
Parallel-Sparse Symmetrical/Unsymmetrical Finite Element Domain 

Decomposition Solver with Multi-Point Constraints for 

Structural/Acoustic Analysis 

 
SIROJ TUNGKAHOTARA 

INCA Engineers, Inc. 

3850 N Causeway Blvd, Ste.210 New Orleans, LA 70002 

USA 

s.tungkahotara@incainc.com 

 

WILLIE R. WATSON 

NASA Langley Research Center 

Computational Modeling & Simulation Branch; Mail Stop 128 

 Hampton, VA 23681 

USA 

willie.r.watson@nasa.gov 

 

DUC T. NGUYEN 

Old Dominion University 

Department of Civil and Environment Engineering; 135 KAUF 

Norfolk, VA 23529 

USA 

dnguyen@odu.edu 

 

SUBRAMANIAM D. RAJAN 

Arizona State University 

Department of Civil, Environmental and Sustainable Engineering 

Tempe, AZ 85287 

USA 

s.rajan@asu.edu 

 

Abstract: - Details of parallel-sparse Domain Decomposition (DD) with multi-point constraints (MPC) 

formulation are explained. Major computational components of the DD formulation are identified. Critical roles 

of parallel (direct) sparse and iterative solvers with MPC are discussed within the framework of DD 

formulation. Both symmetrical and unsymmetrical system of simultaneous linear equations (SLE) can be 

handled by the developed DD formulation. For symmetrical SLE, option for imposing MPC equations is also 

provided. 

 Large-scale (up to 25 million unknowns involving complex numbers) structural and acoustic Finite Element 

(FE) analysis are used to evaluate the parallel computational performance of the proposed DD implementation 

using different parallel computer platforms. Numerical examples show that the authors’ MPI/FORTRAN code 

is significantly faster than the commercial parallel sparse solver. Furthermore, the developed software can also 

conveniently and efficiently solve large SLE with MPCs, a feature not available in almost all commercial 

parallel sparse solvers. 
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1 Finite Element Analysis With 

Domain Decomposition (DD) 

Formulations 
The finite element equilibrium equation (state 

equation) in terms of displacements, is given in [1]-

[6] 

 

=K z s  (1) 

where 

s  = vector of effective nodal loads on the 

structure 

z  = state variable vector of (e.g. nodal 

displacements) 

K  = global stiffness matrix, with dimension 

NxN 

Using the DD concept, Eq. (1) can be re-written 

(in the partitioned form) as  

  

BB BI B B

IB II I I

     
⋅ =     

     

K K z s

K K z s
  (2) 

 

where the subscripts B  and I  represent the 

boundary and interior terms, respectively. 

The interior displacements Ιz  are first eliminated 

from (2) and the following reduced equation is 

obtained ([1], [7]-[11]) 

 

Β Β Β=Κ z F  (3) 

 

where      

 

Β ΒΒ ΒΙ= + ⋅Κ Κ Κ Q  (4) 

 
T

IΒ Β= +F s Q s  (5) 

 

[ ] 1

II IB

−
= −Q K K  (6) 

Here ΒΚ  is a boundary stiffness matrix for the 

entire structure and ΒF ∈  
nR  is the vector of 

effective boundary forces. Efficient parallel (or 

serial) sparse numerical procedures discussed in [1], 

[12]-[20] can be used to decompose ΙΙΚ  and to 

solve for m n×Q  in (6).  

The boundary stiffness ΒΚ  and the effective 

boundary force vector ΒF are synthesized by 

considering contributions from all subdomains.  For 

this purpose, the equilibrium equation for a sub-

domain, which is considered as an isolated free-

body, is also expressed in the partitioned form as  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
BB BI B B

IB II I I

r r r r

r r r r

     
⋅ =     

     

K K z s

K K z s
 (7) 

 

where the superscript r refers to the r
th
 sub-domain.  

