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Abstract: - Point collocation methods (PCM) have some advantages such as no mesh, no integration. While, the 

robustness of the point collocation methods is an issue especially when scattered and random points are used. To 

improve the robustness, some studies suggest that the positivity conditions can be important when using the 

PCMs. For boundary points, however, the positivity conditions cannot be satisfied, so that it is possible to get 

large numerical errors from the boundary points when using the point collocation methods. Specifically, the errors 

could arise in point collocation analyses with complicated boundary conditions. In this paper, by introducing a 

boundary layer of finite element in boundary domain of workpiece, unsatisfactory issue of the positivity 

conditions of boundary points can be avoided, and the complicated boundary conditions of metal forming can be 

easily imposed with the boundary layer of finite element. A modified MLS approximation is also proposed, its 

shape functions have Kronecker-delta property. Therefore, the unsatisfactory issue of the essential node condition 

can be avoided in the modified MLS approximation. To obtain very simple formulas of the shape function 

derivatives, the local coordinates are used in the hybrid PCM/FEM. An axisymmetric forging problem is analyzed 

by using the rigid-plastic hybrid PCM/FEM. 

  

Key-Words: - Hybrid method, Meshless method, Point collocation method, FEM, Kronecker-delta property, 

Positivity conditions, Local coordinates, Metal forming. 

 

1   Introduction 
Metal forming problems are nonlinear and large 

deformation problems in general. They may be 

classified as bulk metal forming problems and sheet 

metal forming problems. The bulk metal forming 

problems used to be analyzed by the conventional 

rigid-plastic finite element methods (such as [1]). But 

the conventional rigid-plastic finite element methods 

have some shortcomings as follows: 1) Mesh 

generation is needed, which is costly. 2) Remeshing is 

needed when deformation is appreciable, while 

remeshing results in loss of accuracy. 

     Meshless methods are a group of numerical method 

for solving partial differential equations on regular or 

irregular distribution of points. Meshless methods 

require no costly mesh generation and remeshing. In 

addition, meshless methods allow arbitrary placement 

of nodes, therefore the solution and its derivatives may 

be obtained directly where they are needed. The early 

representatives of meshless methods are the diffuse 

element method [2], the element free Galerkin method 

[3], the reproducing kernel particle method [4], the 

hp-clouds method [5], the partition of unity method [6], 

the finite point method [7], the local boundary integral 

equation method [8], and the meshless local 

Petrov-Galerkin (MLPG) approach [9]. These 

meshless methods are mostly based on weak form 

(integral equations). In most meshless techniques, 

however, complicated non-polynomial interpolation 

functions are used which render the integration of the 

weak form rather difficult. Failure to perform the 

integration accurately results in loss of accuracy and 

possibly stability of solution scheme (specially, in 

nonlinear metal forming problems). The integration of 

complicated non-polynomial interpolation function 

costs much CPU time, too. 

The point collocation method (PCM) is a kind of 

meshless method, which has no issues of the 

integration scheme, the integration accuracy and the 

integration CPU time. Therefore, the PCM has some 

advantages such as no mesh, no integration. Several 

PCMs based on different types of approximations or 

interpolations have been presented in the literature. 

Onate et al [7] have proposed a finite point method 

based on weighted least squares interpolations for the 

analyses of convective transport and fluid flow 

problems. Onate et al. [10] have also proposed a 

residual stabilization procedure, adequate for the finite 
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point method, and further extended the finite point 

method to the solution of the advective-convective 

transport equations as well as those governing the flow 

of compressible fluids. Aluru [11] has presented a 

PCM based on reproducing kernel approximations for 

numerical solution partial differential equations with 

appropriate boundary conditions. Jin et al. [12] have 

shown the robustness of collocation meshless methods 

can be improved by ensuring that the positivity 

conditions are satisfied when constructing 

approximation functions and their derivatives. 

Boroomand et al. [13] have presented a stabilized 

version of the finite point method to eliminate the 

ill-conditioning effect due to directional arrangement 

of the points. Patricio et al. [14] have given a numerical 

solution of a singularly perturbed two-point 

boundary-value problem using collocation. Atluri et al. 

