance and sag conditions can 
have serious performance consequences in induction 
motors. 
An increase in electric losses, excessive rise of the 
motor temperature, appearance of the torque pulsation, 
and noise problems are just some of the possible 
problems [1]. 
So, the analysis of the dc link pulsation and its 
influence on the motor performances is of great 
importance. 
The dc bus voltage pulsation is composed of several 
sources such as follows [1], [2], [5]: 
a) The diode rectification of the AC line voltage 
causes pulsation components 
b) Unbalance in the AC power supply generates 100 
or 120-Hz component  
c) In some faulty conditions in the front-end rectifier 
DC-link voltage may consist again pulsation 
d) Transient voltage sags in the three-phase input line 
voltages can cause the rectifier stage to transition into 
single-phase rectifier operation with corresponding dc 
bus voltage pulsation. 

All these conditions create significant amount of 
voltage harmonics on the dc link at twice the line 
frequency. This dc link voltage ripple at the inverter 
input terminal will affect the PWM output voltage 
waveforms, causing harmonic distortion currents to 
flow in machine.  
The mathematical model providing closed-form 
expressions to estimate the machine currents and 
torque waveforms as a consequence of dc link voltage 
ripple was presented in [3].It was derived that the 
dominant as frequency component that appears in the 
dc link voltage during single-phase operation mode 
falls at twice the excitation angular  frequency.  

1(2 )ω , and as a result, (equation (6) in [3]), the dc bus 
voltage can be approximated by the constant value  
and the pulsation part  

dcV

dc2 1 2V cos(2 t )ω + θ ., 
where  is the amplitude of the second-harmonic 
voltage component, and is the corresponding phase 
angle. 

dc2V

2θ

The paper [3] has analyzed the performance effects of 
voltage sag and imbalance conditions on the dc-link 
the output inverter and following negative effect on 
the induction machine performance characteristics. 
But in this paper  the analyses is very simplified by the 
assumption that the inverter PWM voltage  was 
approximated only by the fundamental harmonic 
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which is far from reality especially in low and medium 
switching frequency. 
This paper presents a mathematical model which 
enables us to solve both the steady-state and transient-
state performance of the three-phase VSI with the 
SVM feeding induction motor under dc link voltage 
ripple. The solution makes use of the Laplace and 
modified Z-transforms of the space vectors (mixed p-z 
approach [13], [14]).From the Laplace transform of 
the stator voltage vectors we can also derive Fourier 
series to predict the voltage harmonic spectra.  
Analysis is made on the assumption that the motor 
runs at a constant speed. The electromechanical time 
constant is much larger than the electrical ones and 
therefore it is reasonable to assume that the rotor 
speed remains constant during a sampling period  
The attention is focused on the calculation of the 
closed-form expressions for the stator and rotor 
currents. From these equations an analytical 
expression for the electromagnetic torque in 
dependence of the dc link pulsation is derived. Torque 
ripple deteriorates the static and dynamic 
characteristics of induction motors and it may become 
an important issue in induction motor design. It may 
cause mechanical oscillations, which are particularly 
dangerous in resonant frequencies of the 
load.Morever, torque ripple leads to increase of the 
motor noise and to derating.Particulary the appearance 
of the sixth torque harmonic was observed by many 
researchers [5] [6].But in this paper it will be shown 
that dc link ripple voltage components may arise an 
additional large torque ripple component. 
The paper contributes to a better understanding of the 
effects of dc link voltage ripple conditions on the 
operation of induction machine by providing closed-
form expressions both in time and frequency domain. 
In particular, this mathematical model provides a 
useful tool for the development of the dc link ripple 
mitigation technique by a proper modulation technique 
of the inverter.  
The proposed mathematical model has also been 
verified by experiment. Experimental results show 
good agreement with theoretical prediction. 
  

2  Stator Voltage Space-Vectors 
  A simplified scheme of the system is shown in 
Fig.1.The input part (solid lines) consists of the front-
end PWM rectifier that is connected to the supply 
through input inductors L. The three-phase input line-
inductances (L) are balanced. The dc bus voltage is 
buffered by two dc bus capacitances   Cdc .The output 
part (dotted lines) is composed of the PWM inverter 
consisting of six IGBT switches and their ant parallel 

diodes. The PWM voltage waveforms are delivered to 
the induction machine following a constant volts-per-
hertz algorithm.        
 