Let rn  and rm  represent the number of boundary 

and interior degree-of-freedom (dof) of the r
th
 sub-

domain, respectively.  It may be noted that  

1

L

r

r

m m
=

=∑  

 

where L is the total number of subdomains. From 

the second equation in (7), one has 

 
1

( ) ( ) ( ) ( ) ( )r r r r r
−

Ι ΙΙ Ι ΙΒ Β   = −   z Κ s Κ z  (8) 

 

Substituting (8) into the first equation in (7), one 

obtains 

 
( ) ( ) ( )r r r

B B B=K z F  (9) 

 

where 

 
( ) ( ) ( ) ( )r r r r

B BB BI= +K K K Q  (10) 

( ) ( ) ( ) ( )
T

r r r r

B B I
 = +  F s Q s  (11) 

1
( ) ( ) ( )r r r

−

ΙΙ ΙΒ = −  Q K K  (12) 

 

The boundary stiffness matrix 
( )r

BK  and the 

effective boundary force vector 
( )r

BF  for each sub-

domain are computed from (10) and (11), 

respectively. Finally, BK  and BF  are assembled 

according to the equations 

 

( ) ( ) ( )

1

L
T

r r r

B

r

β βΒ
=

   =    ∑K K  (13) 

( ) ( ) ( )

1

L
T T

r r r

B

r

βΒ Ι
=

   = +    ∑F s Q s  (14) 

 

where 
( )

r

r

n nβ × is a boolean transformation matrix. 

Using the reduced equilibrium equation (3), the 

boundary displacements Βz  can be computed by a 
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parallel-dense equation solver [21]-[24], which also 

fully exploits the cache available in most modern 

computer platforms. The parallel dense equation 

solver (for the solution of Bz in (3)) requires explicit 

computation of the dense matrix BK  in (13), which 

also requires the computation of 
( )r

B∑K  (shown in 

(10)), and 
( )r

Q . From (12), since 
( )r

IBK  is a matrix 

with number of columns as rn . Therefore, the triple 

product of 
1

( ) ( ) ( )r r r

BI II IB

−
 ⋅ ⋅ K K K  can be very 

expensive. For this reason, an iterative solver (such 

as preconditioned conjugate gradient algorithm) is 

recommended to use for solving Βz  in (3). Interior 

displacements are then simultaneously computed for 

each sub-domain, using (8). Lastly, member end 

forces for the r
th
 sub-domain are computed from 

( ) ( ) ( )r r r=P K z  (15) 

where 
( )rP  is the vector of member forces,  

( )rK is 

the stiffness matrix and 
( )rz  is the vector of nodal 

displacements for the r
th
 sub-domain. Multiple 

loading conditions for the structure are routinely 

treated by taking s  and z  in (1) as matrices whose 

j
th
 columns represent quantities associated with the 

j
th
loading condition. 

Algorithms and software given in [3] and [17] can 

be used to automatically break the original, large-

scale finite element domain into several smaller sub-

domains. 

Equations (8) and (12) requires factorization of a 

sparse, symmetrical matrix [
( )r

ΙΙΚ ] for the r
th
 sub-

domain. Thus, algorithms and software for sparse 

symbolic, numerical factorization, (with unrolling 

techniques) and forward-backward solution given in 

[1] and [12]-[20] can be utilized. In this work, 

however, solution strategies presented in [1] are 

incorporated. 

Equation (3) requires factorization of a dense, 

symmetrical matrix BΚ . Thus, efficient parallel 

dense solvers given in references [1] and [21]-[24] 

can be utilized. In this work, however, 

preconditioned conjugate gradient (or PCG) as 

explained in [1], [7] is used. 

The remainder of this paper deals with issues 

related to an efficient implementation for handling 

MPCs within the general frame work of parallel DD 

formulation, efficient sparse assembly procedures, 

and generating matrix BΚ for obtaining either 

symmetrical or unsymmetrical system matrices. 

 

 

2 Multi-Point Constraints (MPC) in 

DD formulation 
To explain the multi-point constraints capability 

within the framework of domain decomposition 

formulation, consider a planar truss structure as 

shown in Fig. 1. The truss is modeled with 4-nodes, 

and 5-elements.  Node 2 is at an inclined roller 

support or a skew support. 

 

Fig.1: 4-node, 5-element truss example with an 

inclined roller support at joint 2 

 

The MPC equation at the roller support joint 2 can 

be expressed as: 

D=zc+zc 4433  (16) 

where 3z  and 4z  represent the horizontal and 

vertical displacements at node 2 in the global x and 

y directions, respectively and 3c , 4c  and D are 

known constants. 

