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Abstract: - This paper presents the application of neural networks for controlling the static synchronous 
compensator (StatCom) device. The primary duty of the StatCom is the regulation of the AC bus bar voltage 
where the device is connected. Additionally, a secondary task may be added to such device for obtaining a 
positive interaction with other controllers in order to mitigate low frequency oscillations. For this task, a neural 
network is proposed due to its simple structure, adaptability, robustness, considering the power grid 
nonlinearities. The applicability of the proposition is studied by digital simulation exhibiting satisfactory 
performance. Results of simulation for different disturbances and operating conditions demonstrate the 
effectiveness of the feedback variables selected in the control scheme. 
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1 Introduction 
The modern power systems represent a huge 
operational challenge. They exhibit highly complex 
topology and varied structural components. Usually, 
decentralized control devices are employed, which 
provides local control to different power grid 
equipment such as power system stabilizers (PSSs), 
automatic voltage regulators (AVRs), flexible ac 
transmission systems (FACTS) devices, etc. These 
control agents have helped to alleviate voltage, 
frequency, angular problems, and to mitigate inter-
area oscillations. However, the new control 
elements connected to the system must be able to 
positively interact with the previously installed 
controllers. Thus, they must be coordinated to 
obtain a satisfactory performance. 
In this paper a B-Spline Neural Network (B-SNN) is 
employed for the voltage control of a static 
synchronous compensator (StatCom) connected to 
the grid, taking care of a key feature: the proposed 
controller must be able to enhance the power 
systems stabilizer’s performance for damping 
purposes. 

The use of artificial neural networks (ANNs) 
offers an attractive alternative for the StatCom’s 
control. The ANNs are able to model on-line 
nonlinear, MIMO (multiple inputs-multiple 
outputs), and non-stationary systems. The ANNs’ 
nature makes them robust, adaptive, optimum, and 
hybrid control techniques, with attractive features to 
power system control [2]. 
 
 

2 Modeling 
In this paper, data of a power system available in 
open literature - 16-machines, 68-buses - is 
employed in order to exemplify the proposition, Fig. 
1. 
The development of systematic methodologies for 
the location of control devices is a problem that 
requires special attention. In [11] the problem of 
static compensators' location (SVC) using nodal 
participation factors derived from the modal 
analysis of the power flow equations is solved. The 
obtained results show that the best location to install 
one SVC is the critical area center, determined by 
the participation factors’ study. Also, strategies of 
FACTS devices location based on singular values 
analysis of a power system equivalent model have 
been proposed [12]. 
In order to show the applicability of the present 
proposition, one StatCom is located at two different 
buses – first at bus 21, and then at bus 35 - with the 
aim of controlling such voltage magnitudes within 
some reference value, while helping to mitigate low 
frequency oscillation problems. Such buses are 
elected due to their relative low short circuit ratio 
and their singular value sensitivities. Furthermore, a 
FACTS device electrically close to a generating unit 
could be inefficient for voltage purposes. 
Ultimately, the main purpose for trying two 
locations is to illustrate that the proposed control 
strategy does not depend on the FACTS location. 
That is, such one can be practically arbitrary. 
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Fig. 1. 16-machines, 68-buses power system. 
 
The proposed control scheme allows achieving a 
satisfactory coordination among the StatCom and 
eight PSSs installed in the following generators: (a) 
StatCom at bus 21 – PSS’s at 5, 7, 8, 9, 12, 14 and 
15; (b) StatCom at bus 35 – PSS’s at 1, 2, 3, 7, 9, 
10, 12, and 16. Similarly to the FACTS location, the 
main aim is to show that the proposed 
neurocontroller does not depend on the PSSs 
location and tuning, but it is able to enhance the 
electro-mechanical behavior after a disturbance, 
when it is appropriately designed. 

The fourth order dynamic model is employed for 
generators including a static excitation system [1]. 
The reference generator is that in bus 65 (generator 
13). For each generator, the elected state variables 
are: δ (rad) and ω (rad/s) represent the rotor angular 
position and angular velocity; E’d (pu) and E’q (pu) 
are the internal transient voltages of the 
synchronous generator; Efd (pu) is the excitation 
voltage. 
The fundamental structure of the StatCom is based 
on a Voltage Source Converter (VSC), and a 
coupling transformer that it is used as a link with the 
electric power system, Fig. 2; EST represents the 
StatCom’s complex bus voltage, and Ek the power 
system complex bus voltage; all angles are 

measured respect to the general reference, in this 
case bus 65. 