 
 

Fig.1. Diagram of investigated system 
 

This paper is focused primarily with the output part 
of the drive. (VSI feeding induction motor drive-
dotted lines).This approach takes into account the dc 
link voltage ripple, due to the finite dc link capacitors. 
We assume that dc link voltage contains both the 
constant and pulsation parts that may be expressed as: 

dc dc0 dci 1 i
i 1

V (t)=V V cos(i2 t )
∞

=

+ Δ ω +∑ ψ                  (1a)   

The voltage ripple appearing across the dc link 
capacitor terminals contains, only even order 
harmonics [3]. 
The dominant ac frequency component that appears in 
the dc link voltage falls at twice the excitation 
frequency . 1(2f )
As a result for the closed-form mathematical solution, 
we suppose as in [3], that the dc link voltage can be 
approximated by the constant average value Vdc and 
pulsation part dc 1V cos 2 .tΔ ω , where  

1ω  is an angular frequency of the supply voltage 
( 2π 50 or 2π 60,  s-1). 
But if needed we can take into consideration also the 
next higher harmonics with the angular frequency 14ω  
.         
The switching elements will be considered as ideal 
switches. We also assume constant rotor speed and 
linear parameters of the motor.     
As the dominant ac component in the resulting dc bus 
voltage Vdc(t) is created by the second-harmonic 
voltage component it also dominates in generation of 
undesirable effects in the induction-machine operating 
performance characteristics. Attention is focused next 
on developing the closed-form mathematical model 
that quantifies the induction-machine performance 
effects caused by this second-harmonic voltage 
component. 
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The stator voltage space vector can be expressed in the 
complex plane with respect to π/3 symmetry as 
follows: 

αβ

 
0j T.n2

dc dc 1 3V(n, ) (V V )cos(2. (n )T) e ωε = + Δ ω + ε    (1b)   
 where    

0
0

2
T
π

ω =    is the inverter output fundamental angular 

frequency.                                                     
In (1b) time is expressed in per units as  
    0T

6t (n )T (n )= + ε = + ε                                         (2)   
                                                                                           
where T= T0/6 is a sector period, n is number of a 
sector and is a per unit time inside of a sector T. ε
 
0 ≤ ε ≤1                                                                   (2a) 
 
To express the voltage space vector with SVPWM we 
must include in (1b) also the modulation function and 
the stator voltage vector is calculated as follows: 

[ ]

k

dc dc 1

jn j
3 3

d p
k

V V cos2 (n )T
V(n, )

3

2e f ( ,k)e V (n, ) V (n, )
απ

π

+ Δ ω + ε
ε =

ε = ε +∑ ε

                (3)                                 

 

                    

 In (3) is the voltage space vector created 
from the constant part of the dc bus voltage (Vdc), and 

is the voltage space vector  caused from the 
second-harmonic voltage component  ( ).     

dV (n, )ε

pV (n, )ε

dcVΔ
And                                                                                                                                                        

∑
α

π

ε
k

.
3
j

e).k,(f
k is the modulation function given by the 

switching instants within k-the pulse. This function 
contains both time and phase vector dependency. 
Time dependency is given as follows: 
 

kBkA...for,1)k,(f ε≤ε≤ε=ε      ,   0)k,(f =ε   else       (3a) 

where:  is start point setting per unit time of k-the 
pulse 

kAε

              is end point setting per unit time of k-the 
pulse 

kBε

the duty ratio switching time is : 
 
                                                     (3b) k kB kΔε = ε − ε B
 
The expressions for the switching times are given in 
[6]. 
Phase dependency is given by the function  

g(k)= kj
3e
π
α

                                                             (3c) 
        
Where kα  shows which voltage vector is used in k-the 
pulse . 
For the conventional space-vector PWM (CSVPWM) 
where two adjacent space vectors within a sampling 
period are used, kα can be 0 or 1(i.e. voltage vectors 
in n-the sector period can have direction  

j n j 0 j n
3 3 3e e e
π π π

= ,and   
j n j 1 j (n 1)
3 3 3e e e
π π π

+
= ). 

