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Abstract: - In this work, we shortly review the mathematical concepts of the well known numerical standard 
disctretization methods: Approximate, Exact and Truncated discretization methods and, the numerical non-
standard discretization methods, named: Euler, Euler-Picard and Euler-Taylor-Picard discretization methods. 
The standard discretization methods are applicable to continuous linear dynamics and a very limited class of 
nonlinear continuous dynamics; while the non-standard discretization methods are applicable to linear and 
nonlinear dynamics in general. The non-standard discretization methods theory was developed recently and 
only simulated results were presented. Our contributions in this work are to show the obtained results and 
analysis from the digital implementation of linear and nonlinear control laws on a nonlinear control mechanical 
system: the simple pendulum, using the numerical standard and non-standard discretization methods to 
discretize the continuous dynamics. Through the implementation we analyze the real validation of the 
numerical non-standard discretization methods. The results show that better approximation to the real data, 
obtained from the controlled real system, is given when the numerical non-standard discretization methods are 
used to dicretize the nonlinear dynamics. Also we validated the advantages of using digital nonlinear control 
laws on nonlinear control systems. 
 
 
Key-Words: - Nonlinear control, nonlinear discretization, nonlinear state feedback, numerical method, 
mechanical system, simple pendulum. 
 
 
1 Introduction 
As we know, in general, real physic control systems 
are nonlinear. And usually the proceeding is to 
obtain a linear approximation of the nonlinear 
system model, which will represent the nonlinear 
real system into an operational range, then to design 
a linear control law that performs properly into that 
range. Commonly this operational range is small 
and, that is why, it is necessary to design nonlinear 
control laws that can perform properly into a much 
larger operational range. 

Motivated by the linear control limitation 
explained above, were developed the extended and 
exact linearization methods. These methods allow to 
design nonlinear control laws using states feedback 
[1][2]. 

On the other hand, digital implementation of 
control laws has become a common way nowadays. 
In case of continuous linear dynamics, there are well 
developed methods to obtain its discrete-time 
dynamic representation counterpart. We called those 

methods the standard discretization methods: 
Approximate, Exact and Truncated discretization 
methods (see [3]-[5] among others). 

For the case of continuous nonlinear dynamics 
the non-standard discretization methods: Euler, 
Euler-Picard and Euler-Taylor-Picard discretization 
methods were developed and presented only through 
simulated results (see [6]-[8]). 

The non-standard discretization methods are 
bases on Euler polygons, Picard iteration and Taylor 
series expansions. Then, the methods might be 
described as a triplet: Euler sampling, Picard 
interpolation and Taylor approximation.  

In this work, we present the validity of the non-
standard discretization methods through 
implementation on a nonlinear dynamical 
mechanical control system: the simple pendulum, 
showed in Fig. 1. The nonlinear control design, 
using extended and exact linearization, for the 
simple pendulum is carried out in continuous-time 
and then, the obtained continuous nonlinear control 
laws dynamics are discretized by the numerical non-
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standard discretization methods. The nonlinear 
discrete-time control laws are implemented on a 
computer, so the closed-loop is obtained as show in 
Fig. 2. 
 

 
Fig.1 Mechanical system: the simple pendulum. 

Control and Automation Laboratory. Universidad de Los 
Andes. 

 

 
Fig.2 The simple pendulum in closed-loop. Control 

and Automation Laboratory. Universidad de Los Andes. 
 

This work is organized as follows: section 2 
gives the basic theory of the numerical standard and 
non-standard discretization methods; section 3 gives 
the design of the states feedback linear and 
nonlinear control laws; in section 4 we present the 
main results: a) discretization of the nonlinear 
control laws, b) implementation of the digital 
control laws on a nonlinear mechanical system: the 
simple pendulum, c) validation of the numerical 
non-standard discretization methods, and d) some 
advantage of using digital nonlinear control laws, 
especially for the case of the simple pendulum; 
finally in section 5 the conclusions and future work 
are stated. 

Part of this work was presented in the 9th 
WSEAS International Conference on Computational 
Intelligence, Man-Machine Systems and 
Cybernetics [9]. In this contribution we complement 
the work in [9] and give some new analysis about 
the experience and obtained results.  

 

2 Numerical Standard and non-
standard discretization methods 
In this section we give a brief review of the above 
mentioned numerical standard and non-standard 
discretization methods. The standard discretization 
methods may be applied to linear dynamic systems 
and to a very limited class of nonlinear dynamic 
systems [3], while the non-standard discretization 
methods may be applied to linear or nonlinear 
dynamic systems in general [6]-[8]. 
 
