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Abstract: - Elastic-plastic transitional stresses in an annular disc having variable thickness and variable
passion’s ratio subjected to internal pressure has been derived by using Seth’s transition theory. It is seen
that thickness and passion’s ratio variation influence significantly the stresses and pressure required for
initial yielding. The thickness variation reduces the magnitude of the stresses and pressure needed for fully
plastic state. It is seem for fully plastic state that circumferential stresses is maximum at the outer surface.
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1 Introduction

Elastic — plastic circular disks under the action
of internal pressures have been investigated by
several workers. It is well known that disc with
variable thickness are frequently found in
mechanical engineering. A literature survey
indicates that several workers have analyzed
circular discs with constant material properties
under various conditions. Durban [1] found an
exact solution for the internally pressurized
elastic - plastic, strain hardening, annular plate
and Chaudhuri [2] obtained stresses in a non-
homogeneous rotating annulus by varying
Poisson’s ratio of the material while keeping
Young’s modulus constant. The problem of a
rotating disc with varying thickness and in
homogeneity subjected to steady
inhomogeneous temperature field has been
solved by Yeh and Han, and Tutuncu [3]
investigated effect of anisotropy on stress in
rotating disc. . Giiven [4,5] studied the plane
state of stress in elastic-plastic annular discs
with variable thickness subjected to external
and internal pressures, assuming Tresca’s yield
condition, its associated flow rule and strain
hardening. In analyzing the problem, these
authors used some simplifying assumptions.
First, the deformation is small enough to make
infinitesimal strain theory applicable. Second,
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simplifications were made regarding the
constitutive equations of the material like
incompressibility of the material and an yield
criterion. Incompressibility of the material is
one of the most important assumptions which
simplifies the problem. In fact, in most of the
cases, it is not possible to find a solution in
closed from without this assumption. Seth’s
transition does not require these assumptions
and thus poses and solves a more general
problem from which cases pertaining to the
above assumptions can be worked out. Seth’s
transition theory utilizes the concept of
generalized strain measure and asymptotic
solution at critical points or turning points of
the differential equations defining the
deforming field and has been successfully
applied to a large number of the problems .

Seth [8] has defined the generalized
principal strain measure as:

A

& ATy A 1 A Y2
e, :I 1-2e; de, =—|1-|1-2¢, ,
0 n

(i=1,23) (1)

A
where ‘n’ is the measure and e;; is the Almansi
finite strain components[9]. For n=-2, -1, 0, 1,
2 it gives Cauchy, Green Hencky, Swainger
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and Almansi measures respectively. In this
paper, we investigate the problem of elastic-
plastic transition in a disc having variable
thickness and passion’s ratio subjected to
internal pressure. Non-homogeneity in the disc
is taken due to variation of Poisson’s ratio of
the material. The thickness ‘4’ and Poisson’s
ratio ‘v’ are assumed to vary in the radial

direction as:

h=hy(r/b) " v =v,(r/b)", (2)
where h,,v,.,k and m are real constants and
O<v<1/2.

2 Governing Equation

We consider a thin disc of non-
homogeneous  material  having  variable
thickness with internal radius @ and external
radius b subjected to internal pressure p as
shown in figure 1. The disc is thin and it is
effectively in a state of plane stress that is, the
axial stress 7 is zero. The displacement
components in cylindrical polar co- ordinate are
given by [6]:

u=r(l—ﬁ),v:0,w:dz, 3)

where g is function of » =,/x* + y* only and

d 18 a constant.vy
The finite strain components are given by [7]:

2rr Z%[l—(”ﬂ""ﬂ)z],z’ae :%[l_ﬂzl

A A
eezzeerO

(4)

where f'=df/dr and meaning of superscripts
“4” 1s Almansi.

e :%[1—(1—61)2],2,49 _

Using equation (4) in equation (1), the
generalized components of strain are:

1 FA) 1 .
err Z—[l—(l"ﬂ +ﬂ) ]aeee :_[l_ﬂ ]5

n n
ezz:i[l_(l_d)n]’erﬁ:eﬁz:ezr:()’ (5)
where B'=dp/dr.
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Figure 1. Geometry of Disc Having variable
thickness and Passion’s ratios.