In the first sector during the first two sampling periods 
the following voltage vector sequence is used: 
 
(V0-V1-V2-V0),   (V0-V2-V1-V0)    
 
We can define kα  as follows: 

m m

2m 1 2m
1 (1) 1 (1),

2 2

+

−
+ +

α = α =
1

                       (3d) 

 
m is a number of sampling periods 
 
The trajectory of V(n, )ε  in the complex αβ plane for 

dcV 0.05Δ =  ,and f0=f1=50Hz, fsw=3000 Hz is shown 
in Fig.2 
 
 
              

 
Fig.2 Voltage space vector trajectory with dc-link 

pulsation component =0.05 dcVΔ
 

Using well known formula for cosine function  
jx jxe ecos x

2
+

=                                                      (4)    

we can write for the pulsating part in (3)  
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k

1

k

1

jn jj2 T(n )dc 3 3
p

k

jn jj2 T(n )dc 3 3

k

pp pn

VV (n, ) e e f ( ,k)e
3

V e e f ( ,k)e
3

V (n, ) V (n, )

απ
πω +ε

απ
π− ω +ε

Δ
ε = ε +

Δ
ε =

ε + ε

∑

∑     (5)                                                            

1
p(n )T

n 0 0

1
pT

( V(n, )e Td )

(z, )e d

∞
− +ε

=

− ε

                                                                                         
                                                                                                         
From (5) it may be seen that pulsation part of the 
voltage space vector  may be resolved into 
two components:   positive and 
negative  

pV (n, )ε

ppV (n, )ε

pnV (n, )ε
The trajectories of the both parts in the complex plane 
for the same operating conditions used to calculate 
waveform in Fig.2, are shown in Fig.3  

-            
- .Fig. 3 Trajectories of two parts creating 

voltage space vector with DC-link pulsation 
component dcVΔ =0.05 

 
 

3 Closed-Form Mathematical  
3.1. Induction-Machine Circuit Analysis 
    Using the mixed p-z approach as shown in [13], 
[14] we can derive the closed-form analytical 
expressions for the stator and/or rotor currents and 
also for the electromagnetic torque. 

hese relations we can estimate the influence of From t
the dc

 
 link voltage pulsation on the currents and 

electromagnetic torque waveforms. 
First, we can derive the Laplace transform of the 
symmetrical voltage vector sequences (3).For that we 
can use the relation between the Laplace and modified 
Z transforms [12]. 
Using (2) and its derivation dt=Tdε we can derive the 
Laplace transforms of the periodic waveform as: 
 

V(p) =

0

T V

ε ε =

ε ε

∑ ∫

∫

=

                     (6)                      

 
where:   
 
z=epT  ,                                                                (7) 
 
and   V(z, )ε  is the modified Z transform of V(n, )ε .   
Substituting (3) into (6) with the help of the Z 
transform of exponential functions we can find the 
Laplace transform of the stator voltage vector as 
follows: 
 
 

kA kB

kA 0 kB 0

1

kA 0 kB 0

1

pT
pT pT

1 dc
j kpT 3

pT
T (p 2 j ) T (p 2 j )

dc
j( 2 T) kpT1 3

pT
T (p 2 j ) T (p 2 j )

dc
j( 2 T) kpT1 3

0 1P 1 1N

2 1 eV (p) V (e e )
3 p

e e
1 1 eV (e e
3 p 2j

e e
1 1 eV (e e
3 p 2j

e e
V (p) V (p 2j ) V (p 2j

− ε − ε
π

− ε − ω − ε − ω
π
+ ω

− ε + ω − ε + ω
π
− ω

= − +
−

)

)

Δ − +
− ω

−

Δ − =
+ ω

−
+ − ω + +

∑

∑

∑

1)ω

                                                                                  (8)              
 
Equation (8) is the Laplace transform of the stator 
voltage vector, respecting the influence of the dc-link 
voltage ripple. It contains three parts. The first term is 
the Laplace transform of the stator voltage vector with 
constant value in the dc link voltage. The last two 
terms are the Laplace transform of the positive and the 
negative ripple components of the dc link voltage. 
When we know the Laplace transform of the stator 
voltage vectors we can derive the Laplace transform of 
the motor current vectors. 
In order to calculate the motor current space vectors, it 
is convenient to carry out the analysis in the stator 
reference frame. 
The Laplace transform of the stator and the rotor 
currents may be expressed as follows: 

or equations in the stator reference frame we can derive the T    
                        

S R
S 1 1

S S 1 2

R m
R 1 1

R S R 1

A (p) k p j
I (p) V (p) V (p)

B (p) L (p p )(p p )
A (p) L (p j )