The single MPC equation (16) can be generalized 

to the following multiple MPC equations: 

nnnn,jjn,iin,n,n,

jnnj,jjj,iij,j,j,

inni,jji,iii,i,i,

nnjjii

nnjjii

D=zc++zc+zc++zc+zc

D=zc++zc+zc++zc+zc

D=zc++zc+zc++zc+zc

D=zc++zc+zc++zc+zc

D=zc++zc+zc++zc+zc

......

......

......

......

......

2211

2211

2211

22,2,2,22,212,1

11,1,1,21,211,1

⋮

⋮

 (17)  
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where ji,c  and iD  are known constants. The total 

potential energy of the system described by (1) with 

MPC in (16) can be expressed as 

( )

( )23 3 4 4

1

2

1

2

T T=

+ P c z +c z D

Π −

−

z z Kz z s
 (18) 

where P is a large penalty constant [25]. Experience 

has shown that using 
4P=10 pqmax K⋅  works 

reasonably well. 

The terms appearing inside the parenthesis in the 

third term in (18) need be squared to guarantee a 

positive value (for a proper penalty term). The factor 

1 2  is used for convenience; the 1 2  term 

disappears when the partial derivative of Π  is 

computed. 

From equation (18), it is seen that the total 

potential energy is minimum when 0
Π

=
∂
∂z

. The 

derivative yields the usual total stiffness matrix and 

right-hand-side vector except the rows and columns 

associated with 3z  and 4z , in this case. The 

modified terms of rows and columns 3 and 4 are: 

2
34 3 433 3

2
43 3 4 44 4

k + Pc ck + Pc

k + Pc c k + Pc

 
 
 
 
 
 

⋱ ⋮ ⋮

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋱

 (19) 

and 



















⋮

⋮

44

33

PDc+S

PDc+S

 (20)

 

The additional terms could be considered as a 

fictitious, or artificial finite element stiffness matrix 

associated with each MPC.  In other words, the 

MPC equations are treated in this work as additional 

artificial finite elements. The number of element 

nodes is the number of degrees of freedom in the 

MPC and each node has one degree of freedom. 

Since all MPC equations are treated as artificial (or 

fictitious) finite elements, they have to be included 

in the phase to find boundary degrees of freedom in 

order to avoid the coupling of interior degrees of 

freedom between two sub-domains. 

As a quick example, suppose the following 2 

MPC equations need to be implemented. 

3 17 25

8 23

2 8 4 6

4 12 5

z z + z =

z + z =

− −

−
 

Thus, the first artificial MPC finite element is 

created as  

( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2

21

2

2 2 8 2 4

8 2 8 8 4

4 2 4 8 4

e=

MPC

P P P

= P P P

P P P

 −
 

   − − −
   

 −
 

k  

and 

( ){ }
( ) ( )
( ) ( )
( ) ( )

1

6 2

6 8

6 4

e

MPC

P

P

P

=

− 
 

= − − 
 − 

s  

and the element is associated with degrees of 

freedom 3, 17 and 25, respectively. Similarly, the 

second MPC element is created as 

( ) ( ) ( ) ( )
( ) ( ) ( )

2

2

2

4 4 12

12 4 12

e=

MPC

P P
=

P P

 − −   
   − 
k  

and 

( ){ } ( ) ( )
( ) ( )

2 5 4

5 12

e

MPC

P

P

= − 
=  
 

s  

and the element is associated with degrees of 

freedom 8 and 23, respectively. 

The DD formulation (for 2-dimensional FE 

model) with MPC equation(s) can be further 

explained by referring to Fig.2, and Fig.3. In 

Fig.2(a), the 2-D FE mesh is partitioned (or divided) 

into 4 sub-domains I, II, III, and IV. Rectangular 

finite elements #1, 2, 5, 6 belong to sub-domain I 

(upper left corner), while rectangular finite elements 

# 3, 4, 7, 8 belong to sub-domain II (upper right 

corner). Similarly, rectangular elements #9, 10, 13, 

14 belong to sub-domain III (lower left corner), and 

rectangular finite elements #11, 12, 15, 16 belong to 

sub-domain IV (lower right corner), respectively. To 

simplify the explanation, it is assumed that there is 

only one (1) degree-of-freedom (or dof) at each 

node. Also, we assume only 1 MPC equation related 

to degrees of freedom 9, 11, and 22 as shown in 

Fig.2(a). Since the entire FE mesh (or entire system 

of SLE) is partitioned into 4 sub-domains, the 

boundary nodes can be identified as nodes 11-15, 3, 

8, 13, 18, and 23 (see Fig.2(a)), while the remaining 

nodes are considered as interior nodes. The single 

MPC equation (related to degrees of freedom 9, 11, 

22) will be treated like a 3-node (triangular) finite 

element in our DD formulation. This fictitious MPC 

finite element, however, does create some 

undesirable features. Node 9 (belongs to sub-
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domain II) and 22 (belongs to sub-domain III) are 

