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Abstract: - This paper studies properties of a continuum with structure. The characteristic size of the structure 

governs the fact that difference relations do not automatically transform into differential ones [1]. It is 

impossible to consider an infinitesimal volume of a body, to which we could apply the major conservation 

laws, because the minimal representative volume of the body must contain at least a few elementary 

microstructures. The corresponding equations of motions are the equations of infinite order, solutions of which 

include, along with sound waves, the unusual waves propagating with abnormal low velocities, not bounded 

below. It is shown that in such media weak perturbations can increase or decrease outside the limits. The 

variance of structure sizes plays a double role. The intensity of instabilities decreases due to dispersion, thereby 

stabilizing the media, while the frequency range of unstable solutions expands, and disasters can occur at very 

low frequencies. The equation of equilibrium is not satisfied at any point in the medium. It is true only at an 

average. Hence there is a possibility to have a lot of micro-dynamic acts, in spite of static macroscopic state in 

average. This paper describes some of the conditions under which the possible occurrence of usual wave 

motion in media in the presence of certain dynamic phenomena. The number of complex roots of the 

corresponding dispersion equation, which can be interpreted as the number of unstable solutions, depends on 

the specific surface cracks and is an almost linear dependence on a logarithmic scale, as in the seismological 

law of Gutenberg-Richter. 

Key-words: - Specific surface, Operator of continuity, Equation of motion, Catastrophes, Structured  

media, Gutenberg–Richter law 

 

 

1 Introduction 
The characteristic size of structure leads to the fact 

that the average distance between one of the crack 

to another one or one of the pore to another one is 

given by specific surface of sample. Fig.1 shows an 

element of the volume of a structured body, where 

0l  is the average distance between one pore to 

another.  There is a theorem of integral geometry, 

which relates the specific surface 0   and 0l  with 

porosity f [2] 
 

 0 0 4(1 )l f    (1) 

 

Therefore, if there is a specific surface of sample, 

the average range of microstructure 0l  is 

automatically defined.  

 

 

 
Fig.1 The element of a structured body with an 

average distance  0l   between pores. 

 

It is evident that the minimal distance, which gives 

us a structure, cannot be less than the distance from 
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one particle to its nearest neighbor for granular 

medium.  

The same we can tell about average distance from 

any crack to its nearest neighbor for cracked 

medium. Actually, the representative size of 

structure is related with statistical characteristics of 

pore space. 

The distinction of the classic and the structured 

continuum is clear from Fig.2. In the volume 

bounded by surface C there is equilibrium as a 

result of compensation of all internal volume 

forces.  

There is no equilibrium in the volume bounded by 

surface D because all forces are concentrated on 

one side of a surface of grain while another side is 

free from action of forces. 

 

 
Fig.2 The problem of creation of equilibrium 

equation into arbitrary element of discrete medium  

 

We can construct new model of a medium as 

follows. Let’s consider finite element of volume of 

the structured body bounded by the sphere of radius 

l0. Surface forces will act on the surface of the 

element, while the forces of inertia will be attached 

to its center and in our case, there is no possibility 

to turn the elementary volume to zero and to 

combine points of the application of surface and 

inertial forces, as in classical a continuum. So we 

must consider namely a finite volume as 

representative volume of the body.  

Physically based equations of motion of such 

elementary volumes will be possible if we apply 

the operator of translation of the surface forces to 

the center of this structure. 

So there appears a possibility to use usual laws of 

conservation for the forces transferred to the center 

of structure. In other words, operators of translation 

will transform the real medium to its continuous 

image, where all space is filled by a field of forces. 