The stress —strain relations for isotropic media
is given by [21]:

T, =26,1, +2ue;, (ij =1,2,3) (6)
where [, =e,, (k=1,2,3).
Equation (6) for this problem becomes:
2 u
= e +e,|+2ue.
I /1+2#[rr 00] He,,
2Au
Ty :m[err +eae]+ 2,
TrHZT&:Tzr:TZZZO' (7)

Substituting equation (5) in equation (7), the
stresses are obtained as:

1, =2p-2e-prli-cr-cXp+1y ]|

THH=2—’”[3—20—ﬂ”{2—c+(l—c)(P+1)"}],

TrHZTﬂz:Tzr:Tzz:O’ (8)
rp'= PP and c:2,u/(/1+2,u).

The equations of equilibrium are all satisfied
except:

where
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%(rTnh)— hT,, =0.

)

Using equation (8) in equation (9), one get a
non- linear differential equation in S as:

7 ﬂz_—c&mlr}

+ﬂ“[1—(P+1)”]+
r,B“c’[1+(P+l)"]—
nPﬂ“[l—c+(2—c)(P+1)“]

—2rc’

L dP
2—chnfPP+1)" — =
(2=ch P+

(10)
where rB'=pP (P is function of S and g is
function of r), h'=dh/dr,x'=du/dr and
¢'=dc/dr.

Transition points of £ in equation (10) are
P=-1 and P =+w.The boundary condition
are:

T =0 at r=>h.

ST

T =-p atr=a (11)

2.1 Solution Through The Principal Stress

It has been shown [6-20] that the asymptotic
solution through the principal stress lead from
elastic state to plastic state at the transition
point P —too. We define the transition
function ‘R’ as

R =T :(2?”]{(3‘2‘:)” ke
(12)

Taking the logarithmic differentiation of
equation (12) with respect to » and using
equation (10), we get
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d(logR) _ 4 1 H[l_cj(ﬂJrE]

dr 7] 3-2C- 2—-cAu h
2-C I-c
r n
B+ (1-C)p|[|3-2¢- g™+ (2-¢)
(P+1) (P+1)

(13)
Taking the asymptotic value P — foo in
equation (13), we get:

d(logR) :(v—l)_ ¢ ¢ b’ (14)

dr r (1-¢) (2-¢) h
Integrating (14) both side with respect to r, one
get:

Av v, (r)"
R="""exp —*| - 15
rh p{ m (bj } (13)
where A, is a constant of integration.
From equation (12) and (15), we have
Av v, (r)"
R="—exp| || |=T 16
h pl: m (b] } 00 (16)

where 4 is a constant of integration.
Substituting equation (16) in equation (9), we
get after integration:

rhT, = A, + 4 exp{ﬁ(ij }
m\ b

Substituting equation (11) in equation (17), we
get:

A4, =

(17)

pah(a)
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pah(a)ev”/ "

Va(ajm
m\ b
e

and 4, =

5

v,/m

where A; and A4, is a constants of integration.
Substituting the value of 4, and A», using
(21) from equations (16) and (17), we get
transitional stresses

—exp(v, /m)
T = F 1 18
I [evo/m _evoR;“/mJ ( )
1-k m+k-—1 m
T, - pR, R v, exp(vOB /m) (19)

levo/m _ e"oRT/m J

where R =r/b and R, =a/b.

Initial Yielding
The maximum value of 7,, occurs at radius
1

R=(ﬂjm =R, (say) for m < 0. For

Vo
example, if we take m = -1, -1.2, -1.5 and k&
=1.34, 1.44, 1.566 and v, =0.333 yielding

starts at the internal surface and for k= 1.67,
1.87, 2.17 yielding starts at the external surface

.For yielding at R = R, ,equation (19) becomes:

1-m—k
m

_ evDRg’/m)

=

Vo

VR " eXP(
|T99|R:R1 :‘ (evg/m

=Y(say).
and the required pressure is

(20)

|-evo/m _ evoRg“/m .|

m+k-1
voRy" [( —m- k)/Vo] m
exp[(1-m —k)/m]

Using equation (21) in equations (18) and (19),
one gets the transitional stresses as:

21)

b, =

~ |

T;r ~ leéfkkal [evoR"'/m _ evo/ml

Lo —gln]

o =

”
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& lel kRm+k IV e[v R" /m]
Y {e /m_eVR /m}

