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Abstract: - Elastic-plastic transitional stresses in an annular disc having variable thickness and variable 
passion’s ratio subjected to internal pressure has been derived by using Seth’s transition theory. It is seen 

that thickness and passion’s ratio variation influence significantly the stresses and pressure required for 

initial yielding. The thickness variation reduces the magnitude of the stresses and pressure needed for fully 

plastic state. It is seem for fully plastic state that circumferential stresses is maximum at the outer surface. 
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1 Introduction 

Elastic – plastic circular disks under the action 

of internal pressures have been investigated by 

several workers. It is well known that disc with 

variable thickness are frequently found in 

mechanical engineering. A literature survey 

indicates that several workers have analyzed 

circular discs with constant material properties 

under various conditions. Durban [1] found an 

exact solution for the internally pressurized 

elastic - plastic, strain hardening, annular plate 

and Chaudhuri [2] obtained stresses in a non-

homogeneous rotating annulus by varying 

Poisson’s ratio of the material while keeping 

Young’s modulus constant. The problem of a 

rotating disc with varying thickness and in 

homogeneity subjected to steady 

inhomogeneous temperature field has been 

solved by Yeh and Han, and Tutuncu [3] 

investigated effect of anisotropy on stress in 

rotating disc. . Güven [4,5] studied the plane 

state of stress in elastic-plastic annular discs 

with variable thickness subjected to external 

and internal pressures, assuming Tresca’s yield 

condition, its associated flow rule and strain 

hardening. In analyzing the problem, these 

authors used some simplifying assumptions. 

First, the deformation is small enough to make 

infinitesimal strain theory applicable. Second,  

 

 

simplifications were made regarding the 

constitutive equations of the material like 

incompressibility of the material and an yield 

criterion. Incompressibility of the material is 

one of the most important assumptions which 

simplifies the problem. In fact, in most of the 

cases, it is not possible to find a solution in 

closed from without this assumption. Seth’s 

transition does not require these assumptions 

and thus poses and solves a more general 

problem from which cases pertaining to the 

above assumptions can be worked out. Seth’s 

transition theory utilizes the concept of 

generalized strain measure and asymptotic 

solution at critical points or turning points of 

the differential equations defining the 

deforming field and has been successfully 

applied to a large number of the problems . 

               Seth [8] has defined the generalized 

principal strain measure as: 
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                          (i =1,2,3 )                              (1) 

where ‘n’ is the measure and ii

A

e  is the Almansi 

finite strain components[9]. For  n = -2, -1, 0, 1, 

2  it gives Cauchy, Green Hencky, Swainger 
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 and Almansi measures respectively. In this 

paper, we investigate the problem of elastic-

plastic transition in a  disc having variable 

thickness and passion’s ratio subjected to 

internal pressure. Non-homogeneity in the disc 

is taken due to variation of Poisson’s ratio of 

the material. The thickness ‘h’ and Poisson’s 

ratio ‘ν ’ are assumed to vary in the radial 
direction as: 

 

 ( ) k
brhh

−= 0 , ( )m
br0νν = ,                          (2)                                                                                                                        

where 00 ,νh ,k and m are real constants and 

2/10 ≤<ν . 

 

2 Governing Equation 

             We consider a thin disc of non-

homogeneous material having variable 

thickness with internal radius a and external 

radius b subjected to internal pressure p as 

shown in figure 1. The disc is thin and it is 

effectively in a state of plane stress that is, the 

axial stress zzT  is zero.  The displacement 

components in cylindrical polar co- ordinate are 

given by [6]: 

 

 ( )β−= 1ru , 0=v , dzw = ,                           (3) 

where β  is function of 22 yxr +=  only and 

d is a constant.v0 
The finite strain components are given by [7]: 

 

 ( )[ ]21
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1
ββ +′−= re rr
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, [ ]21
2

1
βθθ −=
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 ( )[ ]211
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1
de zz
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A

r

A

eee θθ         (4)                                                                                                                   

where /d drβ β′ =  and meaning of superscripts 

“A” is Almansi.                                

Using equation (4) in equation (1), the 

generalized components of strain are: 

 

( )[ ]n

rr r
n

e ββ +′−= 1
1

, [ ]n

n
e βθθ −= 1

1
,                                                                                                                            

( )[ ]nzz d11
n

1
e −−= , 0=== zrzr eee θθ ,         (5) 

where  drdββ =′ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Geometry of Disc Having variable 

thickness and Passion’s ratios. 

