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Abstract-This work is devoted to the development of the algorithms of solutions of boundary problems of 

mathematical physics based on the boundary elements method (BEM). The main advantages of the boundary 

elements method are decrease of dimension of a problem on unit, carrying discretization on the border of 

investigated area, and also obtaining a continuous decision in the interior of domain. As a result the quantity of 

calculations is reduced and accuracy of the decision rises. Distinctive features of the approach offered by the 

author are a use of analytical integration and ideology of parallel calculations at algorithm level. 
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1 Introduction 
The method of boundary elements had been started 

to practice in the sixties of the XX century. At that 

time the works of Kupradze [1], Mikhlin [2] and 

Rizzo [3] had been published. The fundamental 

BEM algorithms of the decision of various types of 

problems were generalized in books [4 – 6]. 

Recently other approach to the solution of the 

boundary integrated equations has expanded – the 

approach on the basis of a method of Galerkin [7]. 

The works [8-10] are devoted to analytical 

integration for the Galerkin approach to BEM. Thus 

only singular integrals can be calculated analytically 

whereas integrals that have not features are 

calculated numerically. In the works [11 – 12] 

formulas for analytical calculation of all integrals 

are received. Last tendency is perspective for 

increase a speed of calculations and accuracy of the 

decision of problems. 

 

 

2 Modified of boundary element 

method (MBEM) 
 

2.1 BEM for two-dimensional static 

problems of the theory of elasticity 
Let's take a two-dimensional problem of elasticity 

for plane area   of undefined form. We will 

consider that the mass forces are absent. Taking into 

account this assumption, and also considering 

boundary conditions of the 1st and 2nd types, the 

expression for any internal point  of area   can 

be transformed to an integral: 
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Here Sx – a boundary point of area ,   – an 

internal point of area influence function  xuij ,
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From the equation (1) follows that the movement at 

any point  can be interpreted as the result of 

influence of displacements or surface stresses 

applied to the boundary. 

Let the boundary S  of the area  in some way is 

divided into boundary elements. 

Various cases of approximation of unknown 

boundary values were considered. Linear 

approximation was appeared to be the most cost-

effective without degradation of accuracy: 
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where 
 k

iu and 
 k

if  
-   nodal values of the 

components of the vectors of displacement and 

surface stress,  xNk  is a linear functions of the 

shape. With such interpolation for calculating the 
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coefficients of the resolving system of linear 

equations and then for calculating the displacement 

within the area it is necessary to calculate the 

following integrals: 

       
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AB
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AB

kijijk xdSxNxffI , ,     (4) 

Under such conditions nodes 1P and 2P are inside 

the element symmetrically about its center (Fig.1). 

The distance l  from the node to the end of the 

element is a parameter of the element. The 

investigated magnitudes are discontinuous at the 

junctions of the elements. 
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Fig.1. Linear discontinuous element 

 

Because each node is located on the smooth side of 

the border, the resolving system of linear equations 

in this case will be the following: 
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Where 
 1p

x  and 
 2p

x  are nodal points of the 

element with index p , 
  xN p
1  and 

  xN p
2  are 

the corresponding shape function, 
 kq
ju and 

 kq
jf

 
are nodal values of displacements and surface stress. 

Here and further the nodes on each element are 

numbered from 1 to 2 in the direction of traversal of 

the boundary of counter-clockwise. 

After solving the system (5)     xuxf jj

 ,  

a displacement and a strain within the region can be 

calculated as follows: 
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uS
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here Sx ,  . 

In the case of continuous interpolation the ends of 

the elements are taken as the nodes of interpolation. 

The total number of nodes in this case is twice less 

than in a discontinuous interpolation, while the 

investigated magnitudes are continuous along the 

border. However, the problem is compounded by 

the fact that nodes do not lie on a smooth surface 

but in the corners of the polygon formed by the 

boundary elements. 

Thus, the calculation of integrals (3), (4) is an 

important part of the solution of two-dimensional 

elasticity problems with boundary element method. 

Usually, all these integrals, except those with 

features are computed numerically. Each influence 

point is fixed and for this point integration is 

performed over all elements of the border.  