Some results of a new model of the structured 

continuum was published earlier [3], but now we 

repeat some formulas in order to present an 

absolutely new idea about the intermediate state 

between statics and dynamics 

The one-dimensional operator of translation of the 

field from the point x  into the point 0x l  is 

specified by the formula the symbolic formula [4] 
 

 0
0( ) ( ) xl D

u x l u x e


   (2) 

 

This formula contains both spatial variables x , 0l  
and the symbolic variable 

xD
 

 

 xD
x





 (3) 

 

The formal Taylor series expansion in (2) by using 

(3) gives the finite increment of the field as a series 

of the infinite number of all order derivatives with 

different powers of 0l . The difference of the first 

order is given by 
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0
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2 2
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 (4) 

 

Expression 1  in (4) tends to the first derivative at 

l0→0. Analogously the second difference may be 

written as 
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 (5) 

 

Expression 2  in (5) tends to the second derivative 

at l0→0. The similar operator of translation in 

three-dimension space for some sphere is given by 

expression 
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According to Poisson formula [3] we have  
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so the operator P in (6) may be rewritten as follows 
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It is interesting that a P operator in (8) as a function 

of symbolic variables 1 2 3, ,p p p
x y z

  
  
  

 

satisfies to Helmholtz equation with pure image 

frequency 
 

 

2 2 2
2

02 2 2

1 2 3

l
p p p

P P P
P

  
  

  
 (9) 

 

One of fundamental solution of (9) which tends to 

unit at l0→0 takes a form 
 

 

2 2 2

0 1 2 3 0

2 2 2
00 1 2 3

sinh( ) sinh( )l p p p l
P

ll p p p

  
 

 
(10) 

 

 

2 The equation of motion in blocked 

media 
By using operator P  we can write the equation of 

motion of microinhomogeneous body because for 

an average stresses in structure the law of impulse 

conservation takes a usual form, namely 
 

 [ ( )]
k

iik
x

P u





 (11) 

 

By using (10) the equation (11) may be rewritten 

in more detailed form as follows 
 

 

2 4

0 0 ...
3! 5!k

iik

l l

x
E u
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 (12) 

 

In particular, if we take into account only the first 

and second terms in this equation, we obtain the 

fourth-order equilibrium equation. For one 

dimensional case equation (12) takes more simple 

expression  
 

 

2 4
20 0( ....) 0

3! 5!
S

l l
u E k u

 
       (13) 

 

This equation by substitution of  u Aexp ikx  

into (13) gives us the dispersion equation for 

unknown wave number k  
 

 

2

0

2

0

sin( )
0Skl k

kl k
   (14) 

 

Or, for unknown wave velocity, which depends on 

range 0l of structure or specific surface 0 of 

sample, according to the formula (1). In (14) sk  is 

usual wave number for shear or longitude waves. 

In case of 0 0l  , the wave number Sk k , i.e. 

the wave velocity is equal to PV  or SV  elastic wave 

velocities. However, if 0l  is not very small value, 

the wave velocity decreases up to a zero when

0kl m , where m  is integer number. 

Hence this model describes along with usual 

seismic waves a lot of waves of very small 

velocities, which unbounded from below.  Such 

effect is more substantial for the  P  waves than for 

the S ones.  Thus, if the Poisson's ratio is measured 

on the samples using PV  and SV   velocities, we 

have the growth of ratio /S PV V  with growth of 0l , 

and this effect can produce abnormally small 

Poisson's ratio up to its negative values. Set of 

velocities, described by (14) closely relates with 

infinite degrees of freedom of structured media.  
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The same approach for case of infinite degrees of 

freedom was recently published in the work [3].  

Another feature of equation (14) is the existence of 

complex roots representing the unstable solutions, 

describing phenomenon of so-called parametric 

resonance.  

 

 

3 Seismological law of Gutenberg–

Richter  
Equation (14) gives us an infinite number of roots 

both real and complex ones. The real roots 

correspond to stable solutions, while complex ones 

correspond to instabilities. The number of complex 

roots is growing at decreasing of dimensionless 

specific surface of cracks, which represents by 

expression  
 

 
01

8 (1 )

S

f











 (15) 

 

The symbol S  in (15) is the wavelength of a usual 

shear wave, while 0sk l  . Theoretical dependence 

of the number of complex roots versus specific 

surface on the log-log scale plot (Fig.3) represents 

something closed to linear dependence. It is evident 

that the energy of cracked body is proportional to 

surface of cracks. The deficit of potential energy 

owing to occurrence of cracks is equal to product of 

stresses before cracking process and displacement 

of cracks surface, namely 
 

 i i
S

E Pu dS   (16) 

 

Value E in (16) is equal to kinetic energy of waves 

due to law of energy conservation. It means that we 

can compare the experimental seismological 

relation (number of earthquakes versus energy) 

with the theoretical relationship (number of instable 

solutions versus specific surface). On the Fig.3-4 

there are theoretical and experimental diagrams.  

