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Abstract: In this paper we present the application of regressive models to simulation of a full-scale vehicle-to-
pole impact as well as virtual vehicle-to-barrier collision. The capability of an ARMAX model to reproduce
vehicle kinematics was examined. Regressive model parameters were established by minimizing a weighted sum
of squares of prediction errors. The prediction horizon was assigned to evaluate model’s robustness and verify
its time series data forecasting performance. It was found that the ARMAX model does not only reproduce the
signal which was used for its establishment (i.e. real vehicle’s acceleration) but it predicts another signal as well
(i.e. virtual vehicle’s acceleration). Moreover, such estimation technique preserves all characteristic information
relevant for a given collision, since integration of the estimated acceleration pulse yields plots of velocity and
displacement which closely follow the reference ones.
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1 Introduction
Transport plays a crucial role in an economy, transfer-
ring goods between the place of production and con-
sumption, as well as transporting passengers for work
or pleasure. However, transport problems such as con-
gestion, quality of services (such as punctuality and
connectivity), affordability and environmental impact
put general economic developments at risk [1]. When
it comes to Europe, road traffic related accidents are
considered to be the major threat to life in the Euro-
pean Union. In 2000 40 761 people were killed in
road accidents in the 15 member EU countries. The
amount of people being injured is 1.7 million. Euro-
pean Commision has set up an ambitious goal to re-
duce the number of deaths on roads by 50% by 2010.
What is significant is the fact that 52% of all road fa-
talities were passenger car occupants. This statistics
unequivocally shows that there is still a lot to be done
when it comes to protection not only of the vulnerable
road users (like cyclists or pedestrians) but also of the
drivers and their passengers as well ([2]).

One of the tools which is the most frequently
used and helpful in evaluation of vehicle safety is a
crash test. There are different vehicle safety programs
and organizations (e.g. NHTSA or EuroNCAP) which
specify how such tests should be performed, what fac-
tors should be investigated and how the car vehicle
safety should be assessed. However, they do agree

that the most important ratings are: occupant protec-
tion, pedestrian protection and safety assist technolo-
gies. Crash tests are not only performed when the car
design is completed and a prototype is ready but also
throughout the whole vehicle development and vali-
dation. It is a well known fact that those experiments
are complex ones. Vehicle crash test standards and
procedures designate detailed test procedures and re-
quirements. Considerable resources are required to
successfully conduct vehicle crash tests. These in-
volve skilled and trained personnel along with a large
variety and quantity of sophisticated monitoring and
measurement equipment and post-crash data analysis
software. Apart from that, information about the mea-
suring equipment, visual inspection, data acquisition
process or cameras layout are included in those doc-
uments. What is more, e.g. a runaway itself needs a
lot of space therefore the appropriate facilities are re-
quired (huge hall or open-air yard). In the case of an
outside testing site, one needs to be sure that the ex-
perimental procedure is conducted in the appropriate
weather conditions. Of course we cannot forget about
the qualified staff responsible for the whole crash test
realization. They need to be well trained and have the
adequate knowledge concerning the number of stan-
dards to execute such an experiment in a correct way
and, what is of the same importance, to collect the
representative data and measurements which can be
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further analyzed. Those issues make a crash test ex-
tremelycomplex and complicated project.

Virtual crash experiments, using mathematical
modeling, can help reduce the number of full-scale
vehicle tests. Results from these experiments can be
used to predict real vehicle behavior, interactions be-
tween a vehicle and its occupants, or deformation dur-
ing a collision - all of that in the virtual environment,
without a need of full-scale tests - and providing high
degree of models fidelity. In the same time the re-
sults from such analysis can be used by the specialists
who can e.g. redesign particular car components so
that their safety ratings can be raised. Therefore, even
if almost all the research is done on a computer, this
approach has a huge influence on vehicle safety.

