
Parallel-Sparse Symmetrical/Unsymmetrical Finite Element Domain

Decomposition Solver with Multi-Point Constraints for

Structural/Acoustic Analysis

SIROJ TUNGKAHOTARA

INCA Engineers, Inc.

3850 N Causeway Blvd, Ste.210 New Orleans, LA 70002

USA

s.tungkahotara@incainc.com

WILLIE R. WATSON

NASA Langley Research Center

Computational Modeling & Simulation Branch; Mail Stop 128

 Hampton, VA 23681

USA

willie.r.watson@nasa.gov

DUC T. NGUYEN

Old Dominion University

Department of Civil and Environment Engineering; 135 KAUF

Norfolk, VA 23529

USA

dnguyen@odu.edu

SUBRAMANIAM D. RAJAN

Arizona State University

Department of Civil, Environmental and Sustainable Engineering

Tempe, AZ 85287

USA

s.rajan@asu.edu

Abstract: - Details of parallel-sparse Domain Decomposition (DD) with multi-point constraints (MPC)

formulation are explained. Major computational components of the DD formulation are identified. Critical roles

of parallel (direct) sparse and iterative solvers with MPC are discussed within the framework of DD

formulation. Both symmetrical and unsymmetrical system of simultaneous linear equations (SLE) can be

handled by the developed DD formulation. For symmetrical SLE, option for imposing MPC equations is also

provided.

 Large-scale (up to 25 million unknowns involving complex numbers) structural and acoustic Finite Element

(FE) analysis are used to evaluate the parallel computational performance of the proposed DD implementation

using different parallel computer platforms. Numerical examples show that the authors’ MPI/FORTRAN code

is significantly faster than the commercial parallel sparse solver. Furthermore, the developed software can also

conveniently and efficiently solve large SLE with MPCs, a feature not available in almost all commercial

parallel sparse solvers.

Key-Words: - Domain Decomposition Solver, Multi-Point Constraints, Parallel Computation,

Symmetrical/Unsymmetrical Simultaneous Linear Equation, Finite Element Analysis, Acoustic/Structural

Engineering Applications, Iterative Algorithms, Sparse Assembly, Sparse Factorization.

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Siroj Tungkahotara, Willie R. Watson,
Duc T. Nguyen, Subramaniam D. Rajan

ISSN: 1991-8747 37 Issue 1, Volume 6, January 2011

1 Finite Element Analysis With

Domain Decomposition (DD)

Formulations
The finite element equilibrium equation (state

equation) in terms of displacements, is given in [1]-

[6]

=K z s (1)

where

s = vector of effective nodal loads on the

structure

z = state variable vector of (e.g. nodal

displacements)

K = global stiffness matrix, with dimension

NxN

Using the DD concept, Eq. (1) can be re-written

(in the partitioned form) as

BB BI B B

IB II I I

⋅ =

K K z s

K K z s
 (2)

where the subscripts B and I represent the

boundary and interior terms, respectively.

The interior displacements Ιz are first eliminated

from (2) and the following reduced equation is

obtained ([1], [7]-[11])

Β Β Β=Κ z F (3)

where

Β ΒΒ ΒΙ= + ⋅Κ Κ Κ Q (4)

T

IΒ Β= +F s Q s (5)

[] 1

II IB

−
= −Q K K (6)

Here ΒΚ is a boundary stiffness matrix for the

entire structure and ΒF ∈
nR is the vector of

effective boundary forces. Efficient parallel (or

serial) sparse numerical procedures discussed in [1],

[12]-[20] can be used to decompose ΙΙΚ and to

solve for m n×Q in (6).

The boundary stiffness ΒΚ and the effective

boundary force vector ΒF are synthesized by

considering contributions from all subdomains. For

this purpose, the equilibrium equation for a sub-

domain, which is considered as an isolated free-

body, is also expressed in the partitioned form as

() () () ()

() () () ()
BB BI B B

IB II I I

r r r r

r r r r

⋅ =

K K z s

K K z s
 (7)

where the superscript r refers to the r
th
 sub-domain.