2.1 Numerical standard discretization 
methods 
The discretization of a linear, single input single 
output, dynamical control system represented in 
states equation as follows: 
 

( ) ( ) ( ),
( ) ( ) ( ),

x t Ax t Bu t
y t Cx t Du t

= +
= +

                                          (1) 

 
where 0(0) , ( ) , ( ) , ( )nx x x t u t y t= ∈ ∈ ∈  
and always assumes the standard discrete-time form: 
 

0 0 0

0 0 0

(( 1) ) ( ) ( ),
( ) ( ) ( ),

dm dmx k T A x kT B u kT
y kT Cx kT Du kT

+ = +

= +
               (2) 

 
where k  is the discrete-time variable defined in the 
set of all integers, i.e. ,k∈  0T  is the sampling 

time period 0 ,T ∈ , 0(0) ,x x=  0( ) ,nx kT ∈  

0( ) ,u kT ∈  0( ) ,y kT ∈  and the matrices 
,dm dmA B , depend on the discretization method [3], 

indicated by the second suffix m . This is, for the 
approximate discretization method m a= , for the 
exact discretization method m e= , and for the 
truncated discretization method m t= . 

In the approximate discretization method, we 
discretize the ordinary differential equation in (1) by 
substituting the first-order time derivative by its 
first-order backward difference, to obtain:  

 
1

0
1

0 0

[ ] ,

[ ] .
dm da

dm da

A A I T A

B B T I T A B

−

−

= = −

= = −
                                (3) 

 
In the exact discretization method we first apply 

zero-order hold [3] to the control signal ( )u t , and 
then sample the exact trajectory of the system at 

0t kT= , to obtain:  
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0

0

0

,

.

AT
dm de

T
A

dm de

A A e

B B e d Bσ σ

= =

= = ∫
                                        (4) 

 
 The jth-degree truncated discretization method is 
based on truncating the Taylor series expansion of 

0ATe  at its jth-degree term to get: 
 

0

0

11
0

0

,
!

.
( 1)!

ij
i

dm dt
i

ij
i

dm dt
i

TA A A
i
TB B A B
i

=

+−

=

= =

= =
+

∑

∑
                                  (5) 

 
 The reader may be referred to [3]-[5] for father 
understanding of the numerical standard 
discretization methods. 
 
2.2 Numerical non-standard discretization 
methods 
By a nth-order continuous-time nonlinear, single 
input single output, dynamical control system we 
mean a pair of equations 
 

( ) ( ( ), ( )),
( ) ( ( ), ( )),

x t f x t u t
y t h x t u t

=
=

                                            (6) 

 
where  0(0) ,x x=  ( ) ,nx t ∈  ( ) ,u t ∈  ( )y t ∈ , 

,t∈  and the vector-field f and the output-
function h  are as smooth as needed. Discretize (6) 
means to construct a discrete-time nonlinear 
dynamical control system of the form: 
 

0 0 0

0 0 0

(( 1) ) ( ( ), ( )),
( ) ( ( ), ( )),

k T F kT u kT
kT H kT u kT

Φ + = Φ

Ψ = Φ
                         (7) 

 
where k  is the discrete-time variable ,k∈  0T  is 
the sampling time period 0 ,T ∈  0(0) ,Φ = Φ  

0( ) ,nkTΦ ∈  0( ) ,u kT ∈  0( ) ,kTΨ ∈  and the 
functions F  and H  are obtained from f  and h , 
respectively, according to a prescribed numerical 
non-standard discretization method. 
 Forward approximate discretization supports the 
construction of Euler polygons like approximated 
solutions of nonlinear dynamical control system 
[10], wherefore forward approximate discretization 
of nonlinear dynamical control system is called the 
Euler discretization method [6]. This is the default 

method used in practice to discretize nonlinear 
dynamical control system, and it is metaphorically 
described as periodic sampling plus linear 
interpolation [6]. The Euler-discretization of (6) is 
given by: 
 

0 0 0 0 0

0 0 0

( ) (( 1) ) ( (( 1) ), (( 1) )),

( ) ( ( ), ( )), (8)

kT k T T f k T u k T

kT h kT u kT

Φ = Φ − + Φ − −

Ψ = Φ
 

 
where 0(0) ,Φ = Φ  0( ) ,nkTΦ ∈  0( ) ,u kT ∈  

0( )kTΨ ∈  [6]. 
 Given that nonlinear dynamical control system 
are in general not explicitly solvable, the exact 
discretization method is neither extendable to them. 
Yet, in [6] the Euler-Picard discretization method 
was proposed, and may be paraphrased as global 
periodic Euler-like sampling plus Picard-like 
interpolation. The ith-iterated discrete-time Euler-
Picard trajectory iΨ  of period 0T  [6], 
 

0

0
0 0 0 1( 1)

1
( ) ( ) ( ( ), ( ))

k jT k
i ij T

j
kT kT x f u dσ σ σ−−

=

Ψ = Ψ = + Φ∑∫ (9) 

 
where 0(0)i xΨ = , 0( )kTΨ ∈ , would closely 
correspond to the sampling of the trajectories of (6), 
as the number of Picard iterations goes to infinity, 
and the period gets very small, i.e. i →∞  and 