I (p) V (p) V (p)
B (p) L L (p p )(p p )

+ − ω
= =

σ − −
− ω

= = −
σ − − 2

    (9)               

                                                           

 

In the foregoing equations, RS is the stator resistance, 
RS the rotor resistance, LS the stator self-inductance, 
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LR the rotor self-inductance, Lm is the mutual 
inductance, and ω the rotor electrical angular velocity  
 
σ=1−Lm/(LS LR) ,  kS=RS/LS , kR=RR/LR, 
The roots of the characteristic equation are given as 
follows: 

S R
1,2

2S R S S R

(k k j )p
2

k k j j k k k( )
2

− + − σω
= ±

σ
+ − σω ω −

+
σ σ

                      (10)                       

        

                                          

                                           
The inverse Laplace transform of (9) cannot be solved 
directly using the residue theorem, as (9) contains 
infinite numbers of poles given by the following 
equations: 
 

j pT3e e
π

− = 0  
1j( 2 T) p T3e e

π
− ω

− =0, 1j( 2 T) p T3e
π
+ ω

− e =0                     (11)                                                      
 
 
The solution of the time dependency of the motor 
current vectors can be found in the closed form as 
presented in [15]. 
If we use the Heasivide theorem  

∑+=
⎭
⎬
⎫

⎩
⎨
⎧−

k
Tkpe

)kp´(Bkp
)kp(A

)0(B
)0(A

)p(pB
)p(A1L                 (12)                                                                                           

 
and also the formula for multiplication by an 
exponential function 
 
L { } )Tjp(F)t(fTje ω−=ω                                          (13)                                                                                                                     
 
where B´(pk)= /dp)p=pk and symbols LdB( { }and 

mean the direct and inverse Laplace transforms, 
respectively, we can transform the motor currents (9) 
into the modified Z-domain [13]. After doing that, we 
can use the residue theorem in the modified Z-
transform to find the analytical closed-form solution 
both for the stator and for the rotor current vectors.  
Details of this analysis and the corresponding 
coefficients are provided in the Appendix and in [14]. 
The solution contains both the steady-state and 
transient components. As our attention is focused on 
the steady-state solution, applying superposition, the 
stator and rotor currents will have the closed-form 
solution shown in (14) ,   for n→∞, 

{ }1L−

 

s

0
s1

0
s1

j (n 1) j (n 1) p T1 13 3
yS yS yS s

j (n 1) j( 2 j T)(n 1) p T2 j T(n )2 23 3
yS 1 yS s 1

j (n 1) j( 2 j T)(n 1) p T2 j T(n )2 23 3
yS 1 yS s 1

y0 yp

I (n, ) I (0)e I (p )e e

I (2 j )e e I (p 2j )e e

I ( 2 j )e e I (p 2j )e e

I (n, ) I (n,

π π
+ + ε

π π
+ + ω εω +ε

π π
+ −

+

ω + ε− ω +ε

ε = + +

ω + − ω +

− ω + + ω

ε + yn) I (n, )ε + ε

=

                                                                               (14) 
                                                                                            
where the subscript y stands for the stator (y=S) and 
the rotor (y=R) variables. Similarly to (8) the overall 
steady-state stator/rotor currents contain three parts 
(terms from constant, positive and negative bus 
voltages, respectively). 
These components are shown in Fig.4a and 4b. From 
Fig.4a we can see the space-vector current trajectories 
with and without respecting dec-link voltage ripple. 
.The dc-link voltage ripple influence may be seen 
from Fig.4b.he upper plot of Fig.4b shows current 
space-vector trajectory form constant dc bus voltage, 
the middle and bottom plots show current space-vector 
trajectories from the positive and negative dc bus 
voltage components, respectively.Fig.5 shows the 
induction machine stator phase currents. Owing to the 
dc bus voltage pulsation the phase currents are highly 
distorted. 
 

 

 

  Fig.4a  Closed-form analysis results of machine stator 
current vectors. dcVΔ =0.05-Six-Step waveforms 
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     Fig.4b Closed-form analysis results of machine 
stator current vectors. =0.05,Space-Vector 
modulation 

dcVΔ

    

 
 
 
Fig.5 Closed-form analysis results of machine phase 
currents, =0.05, dcVΔ
 
 

3.2 Electromagnetic Torque 
  Torque ripple with low frequency may become an 
important issue in induction motor drives .It cause 
mechanical oscillations, which are particularly 
dangerous in resonance frequencies of the system [5]. 