Let rn and rm represent the number of boundary

and interior degree-of-freedom (dof) of the r
th
 sub-

domain, respectively. It may be noted that

1

L

r

r

m m
=

=∑

where L is the total number of subdomains. From

the second equation in (7), one has

1

() () () () ()r r r r r
−

Ι ΙΙ Ι ΙΒ Β = − z Κ s Κ z (8)

Substituting (8) into the first equation in (7), one

obtains

() () ()r r r

B B B=K z F (9)

where

() () () ()r r r r

B BB BI= +K K K Q (10)

() () () ()
T

r r r r

B B I
 = + F s Q s (11)

1
() () ()r r r

−

ΙΙ ΙΒ = − Q K K (12)

The boundary stiffness matrix
()r

BK and the

effective boundary force vector
()r

BF for each sub-

domain are computed from (10) and (11),

respectively. Finally, BK and BF are assembled

according to the equations

() () ()

1

L
T

r r r

B

r

β βΒ
=

 = ∑K K (13)

() () ()

1

L
T T

r r r

B

r

βΒ Ι
=

 = + ∑F s Q s (14)

where
()

r

r

n nβ × is a boolean transformation matrix.

Using the reduced equilibrium equation (3), the

boundary displacements Βz can be computed by a

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Siroj Tungkahotara, Willie R. Watson,
Duc T. Nguyen, Subramaniam D. Rajan

ISSN: 1991-8747 38 Issue 1, Volume 6, January 2011

parallel-dense equation solver [21]-[24], which also

fully exploits the cache available in most modern

computer platforms. The parallel dense equation

solver (for the solution of Bz in (3)) requires explicit

computation of the dense matrix BK in (13), which

also requires the computation of
()r

B∑K (shown in

(10)), and
()r

Q . From (12), since
()r

IBK is a matrix

with number of columns as rn . Therefore, the triple

product of
1

() () ()r r r

BI II IB

−
 ⋅ ⋅ K K K can be very

expensive. For this reason, an iterative solver (such

as preconditioned conjugate gradient algorithm) is

recommended to use for solving Βz in (3). Interior

displacements are then simultaneously computed for

each sub-domain, using (8). Lastly, member end

forces for the r
th
 sub-domain are computed from

() () ()r r r=P K z (15)

where
()rP is the vector of member forces,

()rK is

the stiffness matrix and
()rz is the vector of nodal

displacements for the r
th
 sub-domain. Multiple

loading conditions for the structure are routinely

treated by taking s and z in (1) as matrices whose

j
th
 columns represent quantities associated with the

j
th
loading condition.

Algorithms and software given in [3] and [17] can

be used to automatically break the original, large-

scale finite element domain into several smaller sub-

domains.

Equations (8) and (12) requires factorization of a

sparse, symmetrical matrix [
()r

ΙΙΚ] for the r
th
 sub-

domain. Thus, algorithms and software for sparse

symbolic, numerical factorization, (with unrolling

techniques) and forward-backward solution given in

[1] and [12]-[20] can be utilized. In this work,

however, solution strategies presented in [1] are

incorporated.

Equation (3) requires factorization of a dense,

symmetrical matrix BΚ . Thus, efficient parallel

dense solvers given in references [1] and [21]-[24]

can be utilized. In this work, however,

preconditioned conjugate gradient (or PCG) as

explained in [1], [7] is used.

The remainder of this paper deals with issues

related to an efficient implementation for handling

MPCs within the general frame work of parallel DD

formulation, efficient sparse assembly procedures,

and generating matrix BΚ for obtaining either

symmetrical or unsymmetrical system matrices.

2 Multi-Point Constraints (MPC) in

DD formulation
To explain the multi-point constraints capability

within the framework of domain decomposition

formulation, consider a planar truss structure as

shown in Fig. 1. The truss is modeled with 4-nodes,

and 5-elements. Node 2 is at an inclined roller

support or a skew support.

Fig.1: 4-node, 5-element truss example with an

inclined roller support at joint 2

The MPC equation at the roller support joint 2 can

be expressed as:

D=zc+zc 4433 (16)

where 3z and 4z represent the horizontal and

vertical displacements at node 2 in the global x and

y directions, respectively and 3c , 4c and D are

known constants.

The single MPC equation (16) can be generalized

to the following multiple MPC equations:

nnnn,jjn,iin,n,n,

jnnj,jjj,iij,j,j,

inni,jji,iii,i,i,

nnjjii

nnjjii

D=zc++zc+zc++zc+zc

D=zc++zc+zc++zc+zc

D=zc++zc+zc++zc+zc

D=zc++zc+zc++zc+zc

D=zc++zc+zc++zc+zc

......

......

......

......

......