Autoregressive models like NAR (nonlinear au-
toregressive), NARX (nonlinear autoregressive with
exogenous input) or NARMAX (nonlinear autoregres-
sive moving average with exogenous input) are com-
monly used to predict the time-series data. Particular
parameters of those models can be successfully esti-
mated by neural networks - see [3]-[5]. The proper
selection of a network’s activation function has a sig-
nificant effect on the accuracy of the network’s out-
put. Machine diagnostics and failure detection is a
frequent field of application of this approach. Vibra-
tion data was processed in [6] to predict machine state
in the future. [7] describes time series data analysis
by using ARMA model. On the other hand, in [8] a
black box model created as a NARX model was ca-
pable of representing a gas turbine operating in iso-
lated and nonisolated mode. [9] presents examination
of recurrent NARX model’s output according to the
various configurations of a network’s structure. Re-
gressive models are used not only in the engineering
applications. Topics such as financial and economic
processes forecasting, e.g. stock market data, medi-
cal care, e.g. cardiovascular diseases prevention, or
natural sciences, e.g. phytoplankton dynamics, can
also be modeled by this method, see [10]-[14]. In [15]
lumped parameters (stiffness, damping, and mass) of
physical systems were estimated by autoregressive
moving average (ARMA) model. The advantage of
this approach is that those parameters were nonlin-
ear, therefore the accuracy of models’ simulation was
high.

Recently we can distinguish two main ap-
proaches of vehicle crash modeling: FEM (Finite El-
ement Method) simulations and mathematical LPM
(Lumped Parameter Modeling). Creating a three di-
mensional car or obstacle model and its further simu-
lation in an appropriate software is a common way of
describing the car collision without performing a real
test. After an item model is created in a CAD (Com-
puter Aided Design) program, the mesh is applied to

it and structural parameters are assigned. With a com-
plete model and knowledge of the initial conditions
one can proceed to its validation and responses ob-
servation. On the other hand, LPM is an analytical
method of formulating a model which can be further
used for simulation of a real event. It allows us to
establish dynamic equations of the system - differen-
tial equations - which give the complete description of
the models behavior - see [16]-[26]. In the most up-
to-date scope of research concerning crashworthiness,
parameters that change according to the changeable
input (e.g. initial impact velocity) are to be defined
in a dynamic vehicle crash model. One of such trials
is presented in [27] - a nonlinear occupant model is
established and scheduling variable is defined to for-
mulate LPV (linear parametrically varying) model.

Up-to-date technologies are currently being uti-
lized in the area of vehicle crash modeling: wavelets,
neural networks, and fuzzy logic - see [28]-[31]. In
[32] and [33] Radial Basis Function (RBF) neural
network was used to obtain the parameters of vehi-
cle crash viscoelastic models. Prediction of the av-
erage speed on highways or injury severity of an oc-
cupant using statistical data and artificial neural net-
works (ANNs) is shown in [34] and [35]. Intelligent
approach for deformation energy assessment, consist-
ing of vision systems joined together with fuzzy logic
is presented in [36].

This paper contains detailed description of two
experiments which results are used to evaluate AR-
MAX model performance. The major modeling prin-
ciples and formulas needed to establish such a regres-
sive model are provided. Subsequently, models are
simulated for the prediction horizon being equal to
K = 0 andK = 50, respectively. Finally, the ob-
tained estimated acceleration plots are integrated and
compared to the original vehicles’ kinematics in order
to evaluate ARMAX model’s performance. The ma-
jor contribution of this paper is the verification of the
simulation results with the full-scale crash test data.
Furthermore, it is proved that ARMAX model created
for one set of time series data can be successfully ap-
plied to simulate and predict another data set.

2 Full-scale experiment description

The experimental data which we deal with come from
the typical vehicle-to-pole collision ([37]) - see Fig. 1.
A test vehicle was subjected to impact with a vertical,
rigid cylinder. The acceleration field was 100 meter
long and had two anchored parallel pipelines. The
vehicle was steered using those pipelines that were
bolted to the concrete runaway.

The initial velocity of the car was35 km/h, and
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Figure 1: Experiment’s scheme.

the mass of the vehicle (together with the measuring
equipment and dummy) was873 kg. During the test,
the acceleration at the center of gravity in three di-
mensions (x - longitudinal, y - lateral and z - vertical)
was recorded. The yaw rate was also measured with
a gyro meter. The obstruction and car themselves are
shown in Fig. 2 and Fig. 3, respectively. The obstruc-
tion was constructed with two steel components - a
pipe filled with concrete and a baseplate mounted with
bolts on a foundation. Using normal-speed and high-
speed video cameras (the layout of the visual data ac-
quisition system is illustrated in Fig. 4), the behavior
of the test vehicle during the collision was recorded -
see Fig. 5.

Figure 2: Obstruction.

Figure 3: Car’s deformation.