The Fig.3 shows series of straight horizontal 

segments, representing complex roots, 

corresponding to detached number of events 

The experimental diagram was made Riznichenko 

[5]. On the theoretical plot (Fig.3) this tangent is 

closed to 0.5. It is interesting that for large energy 

there is set of non-uniqueness. One line segment of 

the vertical scale corresponds a lot of surfaces 

(energy) on the horizontal exes. 

 

 

The tangent of the angle with vertical axes is 

changing on the  experimental plot  from 0.5 to 

0.52 and  depends on different data processing 

(Fig.4). 

 

Fig.3 Theoretical dependence of instable events 

number from cracks specific surface. Tangent of 

the angle γ = 0.5 It is clearly visible non-

uniqueness of solutions with the great energies 

 

 

Fig.4 Experimental dependence   seismic events 

numbers versus energy, which is proportional to 

cracks specific surface. Tangent of the angle γ = 0.5 

– 0.52 

 

Such non-uniqueness in experimental data usually 

interpreted as a deficiency of number of great 

events and bad statistic estimations of such events.  

Proposed theoretical approach explains a principal 

non-uniqueness of such processes. Besides of it, 

these processes have shear character without of 

sufficient crack opening (Fig.5). 
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At sufficient crack opening the potential energy 

would be proportional not to surface, but to volume 

of cracks. 

Hence the theoretical plot on Fig.3 shows, that law 

Gutenberg–Richter is obliged to extremely shift 

mechanisms of earthquakes. 

 
Fig.5 Real shear cracking process (right hand) 

without of sufficient crack opening corresponds to 

Richter-Gutenberg law 

 

 

4 The long wave approach. Equations 

kind of Korteweg-de-Vries and 

Boussinesq 
For small values 

0
l  in comparison with wavelength 

there is a possibility to reduce the equation of 

motion of an infinite order to the equation of the 

fourth order, neglecting the members containing 

values  
0

4l  and above. 

In this case, we can consider some nonlinear 

relations between stress and strain.  

Let's assume that we have a nonlinear loading and 

linear unloading. 

For rocks and grounds the reduction of stresses 

takes place at the increase in deformations. 

It means, that in such media, where shock waves 

are absent while nonlinear waves are represented 

by Riemann waves. 

The reduced equation of motion (11) takes a form 
 

 
2

0

3!k

iik

l

x
E u
 

   
  

 (17) 

On the Fig.6 is shown quadratic relations between 

stress and strain of loading process in the form 
2( 2 )( )xx x xu bu      and the linear behavior 

of unloading process. The area of the hysteresis 

loop represents the energy dissipated.  
Under a long wavelength approximation, when a 

wavelength much more than the linear size of 

microstructure, the equation of motion by 
neglecting third and higher order terms, takes a 

form 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.6 There is relation between stress and strain. 

The loading part has a positive curvature. The 

downloading part is a straight line. The area 

between them is dissipated energy. 
 

 

2
2 0

2

1
(1 2 )

3!
xx x xxxx tt

l
u b u u u

c
    (18) 

 

By means of change of variables 

;ct x ct x      an equation of motion (4) 

reduces to similar to Korteweg- de -Vries equation. 
 

 

2
2 0 0

3!

l
u b uu u      (19) 

 

The classical KdV-equation has another sign of 

nonlinear term. Due to this fact equation (18) has 

no solutions type of solitons, and the role of 

nonlinear term will be represent below.  

If the nonlinear term is absent, this equation is 

similar to the equation of Boussinesq type, i.e. 
 

 

2

0

2

1

3!
xx xxxx tt

l
u u u

c
   (20) 

 

In (20) second summand 

2

0

3!
xxxx

l
u is the dispersion 

term. Let’s find the solution of (17) in the wave 

form 
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u cTF
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 
 (21) 

 

In (21) Т is a characteristic time of pulse, while 
is the some constant value, greater unit. Assuming

( )F    , we can write the ordinary nonlinear 

equation 
 

 

2
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l l
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`Let’s assume, that in (22) 
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The value of   is the product 0   , where the 

constant 0  is equal to characteristic value of 

strain, for example, to the elastic limit of shear 

deformation.  At the assumptions entered above it 

is received more simple equation for a variable .  