2211

2211

2211

22,2,2,22,212,1

11,1,1,21,211,1

⋮

⋮

 (17)

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Siroj Tungkahotara, Willie R. Watson,
Duc T. Nguyen, Subramaniam D. Rajan

ISSN: 1991-8747 39 Issue 1, Volume 6, January 2011

where ji,c and iD are known constants. The total

potential energy of the system described by (1) with

MPC in (16) can be expressed as

()

()23 3 4 4

1

2

1

2

T T=

+ P c z +c z D

Π −

−

z z Kz z s
 (18)

where P is a large penalty constant [25]. Experience

has shown that using
4P=10 pqmax K⋅ works

reasonably well.

The terms appearing inside the parenthesis in the

third term in (18) need be squared to guarantee a

positive value (for a proper penalty term). The factor

1 2 is used for convenience; the 1 2 term

disappears when the partial derivative of Π is

computed.

From equation (18), it is seen that the total

potential energy is minimum when 0
Π

=
∂
∂z

. The

derivative yields the usual total stiffness matrix and

right-hand-side vector except the rows and columns

associated with 3z and 4z , in this case. The

modified terms of rows and columns 3 and 4 are:

2
34 3 433 3

2
43 3 4 44 4

k + Pc ck + Pc

k + Pc c k + Pc

⋱ ⋮ ⋮

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋱

 (19)

and

⋮

⋮

44

33

PDc+S

PDc+S

 (20)

The additional terms could be considered as a

fictitious, or artificial finite element stiffness matrix

associated with each MPC. In other words, the

MPC equations are treated in this work as additional

artificial finite elements. The number of element

nodes is the number of degrees of freedom in the

MPC and each node has one degree of freedom.

Since all MPC equations are treated as artificial (or

fictitious) finite elements, they have to be included

in the phase to find boundary degrees of freedom in

order to avoid the coupling of interior degrees of

freedom between two sub-domains.

As a quick example, suppose the following 2

MPC equations need to be implemented.

3 17 25

8 23

2 8 4 6

4 12 5

z z + z =

z + z =

− −

−

Thus, the first artificial MPC finite element is

created as

()

() () () () ()
() () () () ()
() () () () ()

2

21

2

2 2 8 2 4

8 2 8 8 4

4 2 4 8 4

e=

MPC

P P P

= P P P

P P P

 −

 − − −

 −

k

and

(){ }
() ()
() ()
() ()

1

6 2

6 8

6 4

e

MPC

P

P

P

=

−

= − −
 −

s

and the element is associated with degrees of

freedom 3, 17 and 25, respectively. Similarly, the

second MPC element is created as

() () () ()
() () ()

2

2

2

4 4 12

12 4 12

e=

MPC

P P
=

P P

 − −
 −
k

and

(){ } () ()
() ()

2 5 4

5 12

e

MPC

P

P

= −
=

s

and the element is associated with degrees of

freedom 8 and 23, respectively.

The DD formulation (for 2-dimensional FE

model) with MPC equation(s) can be further

explained by referring to Fig.2, and Fig.3. In

Fig.2(a), the 2-D FE mesh is partitioned (or divided)

into 4 sub-domains I, II, III, and IV. Rectangular

finite elements #1, 2, 5, 6 belong to sub-domain I

(upper left corner), while rectangular finite elements

3, 4, 7, 8 belong to sub-domain II (upper right

corner). Similarly, rectangular elements #9, 10, 13,

14 belong to sub-domain III (lower left corner), and

rectangular finite elements #11, 12, 15, 16 belong to

sub-domain IV (lower right corner), respectively. To

simplify the explanation, it is assumed that there is

only one (1) degree-of-freedom (or dof) at each

node. Also, we assume only 1 MPC equation related

to degrees of freedom 9, 11, and 22 as shown in

Fig.2(a). Since the entire FE mesh (or entire system

of SLE) is partitioned into 4 sub-domains, the

boundary nodes can be identified as nodes 11-15, 3,

8, 13, 18, and 23 (see Fig.2(a)), while the remaining

nodes are considered as interior nodes. The single

MPC equation (related to degrees of freedom 9, 11,

22) will be treated like a 3-node (triangular) finite

element in our DD formulation. This fictitious MPC

finite element, however, does create some

undesirable features. Node 9 (belongs to sub-

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Siroj Tungkahotara, Willie R. Watson,
Duc T. Nguyen, Subramaniam D. Rajan

ISSN: 1991-8747 40 Issue 1, Volume 6, January 2011

domain II) and 22 (belongs to sub-domain III) are

both interior nodes. As a consequence, there is an

undesirable coupling effect between sub-matrices
(2)

IIK and
(3)

IIK , as indicated in Fig.2(b). Because of

this coupling effect, inverting (or factorizing)
()r

IIK

for each r
th
 sub-domain cannot be concurrently done

by independent/parallel processors.