2.1 Real vehicle’s crash pulse analysis
Having at our disposal the acceleration measurements
from the collision, we are able to describe in details
motion of the car. Since it is a central impact, we
analyze only the pulse recorded in the longitudinal
direction (x-axis). By integrating car’s deceleration
we obtain plots of velocity and displacement, respec-
tively - see Fig. 6. At the time when the relative ap-
proach velocity is zero (tm), the maximum dynamic
crush (dc) occurs. The relative velocity in the rebound

Figure 4: Cameras layout.

Figure 5: Subsequent steps of the crash test.

phasethen increases negatively up to the final separa-
tion (or rebound) velocity, at which time a vehicle re-
bounds from an obstacle. The contact duration of the
two masses includes both contact times in deforma-
tion and restitution phases. When the relative accel-
eration becomes zero and relative separation velocity
reaches its maximum recoverable value we have the
separation of the two masses. From the crash pulse
analysis we obtain the data listed in Table 1.
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Figure 6: Real car’s kinematics.

3 Virtual experiment description
Because of the fact that the data from only one full-
scale crash test was available, it was necessary to per-
form a virtual experiment in order to acquire measure-
ments needed to better assess model’s suitability. That
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Table 1: Relevant parameters characterizing the real
collision

Parameter Value
Initial impact velocityV [km/h] 35

Rebound velocityV ′ [km/h] 3
Maximum dynamic crushdc [cm] 52

Time when it occurstm [ms] 76
Permanent deformationdp [cm] 50

is the reason to perform it - not to simulate the ana-
lyzed full-scale crash test, but to obtain a new set of
measurements for model’s validation.

3.1 Experiment’s overview
From the number of experiments analyzed in [38] on
purpose we have chosen to reproduce a low-speed col-
lision (22 km/h compared to35 km/h from the real
crash test presented in Section 2) and similar car’s
type as well as its dimensions to check if it is possible
to establish a model applicable to two different colli-
sion types and two different initial impact velocities
(however, to the similar car’s type). Virtual experi-
mental setup is presented in Fig. 7.

Figure 7: Virtual experimental setup.

3.2 Methodology and assumptions
A multi-body car model has been built (its dimensions
were selected to fulfill general requirements concern-
ing mid-size vehicles - see Fig. 8 for front, side, and
top views of the vehicle). We have divided the front
part of the vehicle into 6 undeformable components
as we can assume that in such a type of collision only
this car’s section undergoes the deformation. To simu-
late elasto-plastic properties of the car’s body, its par-
ticular components were connected with springs and

dampers - see Fig. 9. To make the vehicle follow the
reference car’s behavior from [38], their values were
assigned in the trial and error method - see Table 2.
The most relevant dimensions of the car are shown
in Fig. 10. They were assigned to fulfill the over-
all mid-size vehicle geometric requirements. Mass of
the whole vehicle is equal to 1000 kg. Mass distribu-
tion was also taken into account (e.g. the front part
of the hood is not heavy, on the other hand, the axle
together with wheels and engine weigh more). Fur-
thermore, since we investigate a central collision, the
whole model is constrained in such a way that its mo-
tion is possible only in one direction - longitudinal.
By doing this we analyze only its longitudinal accel-
eration component - the same as we did in Section 2.

Figure 8: The most relevant dimensions of the virtual
vehicle[mm].

Figure 9: Virtual experiment’s overview.

3.3 Virtual crash pulse analysis
Sampling rate for the virtual experiment is exactly the
same as the one for the real collision elaborated in
Section 2 - i.e. 10 kHz (according to [39]). Simi-
larly, the acceleration was measured in the car’s cen-
ter of gravity - COG of a virtual vehicle is illustrated
in Fig. 11. Sequence of the virtual crash is shown
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Table 2: Values of stiffness and damping for each
spring

Spring number Stiffness Damping
k [kN/m] c [kNs/m]

1 90 70
2 500 80
3 100 10
4 800 6
5 600 10
6 30 70

Figure 10: 3D model of a virtual vehicle - dimensions
in [mm].

in Fig. 12. In Fig. 13 there is shown virtual experi-
ment’s outcome. Keep in mind that the response ob-
tained from the virtual crash test should be treated as
an approximated crash pulse since it is not possible to
get such rapidly changing acceleration plot (as it is in
the real experiment) in this kind of simulation. How-
ever, the results are satisfactory because the obtained
virtual car’s deformation closely follows the reference
one from [38] as well as the overall shapes of veloc-
ity and acceleration do. As we see, the crush curve in
Fig. 13 does not achieve a steady value. However, the
behavior of this model in the crush time interval (up
to the moment when the acceleration plot reaches the
zero value) is satisfactory. See Table 3 for the most
relevant crash pulse characteristic parameters. The
value of permanent deformationdp for the virtual ex-
periment should be treated as an approximated one,
since the whole model is represented as a multi-body.