The model is represented as a voltage variable 
source EST, whose magnitude and phase angle can 
be adjusted with the purpose of regulating the k-th 
voltage magnitude. The magnitude VST, it is 
conditioned by a maximum and a minimum limit, 
depending on the VSC’s capacitor rating. In the 
carried out simulations, the interval of the 
magnitude, VST, is settled down within [0.9, 1.1] 
p.u.; the phase angle, δST, may vary within [0, 2π] 
rad. 

 
Fig. 2. StatCom’s schematic representation. 
 
A simplified dynamic model of StatCom is 
employed and represented by the capacitor voltage 
equation [15, 16], 

( )                          (1) ψψ sincos STqSTd
DC

DC II
C
mk

dt
dv

+=
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dcST mkvV =                                                           (2) 

ψδ =ST                                                                 (3) 

where , represent the d and q 
StatCom’s current components, respectively; v

STqSTdST jII +=I

DC is 
the DC StatCom voltage; CDC is the capacitance; m 
is the modulation ratio defined by the PWM; ψ is 
the phase angle defined by the PWM, and it 
determines the phase δST; k is the ratio between the 
ac and dc voltage depending on the inverter 
structure. Thus, signals V  and ST STδ  will be 
controlled by the proposed B-SNN controller. 

 
3 PSS’s Tuning 

The PSSs interaction may increase or reduce the 
damping in any rotor oscillation mode. To enhance 
their performance, a satisfactory coordination 
between power system control devices should exist, 
guaranteeing robustness under diverse scenarios. 
For this task, several algorithms to achieve an 
optimal design have been developed [3-4]. For 
instance, simulated annealing (SA) and genetic 
algorithms (GA) have been used for designing and 
tuning PSSs and FACTS device stabilizers (FDSs) 
[3-4]. Besides, recently there have been increased 
use of ANNs in power grid control, operation and 
planning, allowing the diversification of control 
alternatives [5-8]. 

The conventional PSS structure connected at the i-th 
generator consists of a washout block, filters, and a 
limiter, Fig. 3. In this paper, the difference between 
the angular velocity, ωi, and the synchronous 
velocity, ω0, is elected as the input to the PSS. 
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Fig. 3. Block diagram of the PSS. 

The eigenvalue sensitivity analysis has been used 
for power system dynamic studies and the 
controller’s design. It has been found that the 
trajectories of the dominant eigenvalues under 
system parameter changes are nonlinear, and the 
first-order estimates are not enough accurate [3]. In 
this paper, it is assumed that the decision to include 

PSSs has been taken, and the corresponding 
parameters of each one have been estimated. 
Related to the StatCom’s controller, it does not 
exhibit the conventional PSS structure. Therefore, it 
is incorporated as specified in the following section. 
 
 
4. Neuro-controller modeling 
The major advantages of the ANNs are the 
controller’s design simplicity, and their compromise 
between the complexity of a conventional nonlinear 
controller and its performance. The B-SNNs are a 
particular case of neural networks that allow to 
control and model systems adaptively, with the 
option of carrying out such tasks on-line, and taking 
into account the power grid non-linearities. 
A B-spline function is a piecewise polynomial 
mapping, which is formed from a linear 
combination of basis functions, and the multivariate 
basis functions are defined on a lattice. The on-line 
B-spline associative memory network (AMN) 
adjusts its weights iteratively in an attempt to 
reproduce a particular function, whereas an off-line 
or batch B-spline algorithm typically generates the 
coefficients by matrix inversion or using conjugate 
gradient. B-spline AMNs adjust their (linear) weight 
vector, generally using instantaneous least mean 
square (LMS)-type algorithms, in order to realize a 
particular mapping, modifying the strength with 
which a particular basis function contributes to the 
network output. 
Through B-SNN there is the possibility to bound the 
input space by the basis functions definition. 
Generally, only a fixed number of basis functions 
participate in the network’s output; therefore not all 
the weights have to be calculated each sample time, 
thus reducing the computational effort and time, [9]. 
The major task of the StatCom is to maintain the bus 
voltage magnitude on a reference value, through 
controlling the signals VST and δST, Fig. 4. Besides, 
the proposed control scheme should help to enhance 
the low frequency oscillations. With this purpose, 
signal ey is added for controlling δST. That is, 
without such purpose the control of δST can be 
obtained through the error input ez only. The B-
SNN’s output can be described by [9], 