[15] have presented a MLPG mixed collocation 

method by using the Dirac delta function as the test 

function in the MLPG method, and shown that the 

MPLG mixed collocation method is more efficient 

than the other MLPG implementations, including the 

MLPG finite volume method.  Atluri et al. [16] have 

proposed a finite difference method, within the 

framework of the MLPG approach, for solving solid 

mechanics problems. Li et al. [17] have demonstrated 

the suitability and versatility of the MLPG mixed 

collocation method by solving the problem of 

topology-optimization of elastic structures. 

Chantasiriwan [18] has provided results of using the 

multiquadric collocation method to solve the lid-driven 

cavity flow problem. Wen et al. [19] have performed a 

geometrically nonlinear analysis of Reissner-Mindlin 

plate by using a meshless collocation method based on 

the smooth radial basis functions. Caraus et al. [20], 

[21] have studied the convergence and the stability of 

collocation methods for approximate solution of 

singular integro-differential equations. Kosec et al. 

[22] have explored the application of the mesh-free 

local radial basis function collocation method in 

solution of coupled heat transfer and fluid flow 

problems in Darcy porous media. Wu et al. [23] have 

developed a mesh-free collocation method based on 

differential reproducing kernel approximations for the 

three-dimensional analysis of simply-supported, 

doubly curved functionally graded 

magneto-electro-elastic shells under the mechanical 

load, electric displacement and magnetic flux. Yang et 

al. [24] have introduced a computational procedure 

based on meshless generalized finite difference method 

and serial magnetic resonance imaging data to quantify 

patient-specific carotid atherosclerotic plaque growth 

functions and simulate plaque progression. Spanulescu 

et al. [25] have analyzed the collocation method for 

solving the Hartree-Fock equations of the 

self-consistent field in large atomic and molecular 

systems, and have proposed a method for improving its 

performances by supplementary analytical and 

numerical quadrature. Khattak et al. [26] have 

presented an algorithm for the numerical solution of 

the generalized Hirota-Satsuma equations and 

Jaulent-Miodek equations based on meshless radial 

basis functions method using collocation points, called 

Kansa’s method.  Hon et al. [27] have applied the 

Hermite-based meshless collocation method based on 

radial basis functions to solve a default barrier model, 

which is a time-dependent boundary value problem 

with a singularity at the initial condition. Zahab et al. 

[28] have reported on the development and validation 

of a localized collocation meshless method to model 

laminar incompressible flows. To avoid the problem of 

excessive mesh distortions of the finite element 

method, Wieckowski [29] have used the material point 

method to solve problems of plastic forming, 

geomechanics and granular flow. 

For boundary points, however, the positivity 

conditions cannot be satisfied, obviously, so that it is 

possible to get large numerical errors from the 

boundary points when using the PCMs. Specifically, 

the errors could arise in point collocation analyses with 

complicated boundary conditions. In this paper, a 

hybrid PCM/FEM is presented. By introducing a 

boundary layer of finite element in boundary domain of 

workpiece, unsatisfactory issue of the positivity 

conditions of boundary points can be avoided, and the 

complicated boundary conditions can be easily 

imposed with the boundary layer of finite element. 

In the classical moving least-square (MLS) 

approximation, the shape functions have no 

Kronecker-delta property, so that the essential node 

condition cannot be imposed on boundaries. In this 

paper, a modified MLS approximation is proposed, its 

shape functions have Kronecker-delta property. 

Therefore, the unsatisfactory issue of the essential node 

condition can be avoided in the modified MLS 

approximation. 

An axisymmetric forging problem is analyzed by 

using the rigid-plastic hybrid PCM/FEM. 