Figure 11: Center of gravity (COG) of a virtual vehi-
cle.

Figure 12: Sequence of the virtual crash.

4 ARMAX model analysis

Two types of mathematical modeling of real world
systems are commonly used [40]:
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Figure 13: Virtual car’s kinematics.

Table3: Relevant parameters characterizing the vir-
tual collision

Parameter Value
Initial impact velocityV [km/h] 22

Rebound velocityV ′ [km/h] 3.2
Maximum dynamic crushdc [cm] 29

Time when it occurstm [ms] 88
Permanent deformationdp [cm] 25

1. Mathematical approach - dynamics of a phe-
nomenonor system is derived from the funda-
mental law of physics (e.g. Newton’s Laws or
conservation principle).

2. System identification - experimental approach.
After examination of the system by performing
on it experiments, model parameters are selected
in such a way, that model’s behavior fits to the
experimental data.

In this paper, the second approach is followed.

4.1 Model’s description
Analysis of the autoregressive model with moving av-
erage and exogenous input (ARMAX) was done ac-
cording to [41]. ARMAX model is defined as:

y(t) + a1y(t− 1) + . . .+ anay(t− na) =

b1u(t− nk) + . . .+ bnbu(t− nk − nb + 1) +

c1e(t− 1) + . . .+ cnce(t− nc) + e(t) (1)

where:

• t - time

• y(t) - system’s output

• a1, . . . , ana; b1, . . . , bnb; c1, . . . , cnc - model’s
parameters

• na - number of model’s poles

• nb - number of model’s zeros+ 1

• nc - number of model’s parameters in C vector

• nk - order of delay

• y(t − 1), . . . , y(t − na) - system’s output in the
previous moment

• u(t−nk), . . . , u(t−nk−nb+1) - system’s input
in the previous moment

• e(t− 1), . . . , e(t− nc) - white noise.

ARMAX model can be also formulated as:

A(q)y(t) = B(q)u(t− nk) + C(q)e(t) (2)

whereA, B, andC are expressed as functions of
q:

A(q) = 1 + a1q
−1 + . . .+ anaq

−na (3)

B(q) = b1 + b2q
−1 + . . .+ bnbq

−nb+1 (4)

C(q) = 1 + c1q
−1 + . . .+ cncq

−nc. (5)

4.2 Model’s establishment
ARMAX model was created for the acceleration pulse
recorded during a full-scale crash test. Since this type
of data is a regular time series, the order of ARMAX
model is specified by the parametersna andnc. We
assumed thatna = nc = 3. The obtained ARMAX
model is as follows:

A(q) = 1−2.907·q−1+2.865·q−2
−0.9582·q−3

C(q) = 1+1.08·q−1+0.9191·q−2+0.4136·q−3.
This is a particular case of an ARMAX model

in which nb = 0. The model’s output is predicted
acceleration. To obtain the complete vehicle’s kine-
matics (apart from acceleration also its velocity and
displacement) during a collision, model’s response is
integrated. Results of simultaneous model’s simula-
tion (no ahead prediction) for both: full-scale crash
test and virtual one are shown in Fig. 14 and Fig. 15,
respectively. Please note that ARMAX model estab-
lished for the real crash data set (mid-speed collision)
is also suitable to simulate the virtual crash test (low-
speed collision).

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Witold Pawlus, Hamid Reza 
Karimi, Kjell G. Robbersmyr

ISSN: 1991-8747 85 Issue 2, Volume 6, April 2011



0 20 40 60 80 100 120 140
−100

−50

0

50

Time [ms]

A
cc

el
er

at
io

n 
[g

]

 

 

Real
Estimated

0 20 40 60 80 100 120 140
−20

0

20

40

Time [ms]

V
el

oc
ity

 [k
m

/h
]

 

 
Real
Estimated

0 20 40 60 80 100 120 140
0

20

40

60

Time [ms]

D
is

pl
ac

em
en

t [
cm

]

 

 

Real
Estimated

Figure 14: ARMAX model’s simultaneous prediction
of the real crash pulse.
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Figure 15: ARMAX model’s simultaneous prediction
of the virtual crash pulse.