both interior nodes. As a consequence, there is an 

undesirable coupling effect between sub-matrices 
(2)

IIK  and 
(3)

IIK , as indicated in Fig.2(b). Because of 

this coupling effect, inverting (or factorizing) 
( )r

IIK  

for each r
th
 sub-domain cannot be concurrently done 

by independent/parallel processors. 

Using our DD formulation, we also need to 

identify which sub-domain should be the owner of 

these fictitious n-noded MPC finite elements. In this 

study we have used the sub-domain that has the 

most interior nodes of the MPC finite element as the 

owner. This strategy helps to reduce the total 

boundary degrees of freedom for the entire domain. 

Since sub-domain II is the owner of one interior 

node (9), and sub-domain III is the owner of one 

interior node (22), there is a “tie” in this particular 

example. Hence, we arbitrarily assign this fictitious 

MPC finite element to sub-domain III. Thus the 

interior node 9 of the MPC element (originally 

belonging to sub-domain II) is now considered as a 

boundary node, and now belongs to both sub-

domains II and III (see Fig.3(a) and 3(b)). As the 

consequence of the abovementioned elegant 

strategy, the coupling effect between 
(2)

IIK  and 

(3)

IIK of sub-domains II and III now disappears (see 

Fig.3b) 

 

       

(a) FE Mesh with four sub-domains and one MPC 

element 

       

 

)1(

IIK     
)1(

IBK  

 

 

 
)2(

IIK    
)2(

IBK  

 

 

  
)3(

IIK   
)3(

IBK  

 

 

   
)4(

IIK  
)4(

IBK  

 

 

)1(

BIK  
)2(

BIK  
)3(

BIK  
)4(

BIK  BBK  

 

       

 
 

 

(b) Partitioned FE matrices from the 4 sub-domains 

and the 3-noded MPC element 

 

Fig.2 Two-Dimensional Finite Element (FE) 

Domain Decomposition (DD) with 1 MPC equation 

 

 
(a) FE Mesh with four sub-domains and one 

MPC element  
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(b) FE Mesh with four sub-domains and one 

MPC element 

 

Fig.3 Two-Dimensional Finite Element (FE) 

Domain Decomposition (DD) with 1 MPC equation 

 

 

3 Step-by-Step Numerical Procedures 

for Parallel/Sparse DD with MPC 

Equation Solver [1],[4],[14] 
There exists vast amount of research literature on 

DD (iterative) algorithms for solving large sparse 

system of SLE [1], [7-11]. Most research articles, 

however, have been focused on solving system of 

symmetrical linear equations that are not burdened 

with MPCs.. We summarize the following step-by-

step numerical procedure for parallel-sparse DD 

with MPC equation solver [1]. 

 

Step 1: The familiar, classical finite element 

input data (such as nodal coordinates, element 

connectivity, number of dof per node, materials 

properties, system right-hand-side load (or 

source) vector, Dirichlet (or geometrical) 

boundary conditions, etc.) for the entire domain 

is assumed to be known. Multi-Point Constraint 

(MPC) equations, if they exist, are also 

assumed to be known. 

 

Step 2: Assuming the number of processors 

(NP) available is, ParMETIS domain 

partitioning algorithms [17], [26] is used to 

determine which joints (or nodes) belong to a 

particular r
th
 processor (or r

th
 sub-domain). In 

this step, only element connectivity information 

(for the entire domain [26] including MPC 

finite elements), and the total unknowns (or, 

degrees of freedom) N are used as input 

parameters. 

 

Step 3: Using ParMETIS output, an interface 

subroutine (or module) [1], [26] can be written 

to identify the boundary, and interior nodes, 

and the corresponding elements for each r
th
 

processor (or r
th
 sub-domain). 