Using our DD formulation, we also need to

identify which sub-domain should be the owner of

these fictitious n-noded MPC finite elements. In this

study we have used the sub-domain that has the

most interior nodes of the MPC finite element as the

owner. This strategy helps to reduce the total

boundary degrees of freedom for the entire domain.

Since sub-domain II is the owner of one interior

node (9), and sub-domain III is the owner of one

interior node (22), there is a “tie” in this particular

example. Hence, we arbitrarily assign this fictitious

MPC finite element to sub-domain III. Thus the

interior node 9 of the MPC element (originally

belonging to sub-domain II) is now considered as a

boundary node, and now belongs to both sub-

domains II and III (see Fig.3(a) and 3(b)). As the

consequence of the abovementioned elegant

strategy, the coupling effect between
(2)

IIK and

(3)

IIK of sub-domains II and III now disappears (see

Fig.3b)

(a) FE Mesh with four sub-domains and one MPC

element

)1(

IIK
)1(

IBK

)2(

IIK
)2(

IBK

)3(

IIK
)3(

IBK

)4(

IIK
)4(

IBK

)1(

BIK
)2(

BIK
)3(

BIK
)4(

BIK BBK

(b) Partitioned FE matrices from the 4 sub-domains

and the 3-noded MPC element

Fig.2 Two-Dimensional Finite Element (FE)

Domain Decomposition (DD) with 1 MPC equation

(a) FE Mesh with four sub-domains and one

MPC element

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Siroj Tungkahotara, Willie R. Watson,
Duc T. Nguyen, Subramaniam D. Rajan

ISSN: 1991-8747 41 Issue 1, Volume 6, January 2011

)1(

IIK
)1(

IBK

)2(

IIK
)2(

IBK

)3(

IIK
)3(

IBK

)4(

IIK
)4(

IBK

)1(

BIK
)2(

BIK
)3(

BIK
)4(

BIK BBK

(b) FE Mesh with four sub-domains and one

MPC element

Fig.3 Two-Dimensional Finite Element (FE)

Domain Decomposition (DD) with 1 MPC equation

3 Step-by-Step Numerical Procedures

for Parallel/Sparse DD with MPC

Equation Solver [1],[4],[14]
There exists vast amount of research literature on

DD (iterative) algorithms for solving large sparse

system of SLE [1], [7-11]. Most research articles,

however, have been focused on solving system of

symmetrical linear equations that are not burdened

with MPCs.. We summarize the following step-by-

step numerical procedure for parallel-sparse DD

with MPC equation solver [1].

Step 1: The familiar, classical finite element

input data (such as nodal coordinates, element

connectivity, number of dof per node, materials

properties, system right-hand-side load (or

source) vector, Dirichlet (or geometrical)

boundary conditions, etc.) for the entire domain

is assumed to be known. Multi-Point Constraint

(MPC) equations, if they exist, are also

assumed to be known.

Step 2: Assuming the number of processors

(NP) available is, ParMETIS domain

partitioning algorithms [17], [26] is used to

determine which joints (or nodes) belong to a

particular r
th
 processor (or r

th
 sub-domain). In

this step, only element connectivity information

(for the entire domain [26] including MPC

finite elements), and the total unknowns (or,

degrees of freedom) N are used as input

parameters.

Step 3: Using ParMETIS output, an interface

subroutine (or module) [1], [26] can be written

to identify the boundary, and interior nodes,

and the corresponding elements for each r
th

processor (or r
th
 sub-domain).

Step 4: Using METIS reordering algorithms

[17] obtain an integer, mapping array that

relates the old degree of freedom number to the

new degree of freedom number. This step is

very helpful for minimizing the number of fill-

in terms during the symbolical and numerical

factorization phases for factorizing matrices
()r

iiK .

Step 5: In parallel computation, every r
th

processor will generate finite element stiffness

matrices (including the MPC finite elements

[26], if they exist), and assemble the matrices
()r

BBK ,
()r

BIK ,
()r

IBK and
()r

IIK , as shown in (7).

It should be noted that, for symmetrical system

of SLE, ()() ()
T

r r

IB BI=K K . For unsymmetrical

system of SLE, ()() ()
T

r r

IB BI≠K K .