 

 

2.2 Modification of the method 
The proposed approach selects the most appropriate 

"basic element" which allows an analytical 

calculation of the integrals necessary to obtain 

compact formulas. These formulas are the functions 

of the coordinates of the influence point. It is shown 

that for every boundary element and the 

corresponding influence point there is an equivalent 

block, which is appeared to be the "basic element", 

and the point for all the results of the integration 

will have the equal value relationships. Thus, 
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instead of making a bypassing of all the elements of 

the border with the numerical integration "around" 

the fixation of the influence point suggested to make 

a bypass of the influence points which determined 

by the linear transformation for a "basic element". 

Obtained elementary functions are valid for all 

elastic problems. In two-dimension case as a basic 

element a segment lying on a coordinate axis one 

end of which lies at the origin of the coordinates is 

chosen. To calculate the integrals on the selected 

”basic elements” we obtain simple analytical 

formulas that are applicable to any problem for any 

mechanical properties of the material. Calculation of 

the coefficients of the system of equations, as well 

as determination of the values of variables at 

internal points of the field is carrying out by a linear 

substitution of various coordinates of points of 

influence. Substitution of numerical integration on 

an analytic integration yields a significant reduction 

in computation time. Naturally, the accuracy of the 

calculation of integrals increases, which leads to a 

more accurate solution of the original problem. As a 

result, solutions were obtained in the form of 

continuous analytic functions. Continuity of the 

solution by the modified method of boundary 

elements in the domain means that we can 

accurately determine the parameters of the stress-

strain state at any interior point. In our case, 

obtaining a solution in the form of analytical 

formulas allow to calculate the physical and 

mechanical characteristics, which are defined by 

differentiation such as gradients of stress. 

Coefficients of the system of equations (3) can be 

calculated independently, so the level of 

parallelization when filling the system matrix 

depends only on the number of processors. 

Formulas (5) (6) are valid for any interior point  of 

this area, and the computation of displacements, 

strains and stresses at one point does not depend on 

the calculation of these quantities at other points, 

therefore the level of parallelization for the 

calculation of the stress-strain state within this area 

also depends on the quantity of processors. 

It is important to note that once resolved the 

problem of determining the boundary values we can 

change many times a grid of internal points and 

recalculate the necessary values on it. In particular, 

we can select only the "dangerous" zone inside the 

area and carry out the calculations only on it, which 

is important, for example, in the study of complex 

objects with structural stress concentrators. 

 

 

2.3  Analytical integration of the functions of 

influence   
. 

To obtain compact formulas of analytical integration 

we propose the following procedure. Calculated 

block of arbitrary rectilinear boundary elements and 

arbitrary points of influence associated with the 

block of "basic element" and the corresponding 

influence point, so that the integrals over them are 

linked.  As a result, for the calculation of the 

integrals over an arbitrary interval for an arbitrary 

influence point it would be sufficient to choose a 

way of calculating coordinates of new influence 

point and calculating the integrals for coefficients 

matrix of system of equations according to formulas 

obtained before. 

Let’s take a segment AB on the plane, where A(A1, 

A2) and B(B1, B2) are arbitrary points and ξ(ξ1,ξ2) is 

the influence point (Fig. 2) when the bypass of the 

boundary is counter-clockwise, 
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             Fig. 2 Coordinate transformation. 

The movement along the element AB goes from 

point A  to point B i.e. outward normal is oriented 

the way as shown in Fig. 2. A displacement u=(u1 

,u2) working on a segment AB and surface stress 

f=(f1,f2) cause at the point ξ some displacement 

u(ξ)=(u1(ξ,) u2(ξ,)). Let’s make a coordinate 

transformation that remains the distance 

   222

2

11 ABABL 
  and displays the point A 

to the origin O(0,0) and displays the point B to the 

point C(L,0) where  the movement along the 

element AB  goes from A point to point B, i.e. 

outward normal is oriented as shown in Fig. 2. A 

displacement u(ξ)=(u1(ξ,) u2(ξ,)) working on a 

segment AB and surface stress  f(ξ)=(f1(ξ,) f2(ξ,)) 
cause at the point ξ  some   displacement 

u(ξ)=(u1(ξ,),u2(ξ,)) 
is the length of the segment AB. Such 

transformation is a combination of parallel 

translation and rotation by an angle φ (Fig. 2). A 

arbitrary point x(x1,x2) on the plane mapped to the 
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point  21, xxx
 and its associated relations are the 

following: 

AxQx  ,  AxQx  1
      (7) 

where 









2

1

x

x
x , 
















2

1

x

x
x , 










2

1

A

A
A ,  

Q  is rotation matrix: 











2221

1211

qq

qq
Q , 

TQQ 1
,   (8) 

cos11
2211 




L

AB
qq , 

sin22
2112 




L

AB
qq .  