0 0T → . 
 Concerning the fitting properties of the periodic 
non-standard discretization methods proposed in [6], 
the Euler-Picard discretization method is the best. 
Yet, because of the computation of the integrals 
involved, it is also prohibitively expensive for (6) 
with complex nonlinearities.  
 To reduce the computation time and the 
unpredictable impact of arbitrary nonlinearities, the 
Euler-Taylor-Picard discretization method was 
proposed in [6]. It may also be paraphrased as 
periodic sampling plus Picard interpolation, 
however is not applied to (6), but to its jth-degree 
Taylor polynomial approximation 
 

0 0
0

( ) ( ( ), ( ), ) ( , ) ( ( ) )
j

j
i

i
x t F x t u t j x u x t xα

=

= = −∑   (10) 

 
where 0(0)x x= . The associated Euler-Taylor-
Picard discrete-time trajectories are: 
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0

0

0 0 0

1( 1)
1

( ) ( , , , )

( ( ), ( ), )
k rT k

ir T
r

kT j i k T x

F u j dσ σ σ−−
=

Ψ = Ψ = +

Φ∑∫
                          (11) 

 
where 0( , ,0)j i xΨ = , 0( )kTΨ ∈ . Thus, this 
method depends on the sampling period 0T , the 
number of Picard iterations and the degree of the 
Taylor polynomial expansion of the vector field f . 
 
 
3 Design of Linear and Nonlinear 
Discrete-Time States Feedback 
Control Laws 
In this section, the linear and nonlinear discrete-time 
states feedback control laws are designed for the 
considered mechanical system, the simple 
pendulum.  

The linear control law is designed using the 
linear state feedback technique and the nonlinear 
feedback control design is carried out by using 
extended and exact linearization techniques. First, 
the basic theory for the design techniques are 
explained briefly then, the linear and nonlinear 
control laws are given for the simple pendulum 
model. 
 
3.1 Linear State Feedback Technique 
This technique uses the information of all states of 
the system and feed it back to the control law to 
achieve the desired specifications. The linear control 
design is carried out based on the linear system 
model. If the system model is nonlinear, this must 
be linearized first. The algorithm to compute de 
linear state feedback control law is as follows: 
 
Algorithm 1: Linear state feedback (linear control 
law) 

1) Given the nonlinear system model (6), 
compute the operational point (or equilibrium 
point) of interest, this is: 

( ( ), ( ), ( )) ( , , )i iOP x t u t y t X U Y= = , where 
1,2,...,i n= . Then, linearize (6) and evaluated it 

on OP . This gives a linear system of the form: 
( ) ( ) ( ),
( ) ( ) ( ),

x t Ax t Bu t
y t Cx t Du t
δ δ δ

δ δ δ

= +
= +

                             (12) 

where, ( ) ( )x t x t Xδ = − ,  ( ) ( )u t u t Uδ = −  and  
( ) ( )y t y t Yδ = − . 

2) Check the controlability condition for (12), 
using the controlability matrix, 

1[ ... ].nB AB A B−=         

 If (12) is complete controllable, then 
continue with the next step, otherwise this 
method is not viable. 
3) The linear state feedback control law is given 
by: 

 1 1( ) ( ) [ ... ] ( ).nu t Kx t k k k x tδ δ δ= − = −     (13) 
 In closed-loop, using (12) and (13), the 
continuous system is given by: 

 ( ) [ ] ( ) ( ),x t A BK x t Ax tδ δ δ= − =                    (14) 

 where [ ].A A BK= −  
4) Compute the characterictic polinomial of 
(14), 

 1
1 0

( ) [ ]

... 0.
c

n n
n

P s Det sI A

s a s a−
−

= − =

+ + + =
                             (15) 

5) Design the desired characteristic polynomial 
in closed-loop, 

1
1 1 0( ) ... .n n

d nP s s s sα α α−
−= + + + +                (16) 

6) Find the vector gain 1 2[ ... ]nK k k k= , 
equating ( ) ( )c dP s P s= . 

 
Remark 1: In the case (12) is no complete 

controllable, exists a method to find the controllable 
sub-space of the system (6) and, if it is possible, 
design a linear state feedback control law of reduced 
order for the controllable sub-space. The 
uncontrollable sub-space should be stable by itself 
for the whole system to be controllable [11].  
 
3.2 Extended Linearization 
This technique permits to find a nonlinear control 
law, which is a nonlinear extension of the 
previously computed state feedback linear control 
law in Algorithm 1. The nonlinear control law must 
be equal to the linear control law, if the nonlinear 
control law is linearized and evaluated it on the 
operational point OP  (used to design the linear 
control law). The algorithm for the state feedback 
nonlinear control law using extended linearization is 
given as follows: 
 
Algorithm 2: Extended linearization (nonlinear 
control law) 

1) Given the linear gains 1 2[ ... ]nK k k k=  
obtained in Algorithm 1, find nonlinear gains 

( ( ))ext x tδΚ , 

1 1( ( )) [ ( ( )) ( ( )) ... ( ( ))],ext nx t k x t k x t k x tδ δ δ δΚ =  
such that: 

1 2
( ( )) [ ... ] .
( )

ext
n

OP

x t k k k K
x t

δ

δ

∂Κ
= =

∂
               (17) 
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Remark 2:  There is not an unique way to find 
(17), however [1][2] give a way to do it, i.e. 

