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Abstract: - The paper is devoted to formulations of decay and mapped elastodynamic infinite elements, based 

on modified Bessel shape functions. These elements are for Soil-Structure Interaction problems, solved in time 

or frequency domain and can be treated as a new form of the recently proposed Elastodynamic Infinite 

Elements with United Shape Functions (EIEUSF) infinite elements. The formulation of 2D horizontal type 

infinite elements (HIE) is demonstrated here, but by similar techniques 2D vertical (VIE) and 2D corner (CIE) 

infinite elements can also be formulated. Using elastodynamic infinite elements is the easier and appropriate 

way to achieve an adequate simulation including basic aspects of Soil-Structure Interaction. Continuity along 

the artificial boundary (the line between finite and infinite elements) is discussed as well and the application of 

the proposed elastodynamical infinite elements in the Finite Element Method is explained in brief. Finally, a 

numerical example shows the computational efficiency of the proposed infinite elements. 
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1 Introduction 
In static Soil-Structure Interaction (SSI) analysis, 

the simple truncation of the far field with setting of 

appropriate boundary conditions gives very often-

good results. However, in dynamic cases, an 

artificial boundary made by truncation makes results 

to be erroneous because of reflection waves. In last 

decades, much works has been done on unbounded 

domain problems and several kinds of modeling 

techniques have been developed to avoid these 

effects. Such techniques are viscous boundary, 

transmitting boundary, boundary elements, infinite 

elements and system identification method. At the 

same time several numerical methods for these 

types of problems were suggested. The basic idea of 

these approaches is to divide domain Ω  into two 

parts the bounded part cΩ and unbounded part ∞Ω , 

where for the first one is valid i ix c≤ . For 

appropriate simulations we need to set the 

assumption that function ( ) 0iu x =  on ∞Ω . 

Among these approaches, using infinite elements 

is good way to solve Soil-Structure Interaction 

problems since its concept and formulation are 

similar to those of Finite element method except for 

the infinite extent of the element region and shape 

function in one direction and there is no loss of 

symmetry of the element matrices. The domain ∞Ω
 

is partitioned into a finite number of infinite 

elements directly incorporated with the meshes on 

the bounded domain cΩ . In the numerical models 

these domains very often have called near ( cΩ ) and 

far ( ∞Ω ) fields. Infinite elements are classified into 

five types: classical, decay, mapped, 

elastodynamical and envelope infinite elements [7]. 

 

 

2 Backgrounds for Infinite Elements 
Infinite elements are widely used in the 

numerical simulations when unbounded domain 

exists. The origin of these elements is the works of 

Bettess [4] and Ungless [19]. Classification of the 

infinite elements is proposed in [7]. During the last 

three decades much element formulations have been 

suggested [1, 6, 11, 22, 23, 23]. 

Soil-Structure Interaction is a typical civil 

engineering problem [2, 3, 5, 13-18]. The infinite 

elements can be integrated in the Finite element 

method codes [8, 14, 20, 21] adequately dynamic 

SSI simulations to be obtained. The infinite 

elements as a computational technique is one of the 

often used since their concepts and formulations are 

much closed to those of the finite elements. These 
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elements are very effective for models of structures 

containing a near field discretized by finite elements 

and a far field discretized by infinite elements. In 

the last two decades a lot of dynamic infinite 

elements were developed. Yum [22] proposes one of 

the most effective elastodynamical elements. 

 

 

3 Elastodynamical infinite element 

with united shape functions (EIEUSF) 
The displacement field in the elastodynamical 

infinite element can be described in the standard 

form of the shape functions based on wave 

propagation functions [10, 12] as 

( ) ( ) ( )ωωω iq

n

i

m

q

iq zxNzx pu ∑∑
= =

=
1 1

,,,,  

or 

( ) ( ) ( )ωωω pu ,,,, zxNzx p=                (1) 

where ( ), ,iqN x z ω  are the standard shape 

displacement functions, ( )iq ωp  is the generalized 

coordinates associated with ( ), ,iqN x z ω , n is the 

number of nodes for the element and m is the 

number of wave functions included in the 

formulation of the infinite element. For horizontal 

wave propagation basic shape functions for the HIE 

infinite element, the local coordinate system of 

which is given in Fig.1, can be expressed as: 