 

Step 4: Using METIS reordering algorithms 

[17] obtain an integer, mapping array that 

relates the old degree of freedom number to the 

new degree of freedom number. This step is 

very helpful for minimizing the number of fill-

in terms during the symbolical and numerical 

factorization phases for factorizing matrices 
( )r

iiK . 

 

Step 5: In parallel computation, every r
th
 

processor will generate finite element stiffness 

matrices (including the MPC finite elements 

[26], if they exist), and assemble the matrices 
( )r

BBK , 
( )r

BIK , 
( )r

IBK and 
( )r

IIK , as shown in (7). 

 

It should be noted that, for symmetrical system 

of SLE, ( )( ) ( )
T

r r

IB BI=K K . For unsymmetrical 

system of SLE, ( )( ) ( )
T

r r

IB BI≠K K . 

 

Step 6: In parallel computation, each r
th
 

processor will perform sparse symbolical 

factorization of matrices 
( )r

IIK , as shown in (8). 

 

Step 7: In parallel computation, super-nodes (or 

super degrees of freedom) corresponding to 

each r
th
 sub-domain are identified (for efficient 

unrolling techniques employed in Step 8) [1], 

[12], [20], [26]. 

 

Step 8: In parallel computation, each r
th
 

processor performs sparse numerical 

factorization of matrices 
( )r

iiK , as shown in (8). 

 

In actual computer implementation, 
( )r

iiK is not 

inverted (as explicitly shown in (8)). Instead, 

efficient symbolical and numerical factorization 

(with unrolling strategies) is implemented. 

Thus, direct sparse methods (such as Cholesky, 

or LDL
T
 algorithms are used for symmetrical 

SLE, or LU algorithm is used for 

unsymmetrical SLE. 
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Step 9: Use iterative algorithms, such as 

Preconditioned Conjugate Gradient (for 

symmetrical SLE), or m-GMRES [26] (for 

unsymmetrical SLE) to solve for the unknown 

boundary vector Bz  as shown in (3). 

 

Since an iterative method is used to solve (8), 

the system matrix BK  in (13), and the sub-

domain’s matrices 
( )r

BK  in (10) are never 

explicitly computed. Instead, only sub-

domains’ matrices 
( )r

BBK , 
( )r

BIK , 
( )r

IBK and 
( )r

IIK  

are used. This step has been implemented in 

parallel computing environment with some 

inter-processor communication required [1]. 

 

Step 10: In parallel computing environment, 

each sub-domain’s unknown interior degree of 

freedom can be solved by the familiar forward 

and backward solution phases (in conjunction 

with the Cholesky, or LDL
T
 algorithm, or LU 

algorithm), as shown in (8). 

 

The sub-domain’s 
( )r

Βz , shown in (8) is merely 

a subset of the vector Βz that has already been 

solved in Step 9. 

 

 

4 Numerical (Acoustic/Structural) 

Applications 
Based on the implementation of the developed 

parallel DD formulation, several large-scale 

(acoustic and structural) engineering applications 

are solved. These problems have different features 

(such as real and complex numbers, symmetrical 

and unsymmetrical matrices, without and with MPC 

equations, etc.) and are considered in this section for 

evaluating the numerical performance of the 

developed algorithms and software. The software 

system is called DIPSS (domain decomposition 

formulation with mixed Direct-Iterative Parallel 

Sparse Solver). Since DIPSS has been coded with 

the standard MPI/FORTRAN language, it can be 

ported to different computer platforms without any 

change to the source code. 

 

(A) Example 1 – Three Dimensional Acoustic 

Finite Element Model (Symmetrical 

Case) 
The 3-D finite element acoustic model considered 

in this example involves 751,513 symmetrical 

equations involving complex numbers. Due to the 3-

D nature of this example, there exist a very large 

number of fill-in (non-zero) terms during the 

factorization phase. Incidentally, for these reasons, 

this is the largest problem size that can be solved by 

NASA Langley Research Center’s SGI parallel 

computer using the best commercial SGI sparse 

solver (subroutine ZPSLDLT). Using 8 SGI 

processors, subroutine ZPSLDLT took 6.5 hours to 

obtain the solution. Using the domain 

decomposition formulation with mixed Direct-

Iterative Parallel Sparse Solver (DIPSS) developed 

by the authors, it took only 2.44 hours to obtain the 

same solution once again using 8 SGI processors. 