Step 6: In parallel computation, each r
th

processor will perform sparse symbolical

factorization of matrices
()r

IIK , as shown in (8).

Step 7: In parallel computation, super-nodes (or

super degrees of freedom) corresponding to

each r
th
 sub-domain are identified (for efficient

unrolling techniques employed in Step 8) [1],

[12], [20], [26].

Step 8: In parallel computation, each r
th

processor performs sparse numerical

factorization of matrices
()r

iiK , as shown in (8).

In actual computer implementation,
()r

iiK is not

inverted (as explicitly shown in (8)). Instead,

efficient symbolical and numerical factorization

(with unrolling strategies) is implemented.

Thus, direct sparse methods (such as Cholesky,

or LDL
T
 algorithms are used for symmetrical

SLE, or LU algorithm is used for

unsymmetrical SLE.

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Siroj Tungkahotara, Willie R. Watson,
Duc T. Nguyen, Subramaniam D. Rajan

ISSN: 1991-8747 42 Issue 1, Volume 6, January 2011

Step 9: Use iterative algorithms, such as

Preconditioned Conjugate Gradient (for

symmetrical SLE), or m-GMRES [26] (for

unsymmetrical SLE) to solve for the unknown

boundary vector Bz as shown in (3).

Since an iterative method is used to solve (8),

the system matrix BK in (13), and the sub-

domain’s matrices
()r

BK in (10) are never

explicitly computed. Instead, only sub-

domains’ matrices
()r

BBK ,
()r

BIK ,
()r

IBK and
()r

IIK

are used. This step has been implemented in

parallel computing environment with some

inter-processor communication required [1].

Step 10: In parallel computing environment,

each sub-domain’s unknown interior degree of

freedom can be solved by the familiar forward

and backward solution phases (in conjunction

with the Cholesky, or LDL
T
 algorithm, or LU

algorithm), as shown in (8).

The sub-domain’s
()r

Βz , shown in (8) is merely

a subset of the vector Βz that has already been

solved in Step 9.

4 Numerical (Acoustic/Structural)

Applications
Based on the implementation of the developed

parallel DD formulation, several large-scale

(acoustic and structural) engineering applications

are solved. These problems have different features

(such as real and complex numbers, symmetrical

and unsymmetrical matrices, without and with MPC

equations, etc.) and are considered in this section for

evaluating the numerical performance of the

developed algorithms and software. The software

system is called DIPSS (domain decomposition

formulation with mixed Direct-Iterative Parallel

Sparse Solver). Since DIPSS has been coded with

the standard MPI/FORTRAN language, it can be

ported to different computer platforms without any

change to the source code.

(A) Example 1 – Three Dimensional Acoustic

Finite Element Model (Symmetrical

Case)
The 3-D finite element acoustic model considered

in this example involves 751,513 symmetrical

equations involving complex numbers. Due to the 3-

D nature of this example, there exist a very large

number of fill-in (non-zero) terms during the

factorization phase. Incidentally, for these reasons,

this is the largest problem size that can be solved by

NASA Langley Research Center’s SGI parallel

computer using the best commercial SGI sparse

solver (subroutine ZPSLDLT). Using 8 SGI

processors, subroutine ZPSLDLT took 6.5 hours to

obtain the solution. Using the domain

decomposition formulation with mixed Direct-

Iterative Parallel Sparse Solver (DIPSS) developed

by the authors, it took only 2.44 hours to obtain the

same solution once again using 8 SGI processors.

DIPSS code was used to solve even larger 3-D

acoustic finite element model involving 1,004,400

degree-of-freedom (a problem that cannot be solved

using SGI’s code). The problem was solved using

SUN 10000 Processor cluster at Old Dominion

University (64 nodes with 64 GB of memory).

Timing information is detailed in Table 1.

Table 1: 3-D Hard Wall Duct Acoustic Finite

Element Analysis with 1,004,400 degrees of

freedom (complex numbers)

Processors 1 2 4 8

Sparse

Assembly

Time

(seconds)

19.38 10.00 5.08 2.49

Sparse

Factorization

(seconds)

131,229 58,976 26,174 10,273

Total time

(entire FEA)

131,846 61,744 27,897 11,751

Total Speed-

Up Factor

1.00 2.14 4.73 11.22

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Siroj Tungkahotara, Willie R. Watson,
Duc T. Nguyen, Subramaniam D. Rajan

ISSN: 1991-8747 43 Issue 1, Volume 6, January 2011

Cont’d

Processors 16 32 64

Sparse Assembly

Time (seconds)

1.26 0.70 0.27

Sparse

Factorization

(seconds)

3,260 909 56

Total time (entire

FEA)

3,817 1,967 1,534

Total Speed-Up

Factor

34.54 67.03 85.95

It should be noted that superlinear speedup is

obtained for all runs. For example, with 64

processors the speedup is nearly 86. This can be

explained as follows.