=y a T w                                                                (4) 
w [ ]Tpwww …21= ,              a  [ ]Tpaaa …21=

where  and  are the i-th weight and the i-th B-
SNN basis function output, respectively; 

iw ia
p  is the 
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number of weights. 
The proposed neural controller is composed by two 
B-SNNs, Fig. 4. The error, ey, between the reference 
voltage and the actual k-th bus voltage, is the input 
for controlling VST. It is assumed that the StatCom 
should maintain a null active power interchange 
with the power system. Thus, the error, ez, between 
the reference interchanged power (0 pu) and the 
actual corresponding power, is used as the input for 
controlling δST. Then the networks can be described 
as follows: 

 

 
Fig. 4. Proposed B-SNN controller. 

,(1 yST eNNV = )1w                                               (5) 

,,(2 zyST eeNN=δ )2w                                          (6) 
where NNi denotes the B-SNN which is used to 
calculate VST and δST;  = w1w 1 and  = [w2w 2 w3]. 
The control law is adapted to the operating point 
modifications or disturbances that can occur. 
However, it requires the following a-priori 
information: the bounded values of ey and ez, the 
size, shape and overlap definition of the basis 
function. Such information allows to bound the B-
SNN input and to enhance the convergence and 
stability of the instantaneous adaptive rule [9]; 
besides, with this information the B-SNN estimates 
the optimal weights’ value. The neural networks 
controllers, (5)-(6), are created by univariate basis 
functions of order 3, considering that both ey and ez 
are bounded within [-1.0, 1.0] pu. 
 
4.1 Learning 
Learning in artificial neural networks (ANNs) is 
usually achieved by minimizing the network’s error, 
which is a measure of its performance, and is 
defined as the difference between the actual output 
vector of the network and the desired one.  
On-line learning of continuous functions, mostly via 
gradient based methods on a differentiable error 
measure is one of the most powerful and commonly 

used approaches for training large layered networks 
in general [10], and for nonstationary tasks in 
particular.  
For the voltage magnitude regulation, the 
controller's quick response is looked for. While 
conventional adaptive techniques are suitable to 
represent objects with slowly changing parameters, 
they can hardly handle complex systems with 
multiple operating modes. The instantaneous 
training rules provide an alternative so that the 
weights are continually updated and reach the 
convergence to the optimal values. Also, 
conventional nets sometimes do not converge, or 
their training takes too much time [9-10, 13-14]. 
 
In this paper, the neural controller is trained on-line 
using the following error correction instantaneous 
learning rule [9], 

( ) ( ) ( )
( )

( )ta
t

te
twtw i

i
ii 2

2

1
a

η
+−=                                       (7) 

where: η  is the learning rate and ( )tei  is the 
instantaneous output error. 
This learning rule has been elected as an alternative 
to those that use, for instance, Newton’s algorithms 
for updating the weights that require Hessian and 
Jacobian matrix evaluation. Equation (7) has been 
obtained through the minimization of the output’s 
mean square error, using descendent gradient rules. 
That is the reason because it is said that the weights 
converge to optimal values [9]. 
Thus, the proposed neurocontroller consists 
fundamentally on establishing its structure (the 
definition of basis functions) and the value of the 
learning rate. Regarding the weights’ updating, (7) 
should be applied for each input-output pair in each 
sample time; the updating occurs if the error is 
different from zero. Respect to the learning rate, it 
takes as initial point one value inside the interval [0, 
2] due to stability purposes [9]. This value is 
adjusted through trial-and-error; with a value close 
to zero the training becomes slow. However, if such 
value is large, oscillations can occur; in this 
application it settles down in 0.55. 
Hence, the B-SNN training process is carry out 
continuously on-line, while the weights’ value are 
updated using only two feedback variables: the bus 
voltage magnitude and the active power interchange 
between the StatCom and the power system. The 
neural network output is calculated by (4). 
5 Studied cases 
The power system in Fig. 1 is studied in order to 
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exhibit the performance and robustness of the 
proposed control scheme. To analyze the results, 
simulations are developed under different scenarios: 
a) with PSS tuned by GA [3] and StatCom 
controlled by B-SNN controller (NNC); b) with PSS 
tuned by GA and StatCom with conventional PI 
control (CONV); c) with PSS tuned by GA [3], 
without StatCom (WPSS). Three operating 
conditions are analyzed. 