This torque ripple is usually superimposed to the 
torque ripple of switching frequency. Since the 
switching frequency has usually high value, its effect 
will be suppressed by the electrical and mechanical 
damping of the motor and of the gear. 
In steady state, along with an expected torque ripple of 
switching frequency, a superimposed pulsation was 
observed.Particulary, the appearance of the sixth 
torque harmonic was observed by many researchers 
[6], [8]. 
As it was shown in [8] the occurrence of zero vector 
intervals in PWM influences torque ripple, and leads 
to a sixth-order torque harmonics. But as it will be 
shown in the following part of this paper, dc bus 
voltage pulsation with angular frequency 2 1ω  may 
cause large torque pulsation with the same angular 
frequency. 
The electromagnetic torque is given from the stator 
and rotor vector current by the following formula: 
 

      {3
i m s r2

PT (n, ) L Re j.I (n, ).I (n, )
2

∗ }ε = ε ε                  (15)               

where symbol  ∗  means complex conjugate value and 
P is the number of poles. 
The expression for the complex stator and rotor 
currents in (14) can be used to develop an expression 
for the product in (15) as follows: 
 

{ }3
i m S0 R02

PT (n, ) L Re j.I (n, ).I (n, )
2

∗ε = ε ε +

{ }*3
m Sp Sn R02

PL Re j(I (n, ) I (n, ))I (n, )
2

∗ ε + ε ε +

{ }3
m S0 Rp Rn2

PL Re jI (n, )(I (n, ) I (n, ))
2

∗ ε ε + ε + 

+ { }*3
m Sp Sn Rp Rn2

PL Re j(I (n, ) I (n, ))(I (n, ) I (n, ))
2

∗ ε + ε ε + ε  

=Ti0(n,ε)+ Ti1(n,ε)+ Ti2(n,ε)+ TiC(n,ε)               (16)                    
 
This expression shows that, under unbalance input 
voltage conditions, the electromagnetic torque 
contains the following terms: 
 Ti0(n,ε) is the electromagnetic torque without dc bus 
ripple component. It contains an average dc term and 
sixth-harmonic pulsations caused by the inverter 
switching frequency. 
Ti1(n,ε) andTi2(n,ε) represent the products of the 
complex conjugate stator currents form the 
constant/ripple dc bus and the complex rotor currents 
from the ripple/constant dc bus voltage.  
 TiC(n,ε) is the electromagnetic torque component 
from stator and rotor dc  link pulsation parts. I has 
negligible value and we may put  TiC(n,ε)=0. 
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The separated torque components can be seen from 
Fig.6. 
. 
   

 
Fig.6   Closed-form analysis results of electromagnetic 
torque and its components. Solid line- overall 
pulsation torque (TIpul(n,ε)), dashed line-first pulsation 
component (TI1(n,ε)), dotted line-second pulsation 
component (TI2(n,ε)). dash dotted line the overall 
pulsation component (TI1(n,ε)+ TI2(n,ε)),  f0=f1=50 
Hz,fsw=3000Hz,  05.0U =Δ
 
The overall pulsating electromagnetic components and 
their sum given as follows: 
 
TiPUL(n,ε)= Ti1(n,ε)+ Ti2(n,ε)=                          (17) 
AT.sin(2.ω0.[(n+ε)T+ψ])                                                                            
   
  Where AT is an amplitude of the pulsating torque 
component (in Fig.6) we have At=0.073 p-u.) and ψ is 
a phase angle. 
As can be seen from Fig.6 both electromagnetic 
components forming the pulsation part have opposite 
direction and their sum is the pulsating waveform with 
the sine time dependency (without any high frequency 
ripple). The frequency of the pulsation is given by the 
frequency of dc bus voltage pulsation 2ω1. 
       