Here and further in all relationships one-

dimensional arrays are treated as matrix-columns. A 

arbitrary vector  21,www   in the plane is 

displayed in the vector  21,www  : 

wQw  , wQw 1 .   

It is obvious that such transformation is a rigid 

displacement of the investigated system of the 

objects as a whole and does not change the elastic 

interaction. This means that if the surface 

displacements uQu 1  and the surface stress 

fQf 1  effect on the segment OC , they will 

cause a displacement     uQu 1  at the 

point  AQ    1
. Using these relations we can 

establish the following relation between the 

integrals (3), (410) over the segment AB  and the 

corresponding integrals over the segment OC for an 

influence point : 
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Thus, we found that for the calculation of the 

integrals over a arbitrary segment AB for the point 

of influence ξ it is sufficient to construct the matrix 

Q (8), define through a point   and calculate the 

integrals over the segment OC that is less 

complicated problem. 

 

 

2.4 Deformation is calculated by the 

formulas  

Strains  ij  and stresses  ij  are determined by 

known differential relations and Hooke's law 
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Here ;  - elastic modules  
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3 Examples  
As an illustration, let’s show a comparison our 

numerical solution with analytical solutions of the 

simplest problem for tension an elastic rectangular 

plate with elliptical hole to uniform stress. We 

assume that the deformation occurs under the 

condition state of plane stress. Plate size 

M=100,H=1 m, ratio of the semi axes m elastic 

parameters were as follows: E=2·10
11

 Pa, 33.0 .  

 

Fig.3. Tension a long strip with an elliptic hole. 

_____ – a/b=1 , _____ – a/b=2, _____ – a/b=5 

On figure 3 shows the solution of the Kirsch 

problem with different ratios of semi-diameter of 

the ellipse. Ratio P  computed along the defect 

mouth is identical with the analytical solution. At 

the beginning of the defect mouth for a round hole 

(a/b = 1) ratio P = 3. The decision was carried 

out by means of parallel programs 

 

Tension of a plate with a crack. 

 
 

Fig. 4 The problem with the crack   

         FEM;        MBEM          analytical solution 

 

Plate size (AB) M=200, (AD) H=200, the size of a 

crack l=2. Elastic parameters were as follows: 

E=2·10
11

 Pa, 33.0 .  
Here the results of calculations by MBEM fully 

coincide with the analytical  

From figure 4 visible that the decision by FEM and 

MBEM coincide but analytic solution agrees with 

these decisions only in the immediate vicinity of the 

mouth of the crack, and it has been continued 

by 1F   
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4 Effectiveness of the algorithm for 

multiprocessor  
Accelerating the computation time during the 

transition from numerical integration to analytical 

integration for the elastic problem.  

Table 1 

n/p k,M it1 , c 
at1 , c 

y
k1 , c 

1 200, 4 4737 1.472 3218 

2 200, 4 2370 0.736 3220 

4 200, 4 1210 0.367 3297 

8 200, 4 614 0.221 2778 

32 200, 4 148 0.112 1325 

2 500, 10 15157 5.0 3031 

4 500, 10 7491 2.4 3121 

8 500, 10 3746 1.2 3121 

16 500, 10 1874 0.6 3123 

n/p k,M it3 , c 
at3 , c 

y
k3 , c 

1 200, 4 418 0.220 1900 

2 200, 4 224 0.218 1027 

4 200, 4 108 0.246 440 

32 200, 4 16 0.047 345 

2 500, 10 3292 0.165 4039 

4 500, 10 1657 0.739 2242 

8 500, 10 829 0.708 1171 

16 500, 10 433 0.844 1513 

n/p - order of system / number of processors   

k - number of partition points of each of the M parts 

of the boundary region 

t1
i
 - time for computing integrals of Green's tensor 

for the boundary element 

t3
i- time for computing integrals of Green's tensor 

and their derivatives for domestic points  

t1
a- the numerical integration 

t3
a - compute integrals using analytic formulas 

k1
ac

-,k3
ac

 the corresponding coefficients speedup. 

 

5 Conclusion 
In the paper gives a numerical-analytical BEM, 

eliminating the numerical integration, driven to the 

calculation of elementary functions and is available 

for solving engineering problems for students and 

researchers. Method significantly reduces the 

computation time without loss of accuracy of the 

solution. 
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