 

( )( )

1 ( ( )) 1

1 1

2

( )( ( )) ( ) ( ( ))

( ( )) ( ) ( ( )) ,

X x t

ext U

n

j j j
j

dXx t K X x t
d

K X x t x t X X x t

δ
σσ
σ

−
−

− −

−

⎡ ⎤Κ = − +⎢ ⎥⎣ ⎦
⎡ ⎤

⎡ ⎤ −⎢ ⎥⎣ ⎦
⎣ ⎦

∫

∑

     (18) 

where j  is the jth gain, i.e. 
jk . 

 
3.3  Exact linearization 
This technique allows as finding a nonlinear control 
law without having to pass through the linearization 
process for the system model. For this technique to 
be applied, the nonlinear system must be in the 
controllable canonical form [1]-[4], or may be 
transformed to it. The algorithm is as follows: 
 
Algorithm 3: Exact linearization (nonlinear control 
law). 

1) Given the nonlinear system in the controllable 
canonical form: 

1 2

2 3

1

( ) ( )
( ) ( )

( ) ( )n n

x t x t
x t x t

x t x t−

=
=

=

                                              (19) 

1 1( ) ( ( ),..., ( )) ( ( ),..., ( )) ( ).n n n n nx t f x t x t g x t x t u t= +
Define,    

1

1

( ) ( ( ),..., ( ))
( ( ),..., ( )) ( ).

n n

n n

v t f x t x t
g x t x t u t

= +
                              (20) 

2) Design a linear state feedback control law of 
the form: 

1 1 2 1( ) ( ) ( ) ... ( ).n nv t x t x t x tβ β β= + + +             (21) 
3) Find the nonlinear control law ( )u t  equaling 
(20) and (21), i.e., 

1 1 2 1

1

1

1

( ) ( ) ... ( )( )
( ( ),..., ( ))

( ( ),..., ( ))
( ( ),..., ( ))

n n

n n

n n

n n

x t x t x tu t
g x t x t

f x t x t
g x t x t

β β β− − − −
= +

   (22) 

 
3.4 Nonlinear mechanical system: the simple 
pendulum 
The simple pendulum showed in Fig. 1 can be 
represented by the diagram showed in Fig. 3. Where 
q , l  and cl  represent the angular position, the 
longitude and the central mass longitude, 
respectively.  
 

 
Fig.3 Simple pendulum diagram 

 
 

The model is then obtained by the equation: 
 

( ),d L L D t
dt q q q

τ
⎛ ⎞∂ ∂ ∂

− + =⎜ ⎟∂ ∂ ∂⎝ ⎠
                               (23) 

where L  represent the Lagrangean, 21 ( )
2

D q tα=  

is the dissipative term and ( )tτ  is the input. Thus 
the nonlinear model [12][13] is: 
 

( )2 ( ) ( ) ( ( )) ( ),c cml I q t q t ml g sin q t tα τ+ + + = (24) 

 
where m , I , g , and α  represents the pendulum 
mass, inertia, gravity constant and the friction 
coefficient, respectively.  

The parameters values are: 0.5400m = Kg, 
0.1070cl =  m, 0.009α =  Nm.s/rad and  
0.011I =  Nm. α  is an estimated parameter 

obtained by identification as in [12]. 
In first order equation, (24) is represented by:  
 

1 2

2 1 2
2

1

( ) ( ),
( ( )) ( ) ( )( ) ,

q t q t
sin q t q t tq t θ α τ

θ

=
− − +

=
             (25) 

 
where 2

1 ( )cml Iθ = +  and 2 cml gθ = . 
The linear model, parametrized by the position 

1( ) opq t q=  is, 
 

[ ]

2

1 1 1

0 1 0
( ) ( ) ( ),1( )

( ) 1 0 ( ), (26)

op
q t q t t

cos q

y t q t

δ δ δ

δ δ

τθ α
θ θ θ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=
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The system (26) is completely controllable and 
observable (for further understanding on those 
concepts refers to [5], for example). Then, it is 
possible to design a state feedback control law.  