 

 

The stress –strain relations for isotropic media 

is given by [21]: 

 

  ijijij eIT µλδ 21 += , (i,j = 1,2,3)                   (6) 

where  kkeI =1 (k =1,2,3). 

Equation (6) for this problem becomes: 

 

 [ ] rrrrrr eeeT µ
µλ

λµ
θθ 2

2

2
++

+
= , 

[ ] θθθθθθ µ
µλ

λµ
eeeT rr 2

2

2
++

+
= , 

 0==== zzzrzr TTTT θθ .                                (7) 

Substituting equation (5) in equation (7), the 

stresses are obtained as: 

                        

( )( ){ }[ ]nn

rr Pccc
n

T 12123
2

+−+−−−= β
µ

, 

   ( )( ){ }[ ]nn Pccc
n

T 11223
2

+−+−−−= β
µ

θθ , 

0==== zzzrzr TTTT θθ ,                                 (8) 

where      Pr ββ =′  and ( )2 / 2c µ λ µ= + . 

The equations of equilibrium are all satisfied 

except: 

r = a 

r = b 

  p 

 r 

       v& h 
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 ( ) 0hThrT
dr

d
rr =− θθ .                                     (9) 

 

Using equation (8) in equation (9), one get a 

non- linear differential equation in β  as: 
                    

( ) ( ) ( )( )
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where Pr ββ =′ (P is function of β  and β  is 
function of  r), dr/d,dr/dhh µµ =′=′  and 

.dr/dcc =′  

 

Transition points of β  in equation (10) are 
1−=P  and ±∞=P .The boundary condition 

are: 

 

rrT = -p  at r =a , rrT = 0  at     r = b.             (11) 

 

2.1 Solution Through The Principal Stress 

 

It has been shown [6-20] that the asymptotic 

solution through the principal stress lead from 

elastic state to plastic state at the transition 

point ±∞→P . We define the transition 

function ‘R’ as 
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Taking the logarithmic differentiation of 

equation (12) with respect to r and using 

equation (10), we get                                              
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Taking the asymptotic value ±∞→P  in 

equation (13), we get: 
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Integrating (14) both side with respect to r, one 

get: 
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where A1 is a constant of integration. 

From equation (12) and (15), we have 
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where A1 is a constant of integration. 

Substituting equation (16) in equation (9), we 

get after integration: 
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Substituting equation (11) in equation (17), we 

get: 
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where  A1 and A2 is a constants of integration. 

Substituting    the   value  of 1A  and   A2, using  

(21)   from   equations  (16)  and (17),  we get 

transitional stresses 
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where R = r/b   and  baR =0 . 

 

 Initial Yielding 

The maximum value of θθT  occurs at radius 

1

m

1

0

R
km1

R =






 −−
=

ν
 (say) for m < 0. For 

example, if we take m = -1, -1.2, -1.5 and k 

=1.34, 1.44, 1.566 and 333.00 =ν  yielding 

starts at the   internal surface and for k =  1.67,  

1.87, 2.17 yielding starts at the external surface 

.For yielding at 1RR = ,equation (19) becomes: 
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and the required pressure is 
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Using equation (21) in equations (18) and (19), 

one gets the transitional stresses as: 
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Stresses for fully-plastic state are obtained from 

equation (18) and  (19) by taking 2/10 →ν . 

There are two plastic zones: 

(1) Inner-plastic zone: 10 RRR ≤≤  

(2) Outer-plastic zone: 11 ≤≤ RR  

For Inner-plastic zone, equation (19) become: 
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and the required pressure is 
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Using equation (24) in equations (18) and (3.8), 

one gets:  
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For Outer-plastic zone, equation (19) become: 
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and the required pressure is 
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Using equation (28) in equations (18) and (19) , 

one gets:  
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 Particular Cases: 

 

         1)  For a flat disc (k = 0) ,elastic-plastic 

transitional stresses  (18) and (19) become 









−















−






=







 m
o

o

o
R

m
m

0m0
0

rr

eeR

m
expR

m
exppR

T
ν

ν

νν

            (30)  












−








=









−

m
o

oo R
mm

m0

0

1m

0

ee

R
m

expRpR

T
ννθθ

ν
ν

                    (31)                                                                             

It has been seen that θθT   is  maximum  at 

radius 2
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0 0.333ν = ,therefore yielding starts  at 2RR =  

equation (31) becomes: 
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and the required pressure is 
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Using equation (33) in equations (30) and (31), 

one get the transitional stresses as: 
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Stresses for fully-plastic state are obtained from 

equations (30) and (31) by taking ( 210 →ν ). 