3.3 Frequency Domain 
   We shall calculate the Fourier series of the periodic 
variation of the stator voltage space-vector 

max
0

max

k
jk T(n )

k
k k

V(n, ) C e ω +ε

=−

ε = ∑                              (18) 

Using superposition of the two parts of the dc bus 
voltage (constant and pulsation part) and (4), we can 
modify (18), as  

 

max
0

max

max
0 1 1

max

k
jk T(n )1

k
k k

k
jk T(n ) j2 T(n ) 2 j T(n )2

k
k k

V(n, ) C e

C e (e e )

ω +ε

=−

ω +ε ω +ε − ω +ε

=−

ε = +

+

∑

∑
 (19) 

To derive the coefficients of the Fourier analysis we 
can use the relation between the Laplace transform of 
the periodic waveform and Fourier coefficients: 
 

[ ]
00 p

1

1C (1 (exp( pT ))V(p)
T jμ = μω= − −           (20)              

Substituting in. (20) from first part of (8) we get for 
the Fourier coefficients of the constant dc bus voltage   
: 
 

[ ]

[ ]

[ ][ ]

1 dc

k
Ak Bk

k

exp(j ) exp( 5j )V 1 3 3C
3 j exp(j ) exp(j )

3 3
jexp exp( jl ) exp( jl )

3 3 3

μ

π πμ − − μ
=

π ππμ μ −

πα π π
− ε − − ε∑

(21)      

Equation (21) has non-zero value only for harmonics 
order: 
 

1 6μ = + ν , ,....2,1,0 ±±=ν     .                             (22)              
 
By substituting (22) into (21) the Fourier coefficients 
are: 

[ ]

[ ]

1 dc k

k

Ak Bk

2VC exp j
j(1 6 ) 3

exp( j(1 6 ) ) exp( j(1 6 ) )
3 3

ν
α

= π
π + ν

π π
− + ν ε − − + ν ε

∑
 (23)     

  
Similarly, we can derive for the second part of (8)     

[ ]

[ ]

2 dc k

k

Ak Bk

1
dc

dc

VC exp j
j(1 6 ) 3

exp( j(1 6 ) ) exp( j(1 6 ) )
3 3

C V
V 2

ν

ν

Δ α
= π
π + ν

π π
− + ν ε − − + ν ε

Δ
=

∑

(24) 

 
The Fourier series expansion of the overall voltage 
space-vector will have the following form: 
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max
0

max

max
0 1

max

max
0 1

max

j(1 6 ) T(n )1

j(1 6 ) T(n ) 2 j (n )T1 dc

dc

j(1 6 ) T(n ) 2 j (n )T1 dc

dc

V(n, ) C e

VC e e
2V

VC e e
2V

ν
+ ν ω +ε

ν
ν=−ν

ν
+ ν ω +ε ω +ε

ν
ν=−ν

ν
+ ν ω +ε − ω +ε

ν
ν=−ν

ε = +

Δ
+

Δ

∑

∑

∑

       (25)   

 
From (25) it may be seen that harmonic spectrum 
contains harmonics  with   frequencies  and 

amplitudes  as in VSI without dc bus pulsations 
and also harmonics with the sum and difference 
frequencies   and 

,respectively, both  with reduced 

harmonic amplitudes  =

1(1 6 )f+ ν
1C ν

1(1 6 )f 2f+ ν + 0

01(1 6 )f 2f+ ν −

2C ν
1 dc

dc

VC
2Vν
Δ

. 

For example if    we have harmonics  0 1f f 50H= = z
(1 6 )50+ ν Hz, ( Hz, 

Hz 
1 6 )50 100+ ν +

(1 6 )50 100+ ν −
It means that for  we get harmonics with 
frequencies  

0ν =

50,150 and -50 Hz 
for  we get harmonics with frequencies  1ν =
350,450 and 250 Hz 
for  we get frequencies 1ν = −
-250,-150 and -350 Hz    , etc. 
 

  
 

 
Fig.7 Fourier series expansion of the voltage space-
vector  
(upper trace) and its phase-voltage waveform (bottom 
trace) 0 1f f 50Hz= = ,fsw=3000Hz, 

dcV 0.05Δ = ,kmax=30 
 
The Fourier series approximation of the voltage space-
vectors trajectory is shown in upper plot of   Fig.7.It is 
calculated from (23)-(25) for SVPWM, if  we take into 
consideration max 30ν = . 
The phase voltage approximation can be calculated as 
a real part of (25) and is shown in middle plot of Fig.7 
(dotted line).As can be seen by comparing with the 
theoretical voltage waveform (solid line) the 
correlation is high.             

The harmonic spectrum 
1

1
0

C
C

ν

ν=

given from (23) is 

shown in bottom part of Fig.7  The harmonic spectrum 
is calculated for switching frequency 3000Hz and 
modulation index m=1.The harmonic spectrum is  a 
typical for synchronous modulation.It means that 
ration of the switching and fundamental frequency is 
60. 