First we design the linear state feedback control 
law for (26). Given the closed-loop desired 
specifications, in this particular case we use: 
damping coefficient 0.59δ =  and natural damping 

13,53nω = , the linear control law, using Algorithm 
1, is obtained as: 

 
2

1 2 1 1 1

2 1 1 2

( ) ( ( ))( ( ) )

( ) (2 ) ( ).
n op op

op n

u t cos q q t q

sin q q t

ω θ θ

θ ςω θ α

= − − −

+ − −
        (27) 

 
To design the nonlinear control law by extended 

linearization technique, we use (27) and Algorithm 
2. Then the extended nonlinear control law is: 

 
2 1 2 1 1

2
1 1 1 1 2

( ) ( ) ( ( ( )) ( ))

( )( ( ) ) (2 ) ( ).
op op

n op n

u t sin q sin q t sin q

q t q q t

θ θ

ω θ ςω θ α

= + −

− − − −
  (28) 

 
Using Algorithm 3, the nonlinear control law by 

exact linearization technique is obtained as: 
 

2
2 1 1 1 1

1 2

( ) ( ( )) ( )( ( ) )

( 2 ) ( ).
n op

n

u t sin q t q t q

q t

θ ω θ

ςω θ α

= − −

+ − +
          (29) 

 
Note that (28) and (29) are the same. This is a 

particular case, and it is because the simple 
pendulum nonlinearity isn’t too complex. 

 
4   Implementation of the Numerical Non-
Standard Discretization Methods on the Simple 
Pendulum 
The control laws are designed in continuous-time. 
To implement them in a digital device (as the 
computer shown in Fig. 2) it is then necessary to 
discretize them by the numerical standard (used for 
the linear control law) or non-standard discretization 
methods (used for the nonlinear control law).  

The discrete-time linear control law of the 
continuous-time linear control law (27), using the 
standard discretization methods is given by: 

 
2

0 1 2 1 1 0 1

2 1 1 2 0

( ) ( ( ))( ( ) )

( ) (2 ) ( ).
n op op

op n

u kT cos q q kT q

sin q q kT

ω θ θ

θ ςω θ α

= − − −

+ − −
 (30) 

 
Observe that in this case, all three standard 

discretization methods give the same discrete-time 
equation (30). This is because (27) is a linear 

dynamic equation of order cero. The difference of 
using one standard discretization method or another, 
in the states feedback linear control law, will be 
reflected in the computation of the discrete-time 
gains designed for the discrete-time model (2). 

The extended nonlinear discrete-time control law 
of (29), using the Euler discretization method is: 

 
2

0 2 1 0 1 1 0 1

1 2 0

( ) ( ( )) ( )( ( ) )

( 2 ) ( ). (31)
n op

n

u kT sin q kT q kT q

q kT

θ ω θ

ςω θ α

= − −

+ − +
  

This is the same discrete-time control law for 
(28).  

Because the state feedback nonlinear control law 
(29) is a nonlinear dynamic of cero order, the Euler 
and the Euler-Picard discretization methods are the 
same, i.e. no need to apply Picard iteration.  

Using the Euler-Taylor-Picard discretization 
method, the following nonlinear discrete-time 
control law is: 

 
2

0 2 0 1 1 0 1

1 2 0

( ) ( ) ( )( ( ) )

( 2 ) ( ),
j n op

n

u kT F kT q kT q

q kT

θ ω θ

ςω θ α

= − −

+ − +
  (32) 

 
where, in this particular case with  7j =   we get a 
good approximation of 0 1 0( ) ( ( ))jF kT sin q kT= , i.e,  
 

3 5 7
1 0 1 0 1 0

7 0 1 0

9 11 13 15
1 0 1 0 1 0 1 0

( ) ( ) ( )( ) ( )
6 120 7!

( ) ( ) ( ) ( ) .
9! 11! 13! 15!

q kT q kT q kTF kT q kT

q kT q kT q kT q kT

= − + −

+ − + −

 
The discrete-time linear and nonlinear control 

laws are implemented on the real mechanical 
system, the simple pendulum, showed in Fig. 1, 
through a program codified in the dSPACE system. 
The dSPACE is a computational tool that allows us 
to do real time control. It is based on a digital signal 
processor implanted on a DS1102 card (for data 
acquisition) which is then attached to the PCI bus on 
a PC [12][13], as showed in Fig 2.  

The simple pendulum has a sensor to measure 
position in radian, considered the output signal, 

1( ).q t  The velocity of the pendulum, 2 ( )q t , to be 
used in the state feedback control laws, is estimated 
by, 

 
1 0 1 0

2 0
0

( ) (( 1) )( ) q kT q k Tq kT
T

− −
= . 
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The sampling time oT  was obtained using the 
Shannon Theorem [3]-[5] and considering the 
hardware limitation of the closed-loop system 
showed in Fig 2. 

 
4.1 Validation of the numerical non-standard 
discretization methods 
The validation of the numerical non-standard 
discretization methods is analyzed by comparing the 
simulated (continuous-time and discrete-time) 
controlled system dynamics vs. the obtained data 
from the controlled real nonlinear system dynamic.  