DIPSS code was used to solve even larger 3-D 

acoustic finite element model involving 1,004,400 

degree-of-freedom (a problem that cannot be solved 

using SGI’s code). The problem was solved using 

SUN 10000 Processor cluster at Old Dominion 

University (64 nodes with 64 GB of memory). 

Timing information is detailed in Table 1. 

 

Table 1: 3-D Hard Wall Duct Acoustic Finite 

Element Analysis with 1,004,400 degrees of 

freedom (complex numbers) 

 

# Processors  1 2 4 8 

Sparse 

Assembly 

Time 

(seconds) 

19.38 10.00 5.08 2.49 

Sparse 

Factorization 

(seconds) 

131,229 58,976 26,174 10,273 

Total time 

(entire FEA) 

131,846 61,744 27,897 11,751 

Total Speed-

Up Factor 

1.00 2.14 4.73 11.22 
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Cont’d 

# Processors  16 32 64 

Sparse Assembly 

Time (seconds) 

1.26 0.70 0.27 

Sparse 

Factorization 

(seconds) 

3,260 909 56 

Total time (entire 

FEA) 

3,817 1,967 1,534 

Total Speed-Up 

Factor 

34.54 67.03 85.95 

 

It should be noted that superlinear speedup is 

obtained for all runs. For example, with 64 

processors the speedup is nearly 86. This can be 

explained as follows. 

 

(a) The large finite element model has been 

divided into 64 sub-domains. Since each 

processor is assigned a smaller sub-domain, 

the number of operations (proportional to n
3
 

for dense matrix, or n·BW
2
 for banded, 

sparse matrix, BW represents the half band 

width of the coefficient stiffness matrix) 

performed by each processor is greatly 

reduced. 

(b) When the entire finite element model (with 

1,004,400 degrees of freedom) is analyzed 

by conventional formulation (using only 

direct sparse solver), due to large problem 

size, more computer paging is required as 

compared to the DD formulation. 

 

(B) Example 2 - Three Dimensional 

Structural Bracket Finite Element Model 

(symmetrical case, with 194,925 degrees 

of freedom) 
The developed MPI-DIPSS code has also been 

applied to solve a 3-D structural bracket on a cluster 

of Intel PCs (Pentium 4-1.75 GHz with 512 MB 

RAM) running Window XP OS. Timing 

information is shown in Table 2. Once again, 

superlinear speedup is obtained. 

Table 2: 3-D Structural Bracket Model with 

194,925 degrees of freedom (real numbers)  

 

# Processor  

(Intel PC @ 

ASU) 

1 2 3 4 5 6 

Total Wall 

Clock Time 

(seconds) 

2,67

0 

70

0 

43

5 

40

5 

30

6 

258 

Total Speed-

Up Factor 

(seconds) 

1.00 3.8

1 

6.1

4 

6.5

9 

8.7

3 

10.3

5 

 

(C) Example 3 – Three Dimensional Acoustic 

Finite Element Model (Unsymmetrical 

Case) 
In this example, an unsymmetrical finite element 

acoustic model with 6 million (complex numbers) 

degrees of freedom is solved. Due to the size of this 

problem, and the incore memory available on the 

ODU SUN 10000 cluster, at least 28 processors 

need to be used. The numerical performance of the 

developed parallel DD solver is summarized in the 

Table 3. 

 

Table 3: 3-D Unsymmetrical Acoustic model with 

6 million degrees of freedom 

 

No. of CPUs 28 56 

Time (seconds) 1965 1154 

Relative 

Speedup 

1.0 1.7 

 

(D) Example 4 – Three Dimensional Acoustic 

Finite Element Model with 25 Million 

Degrees of Freedom 
In this example, the generic aero-engine duct is 

modeled as a rectangular duct by cutting it along the 

axis and unwrapping it into a rectangular geometry. 