(a) The large finite element model has been

divided into 64 sub-domains. Since each

processor is assigned a smaller sub-domain,

the number of operations (proportional to n
3

for dense matrix, or n·BW
2
 for banded,

sparse matrix, BW represents the half band

width of the coefficient stiffness matrix)

performed by each processor is greatly

reduced.

(b) When the entire finite element model (with

1,004,400 degrees of freedom) is analyzed

by conventional formulation (using only

direct sparse solver), due to large problem

size, more computer paging is required as

compared to the DD formulation.

(B) Example 2 - Three Dimensional

Structural Bracket Finite Element Model

(symmetrical case, with 194,925 degrees

of freedom)
The developed MPI-DIPSS code has also been

applied to solve a 3-D structural bracket on a cluster

of Intel PCs (Pentium 4-1.75 GHz with 512 MB

RAM) running Window XP OS. Timing

information is shown in Table 2. Once again,

superlinear speedup is obtained.

Table 2: 3-D Structural Bracket Model with

194,925 degrees of freedom (real numbers)

Processor

(Intel PC @

ASU)

1 2 3 4 5 6

Total Wall

Clock Time

(seconds)

2,67

0

70

0

43

5

40

5

30

6

258

Total Speed-

Up Factor

(seconds)

1.00 3.8

1

6.1

4

6.5

9

8.7

3

10.3

5

(C) Example 3 – Three Dimensional Acoustic

Finite Element Model (Unsymmetrical

Case)
In this example, an unsymmetrical finite element

acoustic model with 6 million (complex numbers)

degrees of freedom is solved. Due to the size of this

problem, and the incore memory available on the

ODU SUN 10000 cluster, at least 28 processors

need to be used. The numerical performance of the

developed parallel DD solver is summarized in the

Table 3.

Table 3: 3-D Unsymmetrical Acoustic model with

6 million degrees of freedom

No. of CPUs 28 56

Time (seconds) 1965 1154

Relative

Speedup

1.0 1.7

(D) Example 4 – Three Dimensional Acoustic

Finite Element Model with 25 Million

Degrees of Freedom
In this example, the generic aero-engine duct is

modeled as a rectangular duct by cutting it along the

axis and unwrapping it into a rectangular geometry.

When unwrapped, the nacelle engine duct has a

317.5 cm x 63.5 cm rectangular cross-section and is

219.5 cm in length. Thus, the volume of our generic

aero-engine duct is slightly more than 2,075 times

that of the Flow Impedance Test Facility

investigated in the previous example, and requires

many more grid points for accurate resolution of the

acoustic field. The highest frequency of interest (5.0

kHz) is roughly equivalent to four to six times the

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Siroj Tungkahotara, Willie R. Watson,
Duc T. Nguyen, Subramaniam D. Rajan

ISSN: 1991-8747 44 Issue 1, Volume 6, January 2011

blade passage frequency (BPF) for a typical large

commercial engine. Just to illustrate the capability

of the hybrid solver we have used a (NNX, NNY,

NNZ) = (100x100x2501) uniformly spaced grid

(N=NNX*NNY* NNZ=25,010,000 unknown

degrees of freedom involving complex numbers).

This example was run on NASA Columbia

supercluster (512 nodes of SGI Altix 3000 1.5 GHz

with 1TB of RAM). Such large number of equations

is far beyond what can be solved using direct sparse

solvers such as the SGI solver.

The numerical performance of the developed

parallel DD solver is summarized in Fig.4(a), and

4(b).

Fig.4(a). Example 4 - Wall Clock Time of DIPSS

Solver (25 million points, 3.5 kHz, plane wave

source, GIT)

Fig.4(b). Example 4 - Linear Attenuation in

Aeroengine Duct (25 million points, 192 CPUs,

1990 sec Wall Clock)

(E) Example 5 – Two Dimensional Acoustic

Finite Element Model with 40 MPCs
In this example, a 3-D symmetrical acoustic FE

model with 2.5 million degrees of freedom is

considered. However, 40 MPC equations are

included [26] in this example. More details of these

40 MPC equations can be obtained from [26]. The

model was run on ODU Wilbur Cluster (64 nodes of

AMD Opteron 1.8 GHz with 2 processors and 4GB

of memory per node).Numerical performance of the

developed parallel-sparse FE-DD solver is

summarized in Table 4. There is a dramatic

reduction in both computational time and computer

memory requirements as the number of processors

is increased.