 
4 Experimental Results 
  Further, the analytical results and experimental 
waveforms for the sake of comparison are presented. 
All the analytical results were visualized from the 
derived equations by the program MATHCAD. 
Experimental tests have been carried out using 1.5-kW 
400-V, 50-Hz induction machine mounted on a 
laboratory dc dynamometer.  
The dc link voltage waveform is shown in Fig8.It is 
apparent from the  Fig.8 that the dominant ac 
frequency component in the dc bus voltage under 
input voltage unbalance conditions appears at twice 
the input supply frequency (2f14) providing 
confirmation of (1b). 
First, the comparison is made for the case of square-
waveforms (without modulation) as in that case we 
can see the most pronounced influence of the dc link 
voltage ripple. The current waveforms in Fig.9 for 5% 
dc link voltage ripple show the same features both for 
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the experiments and closed-form analytical results. 
The comparison is done for two values of slip. (s=0.6 
and s=0.026), it means for two values of the load 
conditions, providing further confirmation of the 
closed-form analytical results. 
 

 
Fig.8 Rectified input line voltage with dc bus voltage 
ripple  
 
 

 
 

 
 
     

 
 a) 
 

         

 
 b) 
    
  Fig.9 Closed-form analytical results and measured 
stator-current waveforms with dc bus voltage ripple 

dcV 0.05Δ = a) for slip s=0.6,     b) for slip s=0.024 
 

5 Conclusion 
    Analytical analysis and mathematical model of 
three-phase voltage source PWM inverter fed 
induction motor drive under DC-link ripple voltage 
component are presented in this paper. The analytical 
expressions for the voltage and current space-vectors 
as a function of the DC-link voltage pulsation are 
derived. By means of the modified Z-transform and 
the mixed p-z mathematical model we can estimate the 
separate parts of the solution to estimate the influence 
of the DC-link voltage pulsating on current and torque 
waveforms. Torque ripple produced in PWM inverter 
fed induction motor drives deteriorates both static and 
dynamic characteristics of drives. It was found that 
DC-link ripple voltage components with angular 
frequency ω0 may cause large torque pulsation with 
the same angular frequency. This torque ripple may be 
even dangerous at resonance frequencies of the 
system. 

6. Appendix 
6.1 Closed-Form Derivation 
    Using (2) and (3) the Laplace transform   of the load 
current can be expressed as: 
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where the polynomials are as follows: 
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As can be seen from (A1), the Laplace transform of 
the motor  current  consists of three terms, each with 
two multiplicative  parts .One  (R(epT )) is a function 
of epT -operator, the other (Q(p)) is  a function of p-
operator . To find original function of (A1) we can use 
the residual theorem. 

But the inverse transform of (A1) can not be carried 
out in direct way as it contains infinite number of 
poles given by  
 

1

1

j j( 2 j TpT pT3 3

j( 2 j T)pT 3

e e 0,e e

e e 0

π π
+ ω

π
− ω

)
0,− = − =

− =

                    (A4)

 
From (A1) it may be seen that using superposition 
each term can be separated into two multiple parts and 
so we can transform (A1) into the modified 
Z transform [13].If doing so, we get in the modified Z-
space: 
 

} }
}

y 1 m 1 2 m 2

3 m 3

I (z,  )=R (z).Z {Q (p) +R (z).Z {Q (p) +

R (z).Z {Q (p)  

ε
(A5)              

 
with Zm{ } denoting the modified Z transform 
operator. 
In order to find Z transform of Qi(p) we must use the 
translation theorem in Z transform which holds: 
 
Zm{e-p.a.F(p)} = z-x.F(z,ε-a+x)                           (A6)               
 
where parameter x is given by: 
 
            
            1     for  0≤ε<a 
x =   {                                                                   (A7)               

0 for  a≤ε<1      
 
If we want to express translation for k-the pulse, with 
the beginning εkA and the end εkB, (pulse-width 
Δ εk= εkB - εkA)  
we can use two parameters, namely Mk and Lk to 
determine per unit time for prepulse,inside-pulse and 
postpulse switching times, respectively. 
Mk is a parameter that defines the beginning of k-the 
pulse εkA,   Lk  is a parameter that defines the end of 
the k-the pulse εkB .According to (A6) we can write 
for mk and nk, respectively: 
 