There are two plastic zones: 

(1) Inner-plastic zone: 10 RRR ≤≤  

(2) Outer-plastic zone: 11 ≤≤ RR . 

For Inner-plastic zone, equation (31) become: 
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and the required pressure is 
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Using equation (37) in equations (30) and (31), 

one gets:  
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For Outer-plastic zone, equation (31) become: 
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Using equation (41) in equations (30) and (31), 

one gets:  
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     2) For (m = 0) ,equation (3.1) taking 

logarithmic differentiation and taking P ±∞→ , 

one  get: 
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where 3A  is a constant of integration. 

Substituting equation (44) from equation (9), 

we get after integration 
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where 4A  is a constant of integration. 

Using boundary condition (2.9) in equation 

(4.16), one gets: 
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Substituting 3A  and 4A  in equations (44) and 

(27) and using (2), one  gets: 
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It has been  seen  that  θθT  has  maximum  value  

at the internal surface 0RR =  (say) for k < 1, 

therefore yielding start at inner surface, then 

equation (47) becomes: 
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and required pressure for initial yielding is 
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Stresses for fully-plastic state are obtained from 

equation (47) by taking ( 2/10 →ν ) and R = 1, 

one gets: 
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and the required pressure for fully-plastic state 

is given by: 
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Substituting equation (51) in equations (46) and 

(47), one get stresses: 
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For fully-plastic state ( 2/10 →ν ) using 

equation (51) in equations (52) and (53), one 

get: 
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It can be seen that equation (54) and (55) for 

homogeneous material are same for  fully 

plastic state as given by and Pooja  Kumari 

[20]. 
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Numerical   Illustration and Discussion 
 To study the combined effects of non-homogeneous 

and thickness variation as given in equation (1.1) for 

disc with radii  ratio  R0 = 0.5 and 0ν = 0.333 has 

been consider. As a numerical example, if we take m 

= -1,-1.2 we seen from that yielding of disc (R0 = a/b 

= 1/2) at different pressure and different values of  k  

has been given. It can be seen that yielding occurs at 

radius R = R1 for m < 0 and depending upon different 

values of k. For m = -1, -1.2 and k = 1.34, 1.441859 

and 333.00 =ν  yielding starts at the internal surface 

of the disc at pressures 1.184873 P, 0.973439 P and 

for k = 1.67, 1.87 it occurs at the yielding starts at the 

outer surface at pressures 0.752243 P, 0.627435 P 

i.e., as the values of k = 1.34 to 1.87, yielding of disc 

shifted from internal surface towards the outer 

surface at a lesser pressure. It is also seen that the 

non-homogeneous disc having variable thickness 

requires high percentage increase in pressure to 

become fully plastic from initial yielding as 

compared to isotropic material (Brass). 

     In fig. 2, curves have been drawn between 

pressure required for initial yielding of non-

homogeneous disc having variable thickness and 

radii ratio a/b. It is seen that, less pressure is required 

for yielding as the thickness ratio a/b of the disc 

increases. In Figs. 3, 4 and 5, curve have been drawn 

between stresses distribution in a non homogeneous 

disc with variable thickness at the transitional state 

for different values of k and m  with respect to radii 

ratio R = r/b. It is seen that circumferential stress is 

maximum at the internal surface of the flat disc 

whereas it is maximum at the outer surface of the 

disc having variable thickness. 

In fig.6, curve have been drawn Stresses distribution 

In a non homogeneous disc with variable thickness 

for fully plastic state for different values of k with 

respect to radii ratio R = r/b, It is seen that the 

circumferential stresses is maximum at the outer 

surface.  

Conclusion 
It is seen that thickness and passion’s ratio variation 

influence significantly the stresses and pressure 

required for initial yielding. The thickness variation 

reduces the magnitude of the stresses and pressure 

needed for fully plastic state. It is seem for fully 

plastic state that circumferential stresses is maximum  

 

at the outer surface. 
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