When unwrapped, the nacelle engine duct has a 

317.5 cm x 63.5 cm rectangular cross-section and is 

219.5 cm in length. Thus, the volume of our generic 

aero-engine duct is slightly more than 2,075 times 

that of the Flow Impedance Test Facility 

investigated in the previous example, and requires 

many more grid points for accurate resolution of the 

acoustic field. The highest frequency of interest (5.0 

kHz) is roughly equivalent to four to six times the 
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blade passage frequency (BPF) for a typical large 

commercial engine. Just to illustrate the capability 

of the hybrid solver we have used a (NNX, NNY, 

NNZ) = (100x100x2501) uniformly spaced grid 

(N=NNX*NNY* NNZ=25,010,000 unknown 

degrees of freedom involving complex numbers). 

This example was run on NASA Columbia 

supercluster (512 nodes of SGI Altix 3000 1.5 GHz 

with 1TB of RAM). Such large number of equations 

is far beyond what can be solved using direct sparse 

solvers such as the SGI solver. 

The numerical performance of the developed 

parallel DD solver is summarized in Fig.4(a), and 

4(b). 

 

 

 
 

Fig.4(a). Example 4 - Wall Clock Time of DIPSS 

Solver (25 million points, 3.5 kHz, plane wave 

source, GIT) 

 

 
Fig.4(b). Example 4 - Linear Attenuation in 

Aeroengine Duct (25 million points, 192 CPUs, 

1990 sec Wall Clock) 

 

(E) Example 5 – Two Dimensional Acoustic 

Finite Element Model with 40 MPCs 
In this example, a 3-D symmetrical acoustic FE 

model with 2.5 million degrees of freedom is 

considered. However, 40 MPC equations are 

included [26] in this example. More details of these 

40 MPC equations can be obtained from [26]. The 

model was run on ODU Wilbur Cluster (64 nodes of 

AMD Opteron 1.8 GHz with 2 processors and 4GB 

of memory per node).Numerical performance of the 

developed parallel-sparse FE-DD solver is 

summarized in Table 4. There is a dramatic 

reduction in both computational time and computer 

memory requirements as the number of processors 

is increased. 

 

Table 4: Timing information for 2.5 million 

degrees of freedom 3-D symmetrical acoustic with 

40 MPC equations  

 20 30 40 50 

2.5M 

(MPC)         

Time(sec) 761 402 253 218 

Ideal 

Speedup 1.00 1.50 2.00 2.50 

Actual 

Speedup 1.00 1.89 3.01 3.49 

Memory 

(MB) 1409 799 560 416 

 
 

5 Conclusions 
Details of the highly efficient parallel/sparse mixed 

direct-iterative Domain Decomposition (DD) 

formulation, including an elegant treatment of 

multi-point constraint (MPC) equations, have been 

presented in this work.  The developed numerical 

procedures and the associated software has the 

capabilities to solve both symmetrical and 

unsymmetrical system of simultaneous linear 

equations (SLE), with (or without) imposing MPC 

equations. The entire formulation has been built 

around several key modules and concepts as 

follows. 

(a) Efficient sparse assembly (to obtain 
( )r

IIK , 

shown in (8)), based on [1]. 

(b) Efficient algorithms to break a large domain 

into smaller sub-domains, based on 

ParMETIS [17] and with special procedures 

to efficiently identify which 

boundary/interior nodes (and which finite 

elements) belong to sub-domain (or 

processor) [25]. 

(c) Efficient reordering algorithms (to minimize 

fill-in terms, during the symbolical and 

numerical sparse factorization phases for 
( )r

IIK ), based on METIS [17]. 

(d) Efficient sparse solver that takes full 

advantage of unrolling techniques and 

maximizes the usage of limited computer 
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cache. (to solve for 
( )r

Ιz in Eq. (8)), based on 

[1]. 

(e) Efficient parallel pre-conditioned [1], [25] 

iterative solver (within the general frame 

work of DD formulation) which also 

exploits the developed cache based “matrix 

times vector” subroutine. 

(f) Each MPC equation is conveniently treated 

as an artificial MPC finite element [25] with 

the associated known right-hand-side 

vector. Symmetry and positive definiteness 

are preserved without losing efficiency of 

the solution algorithm.  

 

Medium (194,925 structural unknowns, real 

numbers, and 751,513 acoustic unknowns, complex 

numbers) to large-scale (ranging from 1 million to 

25 million acoustic unknowns, complex numbers) 

examples considered in this study show that the 

developed MPI parallel DD code (with MPC 

equations imposed) is highly efficient (in terms of 

reduction of computational time, and computer 

memory requirements) in both sequential and 

parallel computer environments. 
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