Ignoring the bar over the variable  , we have the 

nonlinear equation in the form 
 

 
2

0 0       (23)  

 

In  equation (23) 

2

2

3!b



 . Thus, in spite of 0  

is very small value, the product of it on large value 

  is not very small one, due to 1  , while   is 

a very small value for small size of structure 

compare to the wavelength. Hence, the dispersion 

phenomena in microinhomogeneous media increase 

the nonlinear effects. The exact solution of (23) in 

implicit form is 
 

 
2 3

0 0

/

1

t x c dp

T p p









 
  (24) 

 

This solution at 0 0   tends to the usual 

sinusoidal function, while the more common exact 

solution of (23) takes a form 
 

 
2 3

0 1 0

/t x c dp

T C Cp p p








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  (25) 

  

Here 1C and C  are arbitrary constants. The integral 

(25) describes wider class of phenomena, than the 

integral (24).  

We can linearize the equation (23) using instead of 

function 
2  expression 

2 cos    close to it in 

which the term cos  is the solution of the linear 

equation arising at 0 0  . Other words, we can 

write
2 cos   ,

 and ( / ) /t x c T   . 

So there is a possibility to linearize equation into 

form of Mathieu's equation 
 

 0

2
1 cos 0


  



 
    

 
 (26) 

 

Fig.7 The attenuation of sinusoidal impulse 

depends on distance. The nonlinear parameter is 

0.1. The logarithmic decrement is almost constant 

value. 

 

This equation contains both stable solutions and 

instabilities. Instabilities contain attenuation of 

vibrations and growing of them i.e. catastrophes.   

The role of parameter plays not small value 0 , but 

the more significant value, namely, the ratio
2

0 /  . Attenuation of sinusoidal pulse with 

distance due to nonlinearity is displayed on Fig.7-8 

The parameter of nonlinearity is not very small due 

to large factor
21/ .  

On these figures is shown, how to appear the 

attenuation for sinusoidal impulse. When the 

nonlinear parameter equal to zero, attenuation is 

absent.  
If it is equal to 0.1 there is some small attenuation 

with almost constant logarithmic decrement. For 

larger nonlinear parameter equal to 0.5 there is a 

sufficient attenuation without of constant 
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decrement.  Equation (26) also contains growing 

solutions. But in this section, we shall deal only 

with damping vibrations. 
 

 
Fig.8 The attenuation of sinusoidal impulse 

depends on distance. The nonlinear parameter is 

0.5.  

 

According to experimental observations the sample 

of artificial sandstone (length-1m, diameter-0.76m, 

porosity-0.3 and density 2g/cm
3
) undergoes of 

excitation simultaneously by two vibrators with 

frequencies 6100Hz and 7720 Hz.  

The spectra of signals on the plane of cylindrical 

sample, where the source is located, are given on 

the Fig.9.  

Fig.9  Spectra of quasi-sinusoidal signals. The 

horizontal axis shows the frequency with step equal 

2000Hz. The vertical axis shows the amplitudes. 

(Egorov G.V. [6]) 

 

 

 

The receiver registers different frequency 1620 Hz 

on the distance 75 cm from the source. It is 

interesting that the amplitude of difference 

frequency extremely high, i.e. reached the order of 

a several percent of initial signal [6].  

Classic approach, connected with second-order 

equations of motion predicts the effect, which is 

proportional to quadrate of strains.  

The dispersion phenomena in porous media sharply 

strengthen nonlinear processes so even weak 

fluctuations are accompanied by appreciable 

nonlinear effects. 

 

 

5 Gamma-distribution of sizes of 

random structures. The role of 

average size deviation of structures in 

vibrations 
One of the most close to the reality size’s 

distribution of particles is two-parameter gamma 

distribution with probability density function 
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At usual conditions about norm of (27) 
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Mx  is given by expression  
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Random value ( )l   is a real distance between 

blocks. The random value is . The average value 

of ( )l   is equal to 0( )l l  . 