Table 4: Timing information for 2.5 million

degrees of freedom 3-D symmetrical acoustic with

40 MPC equations

 20 30 40 50

2.5M

(MPC)

Time(sec) 761 402 253 218

Ideal

Speedup 1.00 1.50 2.00 2.50

Actual

Speedup 1.00 1.89 3.01 3.49

Memory

(MB) 1409 799 560 416

5 Conclusions
Details of the highly efficient parallel/sparse mixed

direct-iterative Domain Decomposition (DD)

formulation, including an elegant treatment of

multi-point constraint (MPC) equations, have been

presented in this work. The developed numerical

procedures and the associated software has the

capabilities to solve both symmetrical and

unsymmetrical system of simultaneous linear

equations (SLE), with (or without) imposing MPC

equations. The entire formulation has been built

around several key modules and concepts as

follows.

(a) Efficient sparse assembly (to obtain
()r

IIK ,

shown in (8)), based on [1].

(b) Efficient algorithms to break a large domain

into smaller sub-domains, based on

ParMETIS [17] and with special procedures

to efficiently identify which

boundary/interior nodes (and which finite

elements) belong to sub-domain (or

processor) [25].

(c) Efficient reordering algorithms (to minimize

fill-in terms, during the symbolical and

numerical sparse factorization phases for
()r

IIK), based on METIS [17].

(d) Efficient sparse solver that takes full

advantage of unrolling techniques and

maximizes the usage of limited computer

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Siroj Tungkahotara, Willie R. Watson,
Duc T. Nguyen, Subramaniam D. Rajan

ISSN: 1991-8747 45 Issue 1, Volume 6, January 2011

cache. (to solve for
()r

Ιz in Eq. (8)), based on

[1].

(e) Efficient parallel pre-conditioned [1], [25]

iterative solver (within the general frame

work of DD formulation) which also

exploits the developed cache based “matrix

times vector” subroutine.

(f) Each MPC equation is conveniently treated

as an artificial MPC finite element [25] with

the associated known right-hand-side

vector. Symmetry and positive definiteness

are preserved without losing efficiency of

the solution algorithm.

Medium (194,925 structural unknowns, real

numbers, and 751,513 acoustic unknowns, complex

numbers) to large-scale (ranging from 1 million to

25 million acoustic unknowns, complex numbers)

examples considered in this study show that the

developed MPI parallel DD code (with MPC

equations imposed) is highly efficient (in terms of

reduction of computational time, and computer

memory requirements) in both sequential and

parallel computer environments.

Acknowledgements

Prof. Duc T. Nguyen would like to acknowledge

the research and financial support provided by

NASA Langley Research Center.

References:

[1] D.T. Nguyen, Finite Element Methods:

Parallel-Sparse Statics and Eigen-Solutions,

Springer, 2006.

[2] K.J. Bathe, Finite Element Procedures,

Prentice-Hall, Inc., 1996.

[3] M.A. Moayyad and D.T. Nguyen, An

Algorithm For Domain Decomposition in

Finite Element Analysis, Journal of Computers

and Structures, Vol.39, No.1-4, 1991, pp. 277-

290.

[4] W.R. Watson, Three-Dimensional Nacelle

Aeroacoustic Code With Application to

Impedance Eduction, AIAA paper 2000-1956,

June 2000.

[5] D.T. Nguyen, Parallel-Vector Equation Solver

For Finite Element Engineering Applications,

Kluwer Academic/Plenum Publishers, 2002.

[6] J. Qin, C.E. Gray, Jr., C. Mei, and D.T.

Nguyen, A Parallel-Vector Equation Solver for

Unsymmetric Matrices on Supercomputers,

Computing Systems in Engineering, An

International Journal, Vol.2, No.2/3, 1991, pp.

197-290.

[7] D.T. Nguyen, S. Tungkahotara, W.R. Watson,

S.D. Rajan, Parallel Finite Element Domain

Decomposition For Structural/Acoustic

Analysis, Journal of Computational and

Applied Mechanics, Vol.4, No.2, 2003, pp. 1-

12.