( ) ( ) ( )
( ) ( ) ( ) ( )
, , , , , , ,

, , , , , ,

iq iq

iq i q

N x z T x z N

N x z T x z L W

ω η ξ η ξ ω

ω η ξ η ξ ω

=

=
      (2) 

where ( , )qW ξ ω  are horizontal wave functions  and 

( )iL η  are Lagrange interpolation polynomial which 

has unit value at i th node while zeros at the other 

nodes. For HIE infinite element the ranges of the 

local coordinates are: [ 1,1]η ∈ −  and [0, )ξ ∈ ∞ . Here 

( , , , )T x z η ξ  assures the geometrical transformations 

of local to global coordinates. 

Taking into account only real parts of the wave 

functions the equations of the wave propagation can 

be written as 

 

( ) αξξ
ω

ωξ −








= e

c
W

s

q cos,Re  

or 

( ) αξξ
ω

ωξ −











= e

c
W

p

q cos,Re             (3) 

where sc , pc  are the wave velocities for S-waves 

and P-waves respectively, and α  is appropriate 

constant, called attenuation factor. 
 

 
 

Fig. 1 Local coordinate system of horizontal infinite 

elements (HIE). 

 

Expanding this functions in a Fourier-like series 

for all wave functions included in the formulation of 

the infinite element the shape functions for HIE can 

be written as 
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The coefficients qA  can be written as: 
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0
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Because, m is a finite number and qA  can be treated 

as weight coefficients, so that 
1

1
m

q

q

A
=

=∑  for shape 

functions than (4) can be expressed as 
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Using this approach can be written 

( ) ( )

( ) ( ) ( ) ( )
1

, , ,

, , , , Re

m

i iq

q

i i

N x z N x z
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Then equation (1) can be expressed as 

( ) ( )pu zxNzx p ,, =                      (9) 

The procedure described by the above equations 

can be treated as a superposing procedure based on 

a finite number of terms, where real components of 

the wave functions Re ( , )qW ξ ω  are preliminary 

shape functions or basis functions from 

mathematical point of view, and coefficients qA  are 

generalized coordinates with only one component, 

corresponding to the node i or weight coefficients 

from mathematical point of view. 

 

 

4 Element shape functions, based on 

Bessel functions 
The idea and concept of the EIEUSF class 

infinite elements are presented in [10, 11, 12]. 

Several EIEUSF formulations are discussed and 

have been demonstrated that the shape functions, 

related to nodes k and l (the nodes, situated in 

infinity, Fig.1) are not necessary to be constructed, 

because corresponding to these shape functions 

generalized coordinates or weights, see eq. (1), are 

zeros. The displacements in infinity are vanished, 

and these shape functions must be omitted. 

For horizontal wave propagation the basic shape 

functions for the HIE infinite element can be 

expressed using Bessel functions as follows: 

( ) ( ) ( )ψξηωξη q
iiq JLN 0

~
,, =               (10) 

where 0 ( )qJ ψξɶ  are modified Bessel functions of first 

kind. These functions can be written as 

( ) ( ) ( )βξψξψξ −= exp
~

00
qq JJ               (11) 

where 0 ( )qJ ψξ  are standard Bessel functions of first 

kind. In eq. (11) ψ  and β  are constants, chosen in 

such a way that the length of the wave and the 

attenuation of the wave respectively, are identical 

with those, if eq. (2) is used. This means that the 

following two relations are valid: 

ϖ
ω

ψ =                                    (12) 

or 

w

w

L

L
=ψ                                  (13) 

where ϖ  is the wave frequency corresponding to ω  

if Bessel functions are used to approximate the 

displacements in the infinite element domain, and: 

( ) ( )αξ
ξ

βξ −=− exp
1

exp                   (14) 

because the Bessel functions of first kind decay 

proportionally to 1/ ξ . Although the roots of 
Bessel functions are not generally periodic, except 

asymptotically for large ξ , such functions give 

acceptable results. And what is more, using Bessel 

functions one can approximate change of the wave 

length in the far field region. 