If we require, that average value in (28) was equal 

to the unit i.e. average distance between blocks is 

l0, we need put   in (27) and the variance 

takes a form 
 

 
2 1 2
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

 
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It is evident that the average value of random 

variable e is equal 
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with
0( )x x y y z zl D n D n D n    . Formula (30) 

gives a possibility to write operator P for gamma 

distribution of cracks. Using a Poisson formula (7) 

we have 
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
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Value   determines from (29). In turn by using 

(31) we have the corresponding dispersion equation 

for random structures with Gamma distribution of 

( )l   and < ( )l  >= 0l   
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





 
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At    equation (32) is reducing to equation 

(14), namely 

2

0

2

0

sin( ) Skl k

kl k
   or in another form   

2sin( )z z   with 0z kl and 0sk l  . 

In case of Im( )z y    we can use the another 

form for the integral (31), namely [7] 
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Equation (33) may be written as 
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(34) 

 

For large values   we get an equation (14) with 

replacement of random value   per unit. 

 

 

6  Dry friction in 

microinhomogeneous bodies 
The surface friction force is the product of normal 

stress on friction coefficient p , namely 

 sin( , )i jl j l iF p n n n w  (35) 

 

In (35) n is the normal vector to contact of grains 

and wi is the displacement vector. We define the 

volume friction force as a product of surface one on 

specific surface of contacts, i.e. 
 

 0 sin( , )i jl j l iF p n n n w   (36) 

 

 The average value of
1

( , )
2

isin n w  , so  

 

 
2 2 2

0

1
( )

2
i xx x yy y zz z iF p n n n e       (37) 

 

In (37) ie  is i-component of unit vector. For one 

dimensional case the equation of motion takes a 

form 
 

 
0 2

1 1

2

xx
xx xp u

x V


 


 


 (38) 

 

Thus, the phenomenon of friction initiates an 

appearance of diffusion term 0

1

2
p u   in equation 

of motion which is follow from (38) in the form   
 

 
0 2

1 1

2
u p u u

V
    (39) 

 

For microinhomogeneous bodies the equation of 

motion (39) takes a form 
 

 
0 2

1 1
( )

2
Pu p P E u u

V
     (40) 

 

In (40) operator P  for one dimensional case is 

given by expression (8). 

 

 

7  Viscose friction in 

microinhomogeneous bodies 
At a flow through granular collector with average 

radius 0r  local speed of a particle can be presented  
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In (41) u  means the fluid velocity in infinity. The 

divergence of this field is equal to zero, and this 

field itself satisfies to Navier-Stokes equation. 

Besides of it, on the interface grain-fluid, at 0r r , 

the relative velocity is also equal to zero. The 

viscose stresses may be written as  
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   
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(42) 

 

In (42) first and second equations are normal and 

tangent stresses in solid. Therefore, the viscose 

resistivity is equal to tangent stress in (36). Force of 

friction does not change the sign at variation only 

speed so it is necessary to use the module of sin . 

Taking into account identity 
1

2
Sin   we can 

rewrite the volume friction force in the form 
 

 0 0

0 0

3 3

4 4
fF u w

r r

 
   (43) 

 

In (43) w  is a field of displacement. Equation of 

motion for classic continuum is the telegraph 

equation, namely 
 

 0

0

3
( 2 )

4
xxw w w

r


      (44) 

 

Equation of motion for structured continuum is  
 

 0

0

3
( 2 )

4
xxPw w w

r
P


      (45) 

 

Diffusion terms in (44) and (45) means that 

resistivity is proportional to viscosity and specific 

surface of grains 

. 

 

8  Waves due to static loading in 

blocked media 
Let’s return to the Fig.2. In the volume, which 

bounded by surface C there is an equation of 

equilibrium, because all surface forces compensate 

each other, while in the volume bounded by surface 

D, there is no equation of equilibrium, because all 

surface forces concentrate on the one part of grain, 

and another its part has no forces. In order to 

describe, how the total statics can contain micro-

dynamics, we should use operator P E  for 

inertial forces. In this assumption, the equation of 

balance takes the form 
 

 [ ( )] [ ]ik i

k

P P E u
x

 


 


 (46) 

 

For classic continuum model P E  and inertial 

forces tend to zero. Actually, they are equal to zero 

only in the average, but not in each point. In 

blocked media, there is a possibility to have a lot of 

inertial forces with random orientation. It is an 

interesting question, when these events of micro-

dynamics may create real, usual waves, which was 

initiated by static loading. In order to answer this 

question, it is necessary to solve the equation (46).  