5.1 Case 1 
To validate the neural control performance, different 
disturbances are simulated. In the first case the 
system is subjected to a three-phase fault on bus-16, 
at t = 0.08 s during 120 ms; after the fault is cleared, 
the system returns to the initial configuration. Fig’s. 
5-6 display the evolution of some representative 
signals. 

 
Fig. 5. Angular difference at generator 9, Case 1. 
 

 
The results exhibit an NNC satisfactory 
performance, showing better characteristics than 
that of CONV and WPSS control techniques, 
especially those related with the amplitude of the 
overshoots and the settling time. Likewise, the bus 
voltage response exhibits similar features 
maintaining bus-21 voltage at reference value 
despite the closeness to the fault, Fig. 6. 
For the Case 1 (base case) notorious differences are 
not exhibited among the behaviors of the NNC and 
CONV controllers, since this last one has been 
tuned under such condition and it is expected to 
present good performance. 

 
Fig. 6. Bus-21 voltage response, Case 1. 
 

5.2 Case 2 
This case illustrates the system evolution when in t 
= 0.1 s the generator’s active power is increased 15 
percent, except generator-13 which is the slack bus, 
while the loads are increased 25 percent, both 
reactive and active power. Fig. 7 displays the 
voltage at bus-21, where satisfactory coordinated 
performance can be appreciated. The NNC has the 
ability of being updated to the new operating 
condition, improving the WPSS and the CONV 
performance. That is, in spite of being subject to a 
new operative condition, the neurocontroller 
responds appropriately. The NNC and CONV 
control technique have a similar performance for the 
bus-21 voltage support, but the global performance 
in other variables is degraded. On the other hand, 
with only PSSs the voltage drops and the 
oscillations last more time, Fig. 7. This case 
emphasizes the use of the StatCom with the 
neurocontroller. 
 

 
Fig. 7. Bus-21 voltage response, Case 2. 

5.3 Case 3 
The third case validates the appropriate 
neurocontroller performance considering that the 
StatCom is currently installed at bus-35, and the 
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system is subjected to a three-phase fault at bus-34 
in t = 0.05 s with a duration of 100-ms. After this 
time the fault is cleared by tripping line 33-34. Fig. 
8 depicts the active power at generator 1. 
The performance of the three control techniques is 
in accordance with Case 1 and 2. The NNC exhibits 
satisfactory performance, adapting itself easily to 
present circumstances. Obviously, the major impact 
of the StatCom is in those buses close to that where 
the device is connected. 
 

 
Fig. 8. Active power at generator 1, Case 3.0 
 
 
4 Conclusion 
This paper proposes the inclusion of one StatCom, 
controlled by a B-Spline neural network, in a power 
grid that includes additional control devices. The 
performance and applicability of the proposition are 
proved by digital simulation on a multimachine 
power system. This strategy allows appropriately 
controlling the bus voltage magnitude where the 
StatCom is connected, but also it helps to limit the 
oscillations and overshoots in other relevant signals. 
Thus, the feedback signals to the NNC are pertinent 
for a suitable control of the StatCom, exhibiting a 
positive interaction with other controllers. 
The proposed control strategy does not depend on 
the FACTS location and does not depend on the 
PSSs location and their tuning, since the 
neurocontroller is able to adapt by itself to different 
operating conditions. Future papers will exhibit 
results on practical applications. 
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