To show the validity of the numerical non-
standard discretization methods, a suitable 
operational point (for the linear and nonlinear 
control laws to be applied) was chosen to show the 
results.  

We first compare the  simulated continuous 
linear system dynamic (26) controlled using the 
designed linear continuous state feedback control 
law (27), and the simulated discrete-time linear 
system dynamic of the form given in (2) controlled 
using the discretized linear state feedback control 
law (30) with the obtained data from the pendulum 
using the implemented control law (30).  

Matrices dmA and dmB are given from (3), (4) or 
(5), depending on the used standard discretization 
method.  

The results are shown in Fig. 4, 5 and 6. The 
figures show the dynamic pendulum position for the 
operational point 1 12opq π= rad ( 1 15opq = ), initial 

conditions are 1(0) 0,q =  2 (0) 0q = , using the 
sampling period as 0.01oT = s and the order for the 
Taylor’s series is 1j = .  

Then, we compare the simulated continuous 
nonlinear system dynamic (24) controlled using the 
designed continuous state feedback linear control 
law (27) with the obtained data from the pendulum 
using the implemented linear control law (30), as 
shown in Fig. 7. The linear control gains for the 
control law (30) ware computed based on matrices 

deA and deB  in (4).  
 

 
Fig.4 LS LC: simulated linear system controlled 

by the linear control law (in continuous). LS LC 
AD: simulated linear system controlled by the linear 
control law, using Approximate discretization. 
RNLS LC AD: real nonlinear system controlled by 
the linear control law, using Approximate 
discretization. 
 

 
Fig.5 LS LC: simulated linear system controlled 

by the linear control law (in continuous). LS LC 
ED: simulated linear system controlled by the linear 
control law, using Exact discretization. RNLS LC 
ED: real nonlinear system controlled by the linear 
control law, using Exact discretization. 

 
For the Euler and Euler-Picard cases, we 

compare the simulated continuous nonlinear system 
dynamic (24) controlled using the designed 
nonlinear continuous state feedback control law 
(29), and the simulated discrete-time nonlinear 
system dynamic of the form given in (8) (or (9) 
because, for this dynamic, no need to apply Picard 
iteration), controlled using the discretized nonlinear 
state feedback control law (31) with the obtained 
data from the pendulum using the implemented 
control law (31). 
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Fig.6 LS LC: simulated linear system controlled 

by the linear control law (in continuous). LS LC 
TD: simulated linear system controlled by the linear 
control law, using Truncated discretization. RNLS 
LC TD: real nonlinear system controlled by the 
linear control law, using Truncated discretization. 

 

 
Fig.7 NLS LC: simulated nonlinear system 

controlled by the linear control law (in continuous). 
RNLS LC ED: real nonlinear system controlled by 
the linear control law, using Exact discretization. 

 
Similarly, for the Euler-Taylor-Picard case, we 

compare the simulated continuous nonlinear system 
dynamic (24) controlled using the designed 
nonlinear continuous state feedback control law 
(29), and the simulated discrete-time nonlinear 
system dynamic of the form given in (10) controlled 
using the discretized nonlinear state feedback 
control law (32) with the obtained data from the 
pendulum using the implemented control law (32). 

The results are shown in figures 8 and 9. Once 
again, the figures show the dynamic pendulum 
position for the operational point 1 12opq π= rad 

( 1 15opq = ), initial conditions are 1(0) 0,q =  

2 (0) 0q =  and using 0.01oT = s. Because the Euler 
and Euler-Picard methods are the same in this case, 

the order of the Picard iteration is 1. For the Euler-
Taylor-Picard method 7j =  is used. 
 

 
Fig.8 NLS NLC: simulated nonlinear system 

controlled by the nonlinear control law (in 
continuous). NLS NLC ED (or EPD): simulated 
nonlinear system controlled by the nonlinear control 
law, using Euler (or Euler-Picard) discretization 
method. RNLS NLC ED: real nonlinear system 
controlled by the nonlinear control law, using Euler 
(or Euler-Picard) discretization. 

 

 
Fig.9 NLS NLC: simulated nonlinear system 

controlled by the no linear control law (in 
continuous). NLS NLC ETPD: simulated nonlinear 
system controlled by the nonlinear control law, 
using Euler-Taylor-Picard discretization method. 
RNLS NLC ED: real nonlinear system controlled by 
the nonlinear control law, using Euler-Taylor-Picard 
discretization. 
 

As it is shown in the figures, from Fig. 4 to Fig. 
9, all the real nonlinear system dynamics (controlled 
by the linear or the nonlinear control law) present 
quite the same performance (only in the 
approximate discretization, the overshot is a little bit 
higher). This is because the linear control law is into 
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the linear range of operation, and the sample period 
is small enough.  

The real data obtained from the controlled 
system presents a higher overshot than the 
continuous simulated one (linear and nonlinear 
cases), and this is better approximated by discrete-
time simulation when the nonlinear system and the 
nonlinear control law are discretized using the 
numerical non-standard discretization methods, as it 
is shown in Fig. 8 (NLS NLC ED (or EPD)) and 
Fig. 9 (NLS NLC ETPD). 