5 ARMAX model ahead prediction

Ahead prediction of time series data is based on the
prediction horizon concept. This method takes the old
model’s output up to timet − K and uses it to pre-
dict the output at timet. Thanks to that it is possible
to forecast the behavior of a system according to its
past output. In Section 4.2 it was presented a par-
ticular case of prediction in whichK = 0. Estima-
tion process was performed simultaneously therefore
the model’s orders were low. Let us verify the perfor-
mance of an ARMAX model if the prediction horizon
is equal toK = 50. Because of the fact that the data
sampling frequency used in the experiment is10 kHz,
this corresponds to the situation in which the cur-
rent model’s output is created based on the reference
system’s behavior from5 ms in the past. Since the
ahead prediction methodology demands more com-
plex model’s structure, its order has been increased
in the trial and error process tona = 25 andnc = 20.
Similarly to Section 4.2, ARMAX model was created
from the acceleration pulse recorded during the full-
scale crash test. Obtained system has the following
form:

A(q) = 1 − 8.181 · q−1 + 33.37 · q−2
− 92.03 ·

q−3+195.8 · q−4
−345.3 · q−5+526.7 · q−6

−713.5 ·
q−7+872.1 · q−8

− 970.5 · q−9+987.6 · q−10
− 920 ·

q−11+783.9 ·q−12
−609.6 ·q−13+431 ·q−14

−275.1 ·
q−15+157 ·q−16

−79.85 ·q−17+37.63 ·q−18
−19.31 ·

q−19 +13.07 · q−20
− 10.23 · q−21 +7 · q−22

− 3.52 ·
q−23 + 1.12 · q−24

− 0.167 · q−25

C(q) = 1−0.285·q−1
−0.41·q−2+0.7149·q−3

−

0.7731 · q−4 +0.7477 · q−5
− 0.3222 · q−6

− 0.2005 ·
q−7 + 0.1955 · q−8

− 0.7391 · q−9 + 1.139 · q−10
−

0.5949 ·q−11
−0.1957 ·q−12+0.2036q−13

−0.4528 ·
q−14 + 0.1967 · q−15

− 0.07959 · q−16
− 0.05506 ·

q−17
− 0.3742 · q−18 +0.01382 · q−19 +0.275 · q−20.

Parameters of this regressive model are estimated
by minimizing a weighted sum of squares of predic-
tion errors. The criterion applied is interpreted as es-
timation of the covariance matrix of the noise source
and use of the inverse of that matrix as the weighting
[42]. Simulation results for this system are illustrated
in Fig. 16 and Fig. 17.

The accuracy of the proposed method is satisfac-
tory. It is important that the kinematics of both vehi-
cles: the real and virtual one, derived from the esti-
mated acceleration pulse closely reproduces the refer-
ence plots of velocity and displacement. Hence it is
proved, that ARMAX model allows us to obtain ve-
hicles’ acceleration plots which preserve the overall
characteristics and information concerning the colli-
sion circumstances and its nature. Therefore integra-
tion of the estimated signals yields the kinematic plots
which closely resemble the original ones.
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Figure 16: ARMAX model’s 50 samples ahead pre-
dictionof the real crash pulse.
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Figure 17: ARMAX model’s 50 samples ahead pre-
dictionof the virtual crash pulse.

6 Conclusions
Two ARMAX models have been established. One for
the simultaneous estimation of the vehicle’s accelera-
tion signal, whereas another one for the signal ahead
prediction, where prediction horizon was equal to50
samples. As expected, the higher the prediction hori-
zon is demanded, the higher the orders of the model
should be applied. However, at some point the in-
crease of model’s orders does not improve the results
obtained - this is associated with the loss of model’s
stability. Moreover, creating complex, large models
greatly extends the computational time needed to es-
timate their parameters and obtain their output.

Advantage of the approach presented in this pa-
per is that a model created for one set of data can
be successfully used to reproduce another data set.
This reduces the time needed for model’s creation and
enhances the simulation stage as well. Future work
in this area may cover performance investigation of
models established for another time series data and
analysis of the estimated signals in the frequency do-
main. It is also advisable to conduct simulations of
the regressive models for the higher prediction hori-
zon to evaluate in details robustness of this modeling
approach.
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nology, Kraḱow, Poland 2010.

[42] L. Ljung. MATLAB Sytem Identification
ToolboxTM 7 - User’s Guide. The MathWorks
Inc., 2010.

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Witold Pawlus, Hamid Reza 
Karimi, Kjell G. Robbersmyr

ISSN: 1991-8747 89 Issue 2, Volume 6, April 2011