         1    for 0≤ε<εkA                  1         for 0≤ε<εkB 
Mk={                                    Lk={                          (A8)               
         0    for εkA ≤ε<1                  0        for  εkB ≤ε<1 
 
 
By means of these two parameters we can express per 
unit time for the three intervals: 
a) 0<ε ≤εkA  prepulse per unit time. Mk=1,Lk=1 
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b) εkAQ <ε ≤εkB  inside pulse per unit  time 
.Mk=0,Lk=1                                                                                                                                  

c) εkB <ε ≤1  postpulse per unit time .Mk=0,Lk=0 
                                                                               (A9) 
Thus, in a period nT, for per unit time 0<ε≤1, we 
obtain from (A9) two parameters Mk and Lk, that will 
be used for solution of (A3) in the modified 
Z transform. 
Using   parameters Mk,Lk  and Heaviside theorem 
(12), we can express the first part of (A1)) with help of 
(A9)  in the modified Z-space as follows:     
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                                                                             (A10)                                                                                                                     
Equation (A10) has simple poles  ejπ/3, 1 ,epsT.The 
inverse Z transform of (A10) can be found using an 
integral  

1 11I (n,ε) I (z, )z
2πj

−= ε∫ n 1dz                                (A11)                                                                                        

An integral  (A11) may be solved by means of the 
residual theorem. As our attention is the steady-state 
components we get for n → ∞ the following 
expression: 
: 
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Equation (A12) is the time dependency of the first part 
of the current space vector in the stator co-ordinate 
system .By the same way and using the theorem for 
multiplication by an exponential function (13) we can 

derive overall solution given in (14). The 
corresponding coefficients are given in (A13) and 

(A14).                                        

=2
ySI

k k
k

j M j L2

s 1=

3 3 jdc s 1 3
js 1 k 3

V A (2j ) (e e ) e
3 B (2j )

(e 1)

π π
− − π

α

π

⎡ ⎤
Δ ω −⎢ ⎥

⎢ ⎥ω ⎢ ⎥−⎣ ⎦

∑ ∑ + 

k 1 k Ak s k Ak

k 1 k Bk s k Bk
k

1
s

2
dc s s

s 1 s ss 1

j M 2 j T(M ) p T(M )
3

j L 2 j T(L ) p T(L )
3 j

3
j( 2 j T)k p T3

2 2
yS 1 yS s 1

V A (p )
3 (p 2j )B´ (p )

(e

e ) e

(e e )

I (2 j ) I (p 2 j )

=

π
− − ω −ε + −ε

π
− − ω −ε + −ε π

α

π
+ ω

Δ
− ω

⎡ ⎤
−⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥ =
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

ω + − ω

∑

∑     (A13) 

 
3

ySI = 

k k
k

j M j L2 3 3 jdc s 1 3
js 1s 1 k 3

V A ( 2j ) (e e )
3 B ( 2j )

(e 1)

π π
− − π

α

π
=

⎡

e
⎤

Δ − ω −⎢ ⎥
⎢ ⎥− ω ⎢ ⎥−⎣ ⎦

∑ ∑ +                      

k 1 k Ak s k Ak

k 1 k Bk s k Bk
k

1
s

2
dc s s

s 1 s ss 1

j M 2 j T)(M ) p T(M )
3

j L 2 j T)(L ) p T(L )
3 j

3
j( 2 j T)k p T3

3 3
yS 0 yS s 0

V A (p )
3 (p 2j )B´ (p )

(e

e ) e

(e e )

I ( 2 j ) I (p 2j )

=

π
− + ω −ε + −ε

π
− + ω −ε + −ε π

α

π
− ω

Δ
+ ω

⎡ ⎤
−⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥ =
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

− ω + + ω

∑

∑   (A14) 

Provided that an assumption of constant rotor speed is 
made it can be seen, that the solution (14) is in closed-
form. For concrete solution we must substitute into 
(A10) only parameters of the load (A(p),B(p)) and 
parameters of the inverter (Vdc,εkA, εkB, αk 
The induction motor used both for the analytical and 
experimental investigation was rated at 400/230V, 
1.5kW, and 1430 rpm. Its per unit parameters are 
RS=0.068, RR=0.07, Ls=LR=1.39, and Lm=1.382 
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