Assuming ( , )f z    

( 1)/2
2

2

sin ( 1)arctan

( 1) 1

z z

z
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 
  

  
  

   
and using formulas (46), (34) and (10), we can 

write the dispersion equation for quasi-static 

process in the form 
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f z
f z
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
 

 
  

 
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In (47) 
21



  is variance of gamma distribution.  

 

 

9  Quasi-statics at whole and micro-

dynamics in microstructure 
In case of absence of macro-dynamics equation 

(11) for the micro-dynamic processes can be 

written as 
 

 [ ( )] [ ]ik i

k

P P E u
x

 


 


 (48) 

 

The presence of the operator P E  in this 

equation means that in a classical continuum              

( P E ), dynamic phenomena are absent 

This equation in one dimensional case for internal 

dry friction with coefficient p  may be rewritten 

like 
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0 2

1
( ) ( )Pu P E u p P E u

c
      (49) 

 

Equation (48) describes intermediate (statics-

dynamics) processes.  Equation (49) describes the 

same processes with friction.  The blocked medium 

has equilibrium state as a whole, but  not  in any of 

its points  
 

  ik
i

k

P P E u
x





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
 (50) 

 

Equation (50) derives from (46) due to 

commutativity of differential operator and, also P-E 

and P operators. 

For internal dry friction with friction coefficient p, 

the dispersion equation for blocked medium 

becomes  

Fig.10 Waves in statics with α=300, i.e. at small 

variance of blocks sizes (z=x+iy). 
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In formulas (51)-(52) 0 0, ,S pk l z kl    is 

friction coefficient,   is specific surface of 

contacts. On the Fig.10 are shown the roots of 

dispersion equation corresponding to equation (48), 

representing waves in statics with α=300. It 

corresponds to small variation of the sizes of 

blocks. At the vicinity of origin of coordinates 

waves are absent (pure statics).Waves are 

beginning with very small velocities of them 

(Z<<X). Small black points mean stable solutions. 

Catastrophes (large black balls) are beginning when 

wave velocities tend to shear waves ones ( Z X ). 

Large white  balls mean damping solutions. 

 

 
 

Fig.11 Waves in statics with α=5, i.e. at large 

variance of blocks sizes (z=x+iy). 

 

On the Fig.11 are shown waves in statics with α=5.  

It corresponds to large variation of the sizes of 

blocks. At the vicinity of origin of coordinates 

waves are absent (pure statics). In this case waves 

also are beginning at very small velocities (Z<<X). 

Small black points mean stable solutions. In that 

case catastrophes (large black balls) are beginning 

at very small wave velocities (Z<<X too) with 

compare to shear wave velocities. 

 

 

10 Conclusions 
1. The new model of the structured continuum with 

an account of specific surface of blocked medium 

or average size of structure, gives us the differential 

equations of motion of the infinite order. This 

model predicts besides of usual elastic waves a lot 

of unusual waves with very small velocities. The 

reason of these unusual waves consists in the 

infinite degrees of freedom for such media. 

2. In blocked media the representative volume 

element has finite size. Hence the equilibrium state 

is possible on some minimal volume, but not on 

arbitrary small volume. It means that macro-statics 

may contain   micro-dynamics. It is shown, that 

separate dynamic acts also may produce waves, 

namely a slow and a fast usual waves, and can 

generate instabilities due to static loads. 

3. The dry friction can block catastrophes. For 

almost periodic structures this effect is not very 

strong, while for structures with high variation of 

sizes such blocking effect is much more than for 

periodic medium. Geometrical chaos stabilizes the 
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blocked medium. However, the decreasing of a 

friction coefficient due to fluids or to temperature is 

the instability factor, especially for almost periodic 

structures.  

4. The number of instable solutions relates to 

energy of them like in seismological law of 

Gutenberg–Richter  

5. For usual continuous medium nonlinear effects 

in weak waves are negligible small. But in 

structured media this effect is not small, it is real 

phenomenon.  
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