If the element has four nodes and eight DOF 

only four shape functions can be used to 

approximate the displacements, related to one 

frequency. These functions can be written as: 

( ) ( )
( ) ( ) ( )

1

0

, , , ,

exp

u

q iq

q

i

N N

L J

η ξ ω η ξ ω

η ψξ βξ

= =

= −
           (15a) 

( ) ( )
( ) ( ) ( )

2

0

, , , ,

exp

v

q iq

q

i

N N

L J

η ξ ω η ξ ω

η ψξ βξ

= =

= −
          (15b) 

and 

( ) ( )
( ) ( ) ( )

3

0

, , , ,

exp

u

q jq

q

j

N N

L J

η ξ ω η ξ ω

η ψξ βξ

= =

= −
          (16a) 

( ) ( )
( ) ( ) ( )

4

0

, , , ,

exp

v

q jq

q

j

N N

L J

η ξ ω η ξ ω

η ψξ βξ

= =

= −
         (16b) 

In the above equations, eq. (15.a) is identical to 

eq. (15.b) and eq. (16.a) is identical to eq. (16.b). If 

rotational DOF are used then the element has four 

nodes and ten DOF. Two additional shape functions 

must be used, written as: 

( ) ( )
( ) ( ) ( ) ( ) ( )

5

1 0

, , , ,

exp exp

q iq

q q

i

N N

L J J

ϕη ξ ω η ξ ω

η ψξ βξ β ψξ βξ

= =

 = − − − 
       (17a) 

and 

( ) ( )
( ) ( ) ( ) ( ) ( )

6

1 0

, , , ,

exp exp

q jq

q q

j

N N

L J J

ϕη ξ ω η ξ ω

η ψξ βξ β ψξ βξ

= =

 = − − − 
       (17b) 

Here 0 ( )qJ ψξ  and 1 ( )qJ ψξ  are Bessel functions of 

first kind. The Taylor series indicates that 1 ( )qJ ψξ  is 

the derivative of 0 ( )qJ ψξ . 

The function ( )iL η  is linear if no mid-nodes. 

Finally, if mid-node on the side i-j is used, then the 

Lagrange interpolation polynomials must be 

quadratic. Modified Bessel functions of first kind, in 

accordance with eq. (11) ( 0 ( )qJ ψξɶ  and 1 ( )qJ ψξɶ ), are 

illustrated in Fig. 2. 

The continuity along the artificial boundary (the 

line between finite and infinite elements, see Fig. 3 

line bx−  and line bx ) is assured in the same way as 

between two plane finite elements [9]. The 
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application of the proposed infinite elements in the 

Finite element method is discussed below. 

 

 

Fig. 2  0 ( )qJ ψξɶ  and 1 ( )qJ ψξɶ  modified Bessel 

functions. 
 

Using the procedure, given in details in [10] and 

briefly described here, mapped EIEUSF finite 

elements, based on modified Bessel functions, can 

be formulated, based on eq. (18) 

( ) ( )

( ) ( )

( ) ( ) ( )

1

1

0

1

, , ,

, , , , ,

, , ,

m

i iq

q

m

iq

q

m
q

i

q

N x z N x z

T x z N

T x z L J

ω

η ξ η ξ ω

η ξ η ψξ

=

=

=

= =

= =

=

∑

∑

∑ ɶ

             (18) 

where ( ) ( ) ( )βξψξψξ −= exp
~

00
qq JJ . 

 

 

5 Stiffness and mass matrices of the 

element 
By analogy with EIEUSF [12] and since each 

shape function ( , , )iqN x z ω  is associated with only 

one frequency, ( )iq ωp  is a generalized coordinate 

involving a single wave component only. Then the 

component matrices iqk  and iqm  can be written as 

eq
T
iiq dBDBk

e

Ω= ∫
Ω

                      (19) 

and 

IdNNm eq
T
iiq

e














Ω= ∫

Ω

                  (20) 

where [ ]( ) [ ]( )i i iB N LW= ∂ = ∂ ; [ ]∂  is a linear 

differential operator matrix. If Bessel functions are 

used, the first derivative of 0 ( )qJ ψξ  is 1 ( )qJ ψξ  (The 

Taylor series indicate that 1 ( )qJ ψξ  is derivative of 

0 ( ))qJ ψξ  and can be expressed as  

0 1 1( ) ( ( ) ( )) / 2
q q qd

J J J
d

ψξ ψξ ψξ
ξ −= + . 