[8] C. Farhat, and F.X. Roux, Implicit Parallel

Processing In Structural Mechanics,

Computational Mechanics Advances, Vol.2,

1994, pp. 1-124.

[9] J. Mandel, Balancing Domain Decomposition,

Comm. Appl. Num. Meth. Engr., Vol.9, 1993,

pp. 233-241.

[10] R. Glowinski, G.H. Golub, G.A. Meurant, and

J. Periaux, Editors, First International

Symposium on Domain Decomposition

Methods for Partial Differential Equations,

SIAM, 1988.

[11] T.F. Chan, T.P. Mathew, Domain

Decomposition Algorithms, Acta Numerica,

Vol.3, 1994, pp. 61-143.

[12] E. Ng, and B. Peyton, Block Sparse Choleski

Algorithm on Advanced Uniprocessor

Computer, Society for Industrial and Applied

Mathematics Journal of Scientific Computing,

Vol.14, 1993, pp. 1034-56

[13] I. Duff and J. Reid, MA27-A set of Fortran

Subroutines for Solving Sparse Symmetric Sets

of Linear Equations, AERE Technical Report,

R-10533, Harwell, 1982.

[14] I. Duff and J. Reid, The Multifrontal Solution

of Indefinite Sparse Symmetric Linear

Systems, Association for Computing Machinery

Transactions Mathematical Software, Vol.9,

1983, pp. 302-325.

[15] A. George, and J. Liu, Computer Solution of

Large Sparse Positive Definite Systems,

Prentice-Hall, Inc., 1981, chap. 5 & chap. 10.

[16] S. Pissanetzky, Sparse Matrix Technology,

Academic Press (AP), Inc1984.

[17] G. Karypis and V. Kumar, METIS:

Unstructured Graph Partitioning and Sparse

Matrix Ordering, Version 2.0, University of

Minnesota, 1995.

[18] M. Papadrakakis, S. Bitzarakis and A.

Kotsopulos, Parallel Solution Techniques in

Computational Structural Mechanics, B.H.V.

Topping (Editor), Parallel and Distributed

Processing for Computational Mechanics:

Systems and Tools, Saxe-Coburg Publications,

1999. pp. 180-206.

[19] X.S. Li, Sparse Gaussian Elimination on High

Performance Computers. Technical Report,

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Siroj Tungkahotara, Willie R. Watson,
Duc T. Nguyen, Subramaniam D. Rajan

ISSN: 1991-8747 46 Issue 1, Volume 6, January 2011

UCB/CSD-96-919, Computer Science

Division, U.C. Berkeley, September 1996,

Ph.D. dissertation.

[20] J.W. Demmel, J.R. Gillbert, and X.S. Li,

SuperLU and SuperLU_MT, 1997.

[21] L.S. Blackford, J. Choi, A. Cleary, E.

D’Azevedo, J. Demmel, I. Dhillon, J.

Dongarra, S. Hammarling, G. Henry, A. Petitet,

K. Stanley, D. Walker, and R.C. Whaley,

ScaLAPACK Users’ Guide, Society for

Industrial and Applied Mathenatics, 2007.

[22] S. Tungkahotara, D.T. Nguyen, W.R. Watson

and H.B. Runesha, Simple and Efficient

Parallel Dense Equation Solvers, Ninth

International Conference on Numerical

Methods and Computational Mechanics, Univ.

of Miskolc, July 15-19, 2002.

[23] E. Anderson, Z. Bai, C. Bischof, L.S. Blackford

and James W. Demmel, Lapack Users' Guide

(Software, Environments and Tools, 9), Society

for Industrial & Applied Mathematics 3rd pkg

edition, February 2000.

[24] L. S. Blackford, J. Choi, A. Cleary, E.

D'Azevedo, James W. Demmel, Scalapack

Users' Guide, Society for Industrial & Applied

Mathematics, Bk&Cd r edition, July 1997.

[25] S.D. Rajan, Introduction to Structural Analysis

and Design, John Wiley & Sons, Inc., 2001.

[26] S. Tungkahotara, Parallel MPI/FORTRAN

Finite Element Symmetrical/Unsymmetrical

Domain Decomposition, Old Dominion

University, Civil & Env. Engineering

Department, May 2008, Ph.D. dissertation.

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Siroj Tungkahotara, Willie R. Watson,
Duc T. Nguyen, Subramaniam D. Rajan

ISSN: 1991-8747 47 Issue 1, Volume 6, January 2011