Stresses for fully-plastic state are obtained from
equation (18) and (19) by taking v, > 1/2.
There are two plastic zones:

(1) Inner-plastic zone: R, < R < R,

(2) Outer-plastic zone: R, < R <1
For Inner-plastic zone, equation (19) become:

Oy = (22)

pRm R /2m
|Tﬁt9|1e:R0 - LI- 12m _ ’"/2mJ| =Y*(say) (23)
and the required pressure is
. D 2[61/2m _eR;"/Zm“
pl - Y* _{ R(;neR:z/zm (24)

Using equation (24) in equations (18) and (3.8),
one gets:

_ - 2 Py
piRy* R | el ™ —g2m

T
* _ _mwo_ 2
O Y* (el/Zm _eR?/Zm) ( 5)
Rim
¢ Y* 2(61/2m _eRg‘/Zm)

For Outer-plastic zone, equation (19) become:

| ple Y2m |_ .
|T00|R 1 ‘ ( Vam _ R Jam )‘=Y (say) (27)
and the required pressure is
. 2(61/2m _ eR;’/Zm
p1=§f{ TERE U (28)

Using equation (28) in equations (18) and (19) ,
one gets:
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l:R :‘ 1
_ _ 2
f*R})kR“ et™™ —g2m

Hx Trr
Oy =yw = 1/2 R™/2m >
Y e!?m —eo
Rl"ﬂ
sy 1-k +k-1_om
ok Trr _ pl RO Rm e2m

2(61/2111 _eRg‘/zm) : (29)

Particular Cases:
1) For a flat disc (k = 0) ,elastic-plastic

transitional stresses (18) and (19) become

PR, (exp{vo R™ } - exp{voD
T - m m

I v
Yogm
R|:evo/m —e [m o

0 q

It has been seen that 7,, is
1

(30)

€2))

maximum at

_me =R, (say) form <0 and

radius R = (1

Vo
v, = 0.333 ,therefore yielding starts at R =R,
equation (31) becomes:

pvoR, exp{l_mj . m-l
m -—m| ™
‘THH‘R:R = ( J = Yl (Sa}’)
2 Yo [ﬁ]{g‘} VO
em —e"
: (32)
and the required pressure is
Yo Yo pm
[e m __ e{ m }]
p=2= = = Y/(say)
Y m-1
1 lk(l - mJ m [1 -
VolRy | —— exp
m v,
(33)
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Using equation (33) in equations (30) and (31),
one get the transitional stresses as:

szole[‘;Rm} - e::}

T
o =—"= — (34)
Y R{efg L]
T, p,R,R™'v e[%Rm}
7= ;f - 2[ev:/m _evooka"/m (35)

Stresses for fully-plastic state are obtained from
equations (30) and (31) by taking (v, — 1/2).
There are two plastic zones:

(1) Inner-plastic zone: R, < R < R,

(2) Outer-plastic zone: R, < R <1.
For Inner-plastic zone, equation (31) become:

_| FpqueR;J“/zm
- ‘2|.el/2m _ekg‘/zm

|T99|R:RO

J‘ =Y, (say) (36)

and the required pressure is

26[61/2m _eR;)“/zm]

P="~+~= [Rm}
Rie an

Using equation (37) in equations (30) and (31),

one gets:

(37)

T *R R‘“/Zm _ 1/2m
oy = =Pl —2 (38)
Y, R lel/Zm R /2mJ
Lm
. T *lekRmfl 2m
ol = — PRy c (39)

Y, Z[e‘/zm —eRg‘/sz

For Outer-plastic zone, equation (31) become:

/2m
pROel -
Too|_ =| f =Y, (say)  (40)
| 99|R_1 ‘2|.el/2m _eRO/ZmJ‘ 1
and the required pressure is:
m m/om
" p 2[61/ m_eR }
P == :[ 1/2m (41)
Y, R,e
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Using equation (41) in equations (30) and (31),
one gets:

p;(*RO (eR”’/Zm _ el/Zm)

*k err
O = =
" Yl** R(el/Zm _eR(;"/Zm)
Rﬂ‘l
w I, ‘R,R" e
o, = = pi (42)

Y 2(61/2m —e /2'”)

2) For (m = 0) ,equation (3.1) taking
logarithmic differentiation and taking P — oo,
one get:

dllogR) 1 1’

dr r2-c) h°
Integrating equation (13)with respect to », one
get:

(43)

R, = T =Ty (44)

where 4, is a constant of integration.