The real (obtained data) system dynamics 
present a short delay compared with the continuous 
simulated dynamics. This delay is not taken into 
consideration in the simple pendulum discrete-time 
model, and it is produced by human time reaction at 
the moment to start measuring the data (pressing a 
button to start capturing the data after the algorithm 
is run, the button also works as a security button). 
Because of this time delay, the real dynamic 
presents a small error during the first 0.2s in the 
transient state. 

 
4.2 Digital nonlinear control laws 
implementation advantages 
The numerical non-standard discretization methods 
ware also validated for different operational points 
(desired positions) of the simple pendulum. These 
operational points ware chosen to be more far away 
from the initial position, which is kept in the stable 
equilibrium point of the system 1(0) 0,q = 2 (0) 0q = .  

For the real experiment, the linear and nonlinear 
gains for the control law are computed. The chosen 
particular position to compute the gains is 

1 0.26112opq π= = rad, ( 1 15opq = ). Keeping the 

computed gains as constant, the desired position of 
the pendulum, 1opq , is changed over a range of 
values.  

In Table 1 the obtained results, using the 
discrete-time linear and nonlinear control laws, are 
presented. The desired position range for the 
pendulum is chosen from 

1
5 0.087180opq π= = rad 

( 1 5opq = ) to 
1

5 0.87318opq π= = rad ( 1 50opq = ).  

When the discrete-time linear control law is 
used, the real pendulum position is greater than the 
desired position, for desired positions under 

1 0.26112opq π= = rad. This is because the gains were 

computed for the desired position 
1 0.26112opq π= =  

rad, therefore for desired positions under  
1 0.26112opq π= =  rad the gains give more energy to 

the controller than the necessary.   

Table 1. Real pendulum position, using the 
discrete-time linear and nonlinear control laws, for 
different operational points (desired positions). 
Desired 

Positions 
Obtained Positions 

(Real Data) 

Radians 
 

Approx. 
 

Exact 
 

Trunc. 
Euler and 

Euler-
Picard 

0.087 0.174 0.172 0.173 0.086 
0.174 0.218 0.215 0.215 0.173 
0.261 0.260 0.260 0.261 0.260 
0.349 0.305 0.305 0.306 0.349 
0.436 0.351 0.353 0.352 0.435 
0.523 0.398 0.396 0.399 0.524 
0.611 0.442 0.441 0.441 0.612 
0.698 0.487 0.489 0.489 0.710 
0.785 0.536 0. 539 0.538 0.786 
0.873 0.588 0.592 0.591 0.886 

 
On the contrary, for desired positions over 

1 0.26112opq π= = rad, when the discrete-time linear 

control law is used, the real pendulum position is 
smaller than the desired position. This is because 
now the computed gains for 

1 0.26112opq π= =  rad 

give less energy to the controller than the necessary.   
Analyzing the obtained results in Table 1, when 

the simple pendulum is controlled using the 
nonlinear control law, discretized by the Euler and 
Euler – Picard methods, the pendulum is stabilized 
in a larger range of desired position without having 
error  or with a minimum error (less than 1% ) in the 
steady state. When the linear control law is used the 
pendulum is positioned in the desired position 
without having error (or minimum error) in steady 
state only for the desired potion 

1 0.26112opq π= = rad, and for all others desired 

positions the presented error in steady state is 
considerable. 

It is then easy to ratify that for nonlinear systems 
it is better to use a nonlinear controller, which can 
be implemented, if the desired position may change. 
For the linear control law to perform well in this 
situation, the gain must be computed for each 
desired position. The numerical nonstandard 
discretization methods allow the nonlinear 
controller to be implemented digitally on a 
computer or a microcontroller. 

In a second experiment, the initial condition is 
also kept in the stable equilibrium position 
( 1(0) 0,q = 2 (0) 0q = ), and the linear control gains are 
computed for each desired position of the simple 
pendulum. As the nonlinear gains don’t depend on 
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the desired position no gain calculation for each 
position is necessary. The nonlinear gains remain 
constant while the desired position changes.  

In Table 2 the obtained results for the experience 
using the linear control laws are showed. In the 
experiment, the desired position is changed by 
increasing the desired position, 1opq ,five degrees 

( 0.08736
π = rad) for each experience. The whole 

experience rage is chosen from 
1

5 0.087180opq π= =  

rad ( 1 5opq = )  to  
1

75 1.309180opq π= = rad  

( 1 75opq = ).  
 