The equation of motion for the entire SSI system 

including the far field soil region can be written as 

( ) ( )
( ) ( ) ( )

( )
( )

( )
( )








=













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+ ω
ω

ω
ω

ωωω
ωω

b

s

b

s

g
bbbbbs

sbss

F

F

U

U

SSS

SS
 

(21) 

where ( )U ω , ( )F ω  and ( )S ω  are respectively 

displacement vector, force vector and dynamic 

stiffness matrix in frequency domain. Subscripts s 

and b stand for the nodes along the artificial 

boundary between the near and the far field soil 

region and for those of the structure and near field 

soil region respectively. This equation can be 

transformed into time domain by inverse Fourier 

transformation as 

( )
( )

( )
( )

( )
( )

( )

( ) ( ) ( )( ) ( ){ }

1

0

2 3

0

0 0

0
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s sss sb
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sss sb

g
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s
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g g

b b
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u t u tM M S
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u tK K S
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f t S t S a t u dτ τ τ τ
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+ +      

         

    
+ =  +     

 
 

=  
− + − − − 

 
∫

ɺɺ ɺ

ɺɺ ɺ

(22) 

where ( )u t  and ( )f t  are respectively 

displacement and force vectors, and g

jS  are 

mechanical characteristics of the far field soil 

region. 

 

 

6 Numerical example 
Structure with rigid strip foundation on a 

homogeneous half-space is modeled as shown in 

Fig.3. Four models of the far field are used, briefly 

described as: 

- model 1 - elastic springs with stiffness 2

bk , 

calculated using the Gorbunov-Possadov relation 

[7], modified in accordance with the mesh as 
2

. (1 ) / .(1 )(1 2 )b bk E l dη υ υ υ= − + − ; 

- model 2 - elastic springs with stiffness 1

bk , 

calculated using the Tsitovich relation [7], modified 

in accordance with the mesh as 
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1 2
. / 0.87. .(1 )b bk E l dη υ= − , where lη  is the element 

size and 1b =  - thickness of the element; 

- model 3 - the far field is desctitezed by massless 

EIEUSF infinite elements with only one frequency 

(single wave component); 

- model 4 - the far field is desctitezed by massless 

infinite elements with Bessel shape functions. 

The stiffness matrices of the infinite elements, 

used in models model 3 and model 4 are calculated 

by EIEUSF matrix module. Horizontal harmonic 

displacements with period 0.8T sθ =  and amplitude 
max 0.1bu m=  are applied on the nodes as shown in 

Fig.3. The geometry of the model and the material 

parameters are given in [10]. 

The results for the first 10 natural periods, 

corresponding to the models and max displacement 

of node S, are given in Table 1. The time history of 

the displacements of node S, see Fig.3, between 8.4s 

and 8.5s are illustrated in Fig.4. 
 

 
Fig. 3  Computational model 

 

 
Fig. 4  Time history of the displacements of node S 

 

Table 1 

 

7 Conclusion 
In this paper a formulation of elastodynamical 

infinite element, based on Bessel shape functions 

appropriate for Soil-Structure Interaction problems 

is presented. This element is a new form of the 

infinite element, given in [10]. The base of the 

development is new shape functions, obtained by 

modification of the standard Bessel functions of first 

kind.  The stiffness matrices of the examined 

infinite elements are calculated by EIEUSF matrix 

module, developed by the same author.  

The numerical example shows the computational 

efficiency of the proposed infinite elements. Such 

elements can be directly used in the FEM code. The 

results are in a good agreement with the results, 

obtained by EIEUSF infinite elements.   

The formulation of 2D horizontal type infinite 

elements (HIE) is demonstrated, but by similar 

techniques 2D vertical (VIE) and 2D corner (CIE) 

infinite elements can also be formulated. It was 

demonstrated that the application of the 

elastodynamical infinite elements is the easier and 

appropriate way to achieve an adequate simulation 

(2D elastic media) including basic aspects of Soil-

Structure Interaction. Continuity along the artificial 

boundary (the line between finite and infinite 

elements) is discussed as well and the application of 

the proposed elastodynamical infinite elements in 

the Finite element method is explained in brief. 
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