Substituting equation (44) from equation (9),
we get after integration

1-c
A;rre(2-c¢)
(i-¢)
where A, is a constant of integration.

Using boundary condition (2.9) in equation
(4.16), one gets:

rT_h = +A, (45)

1-c

a-ofo -a”

A, - Ph@)1- )

Substituting 4, and A4, in equations (44) and
(27) and using (2), one gets:

_PRGFR™ - 1R
TRy o
B pVOR})—kRv(ﬁ—k—l
Ry

(47)
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It has been seen that 7,, has maximum value
at the internal surface R =R, (say) for k < 1,

therefore yielding start at inner surface, then
equation (47) becomes:

_[voPRY | _
Taolecw, =1 2o =2 (48)
and required pressure for initial yielding is
1-R
py=b =0 (49)
Y,  VRy

Stresses for fully-plastic state are obtained from
equation (47) by taking (v, ->1/2)and R =1,
one gets:

PR,

A,

and the required pressure for fully-plastic state
is given by:

*:Lzz(l_\/R_O) (51)
Ps Y; R:)—k :
Substituting equation (51) in equations (46) and
(47), one get stresses:

_E: p3R10—k(Rv0 _l)Rk—l

| 90|R:1 -

=Y. (50)

oy, (I-ry)
R —1 l—k—vOqu
IR N
_ T%, _ V0p3R10—kRk+vo—l ~ ]Klo—k—v0 Rk+v0—1
O,y = = _

v, U-Rp) Ry
(53)
For fully-plastic state (v, —>1/2) using
equation (51) in equations (52) and (53), one
get:

oO. =

T _PRUWRIRY o e

R
(54)
1
oy = To (PRURT i (55)
=N

It can be seen that equation (54) and (55) for
homogeneous material are same for fully

plastic state as given by and Pooja Kumari
[20].
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Numerical Illustration and Discussion

To study the combined effects of non-homogeneous
and thickness variation as given in equation (1.1) for
disc with radii ratio Ro= 0.5 and v,= 0.333 has

been consider. As a numerical example, if we take m
= -1,-1.2 we seen from that yielding of disc (Ry = a/b
= 1/2) at different pressure and different values of k&
has been given. It can be seen that yielding occurs at
radius R = R; for m < 0 and depending upon different
values of k. For m = -1, -1.2 and k= 1.34, 1.441859

and v, = 0.333 yielding starts at the internal surface

of the disc at pressures 1.184873 P, 0.973439 P and
for k=1.67, 1.87 it occurs at the yielding starts at the
outer surface at pressures 0.752243 P, 0.627435 P
i.e., as the values of £ = 1.34 to 1.87, yielding of disc
shifted from internal surface towards the outer
surface at a lesser pressure. It is also seen that the
non-homogeneous disc having variable thickness
requires high percentage increase in pressure to
become fully plastic from initial yielding as
compared to isotropic material (Brass).

In fig. 2, curves have been drawn between

pressure required for initial yielding of non-
homogeneous disc having variable thickness and
radii ratio a/b. It is seen that, less pressure is required
for yielding as the thickness ratio a/b of the disc
increases. In Figs. 3, 4 and 5, curve have been drawn
between stresses distribution in a non homogeneous
disc with variable thickness at the transitional state
for different values of k and m with respect to radii
ratio R = r/b. It is seen that circumferential stress is
maximum at the internal surface of the flat disc
whereas it is maximum at the outer surface of the
disc having variable thickness.
In fig.6, curve have been drawn Stresses distribution
In a non homogeneous disc with variable thickness
for fully plastic state for different values of k with
respect to radii ratio R = r/b, It is seen that the
circumferential stresses is maximum at the outer
surface.

Conclusion

It is seen that thickness and passion’s ratio variation
influence significantly the stresses and pressure
required for initial yielding. The thickness variation
reduces the magnitude of the stresses and pressure
needed for fully plastic state. It is seem for fully
plastic state that circumferential stresses is maximum
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at the outer surface.
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