Table 2. Real simple pendulum position using 
the linear discrete-time control laws 

Desired 
Positions 

Obtained Positions 
(Real Data) 

Radians Approx. Exact Trunc.
0.087 0.087 0.087 0.085 
0.174 0.174 0.174 0.173 
0.261 0.262 0.260 0.259 
0.349 0.348 0.349 0.348 
0.436 0.445 0.442 0.443 
0.523 0.529 0.526 0.527 
0.785 0.793 0.793 0.793 
0. 873 0. 887 0. 888 0. 887 
1.047 1.066 1.065 1.064 
1.222 1.262 1.261 1.261 
1.309 Unstable Unstable Unstable 

 
The linear control is able to stabilizes the simple 

pendulum position to de desired position in a range 
from  0.08736

π = rad ( 5 ) to 0.3499
π = rad ( 20 ) 

with no error (or minimum error, less than 1% ), 
showing good performance. From 
25 0.436180
π = rad ( 25 ) to 7 1.22218

π = rad ( 70 ) 

the position error is between 1% 7%error< < , and 
for positions over 75 1.309180

π =  rad ( 75 ) the 

controlled system is unstable. 
The obtained results for the experience using the 

nonlinear control laws are showed in Table 3. The 
chosen rage is from 

1
5 0.087180opq π= = rad                      

( 1 5opq = )  to  
1

12 2.09418opq π= = rad  ( 1 120opq = ). 

Same as before, the desired position is changed by 
increasing the desired position five degrees 
( 0.08736
π = rad) for each experience. 

In this case, the nonlinear control stabilizes the 
simple pendulum position to de desired position in a 

larger range. From  0.08736
π = rad ( 5 ) to 

45 0.785180
π = rad ( 45 ) with no error (or minimum 

error , less than 1% ). From 5 0.87318
π = rad ( 50 ) 

to 75 1.309180
π = rad ( 75 ) the error is in the 

interval 1% 5%error≤ < . From  4 1.3969
π = rad 

(80 ) to 115 2.007180
π = rad (115 ) the error is 

5% 15%error≤ < , and from 12 2.09418
π = rad 

(120 ) the controlled system is unstable. 
 
Table 3. Real simple pendulum position using 

the nonlinear discrete-time control laws 
Desired 

Positions 
Obtained Positions 

(Real Data) 
Radians Euler and 

Euler-Picard 
Euler-Taylor-Picard 

0.087 0.086 0.088 
0.174 0.173 0.173 
0.261 0.260 0.260 
0.349 0.349 0.349 
0.436 0.435 0.435 
0.523 0.524 0.524 
0.785 0.786 0.787 
0. 873 0. 886 0. 888 
0.960 0.992 0.993 
1.047 1.065 1.066 
1.134 1.160 1.160 
1.222 1.258 1.256 
1.309 1.346 1.347 
1.396 1.444 1.439 
1.484 1.547 1.537 
1.571 1.640 1.635 
1.658 1.733 1.742 
1.745 1.836 1.837 
1.833 1.939 1.941 
1.920 2.030 2.042 
2.007 2.133 2.106 
2.094 Unstable Unstable 

 
From the results showed in Table 2 and Table 3, 

the controlled simple pendulum shows good 
performance (without or with minimum error in 
steady state) over a larger range of operation when 
the nonlinear discrete-time control laws are used 
(discretized by the numerical non-standard 
discretization methods), and also shows better 
performance (with small error in steady state) over a 
larger range of operation than the discrete-time 
linear control laws. The range of stabilization is 
much larger when the nonlinear control laws are 
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used; this is an important advantage in unstable 
mechanical systems.   

It is important to mention that the control 
analysis showed in sections 4.1 and 4.2 for the 
pendulum position is similar for the pendulum 
velocity dynamics  

 
 

5   Conclusions 
Through this work we have validated, by 
implementation on a real nonlinear mechanical 
system, the simple pendulum, the numerical non-
standard discretization methods: Euler, Euler-Picard 
and Euler-Taylor-Picard.  

Into a linear operational range, the implemented 
discrete-time controllers using the numerical non-
standard discretization methods perform quite same 
as the implemented discrete-time controller using 
the standard methods. However, the non-standard 
discretization methods have the advantage to be 
applied to discretize linear and nonlinear dynamics 
in general. 

The simulated nonlinear system, controller by 
the nonlinear control law, discretized using the non-
standard methods has a better approximation to the 
obtained real data in any case. 

It is important to highlight that the nonlinear 
gains for the nonlinear controller used in all the 
experience are constant, in other words, the 
nonlinear gains don’t depend on the operational 
point (desired position), and this property allows the 
nonlinear controller to stabilize the simple 
pendulum in a larger operational range in steady 
state. This gives an important advantage and 
robustness over the use of linear control laws.  

The operational range where the simple 
pendulum position shows no error (or minimal error, 
less than 1% ) is larger when the nonlinear discrete-
time control laws are used, discretized by the 
numerical non-standard discretization methods. 

With this contribution, it is expected that the 
proposed numerical non-standard discretization 
methods may be more used for the discretization 
and digital implementation of nonlinear dynamics. 
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