 

 

2   Formulation 
Let us assume a scalar problem governed by a partial 

differential equation: 
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Ω=       inbuD ,)(                            (1) 

with boundary conditions 

tontuT Γ=       ,)(                          (2) 

uc onuu Γ=−       ,0                         (3) 

to be satisfied in a domain Ω  with boundary 

ut ΓΓ=Γ ∪ , where D and T are appropriate 

differential operators, u is the problem unknown 

function (the velocity is adopted in this paper), b and t 

are external forces or sources acting over Ω  and along 

tΓ , respectively. cu  is the assigned value of u over uΓ . 

Let us assume Ω  is divided into two subdomains, 

the interior domain inΩ  and the boundary domain 

boΩ . Surface between inΩ  and boΩ  is defined as S 

(see Fig. 1 ). 

 

inΩ boΩ

S

Γ

 

Fig. 1. Interior domain inΩ , boundary domain boΩ , 

surface S and boundary Γ . 
 

 

2.1  The Moving Least-Squares Approximation 

with Kronecker-Delta Property 

Consider a small domain xΩ , the neighborhood of a 

point 1x , which is located in inΩ . Over xΩ , u can be 

approximated by the MLS approximation. Over a 

number of randomly located nodes { } nixi     ,,2,1, ⋯= , 

the MLS approximation hu  of u can be defined by 

( ) xu Ω∈∀= x       α xp ,Th                    (4) 

where ( ) ( ) ( ) ( )[ ]x      x   xxp mppp ⋯21
T =  is a 

complete monomial basis of order m which is a 

function of the space coordinates [ ]T   yx   x z= . α  is 

a vector of unknown polynomial coefficients, 

[ ] T21
 

α mααα ⋯= .                    (5) 

For example, for an axisymmetric problem, 

( ) [ ]22T 1 zrzrzr                xp =                   (6) 

this is a quadratic basis, and m=6. 

A weighted least-square solution is obtained for α  

from the following system of n equations in m 

unknown (n is larger than m): 

α Hu =h                                    (7) 

[ ]Th
n

h
2

h
1

h  
u uuu ⋯=                    (8) 

is a vector of the nodal MLS approximation of function 

u, and 

( ) ( ) ( )[ ]T 
xpxpxpH n

T
2

T
1

T
⋯= .              (9) 

The classical least-square solution of the above 

over-constrained system does not guarantee exact 

satisfaction of any of the equations of equation (7). 

Non-satisfaction of the first equation would then mean 

( )α xp 1
Th

1 ≠u . Hence, a different approach  to 

weighted least-squares solution can be adopted: Out of 

the n equations of equation (7), let the first equation 

(corresponding to node 1) be satisfied exactly and the 

rest in the least-square sense. This is done by using the 

first equation to eliminate 1α  from the rest of 

equations: 

)(
2

16115
2

141312
h
11 zzrrzru αααααα ++++−=  

     (10) 

Substituting for 1α  in equation (7), the reduced system 

of equations can be obtained: 

α Hu =h                                 (11) 

[ ]Th
1

h
n

h
1

h
3

h
1

h
2

h  
u uuuuuu −−−= ⋯      (12) 

 H

T
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













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





−−−

−−−

−−−

−−−

−−−
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2
1

22
1

2
3

2
1

2
2

1111331122

2
1

22
1

2
3

2
1

2
2

11312

11312

zzzzzz

zrzrzrzrzrzr

rrrrrr

zzzzzz

rrrrrr

n

nn

n

n

n

⋯

⋯

⋯

⋯

⋯

    ( ) ( ) ( )[ ]TT
3

T
2

T
nxpxpxp ⋯=                     (13) 

[ ]T32 mααα ⋯=α .                (14) 

The coefficient vector α  is determined by 

minimizing a weighted discrete 2L  norm, defined as: 

( ) ( )[ ]2T

2
ii

n

i
i uwJ −∑=

=
α xp x                                 

[ ] [ ]uα H Wuα H −−= T
                 (15) 

where ( )xw  is the weight function, ix  denotes the 

value of x at node i, and matrices W  is defined as                        
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( )

( )
)1()1(

3

2

00

00

00

−×−


















=

nnnw

w

w

x

x

x

W

⋯

⋯⋯⋯⋯

⋯

⋯

(16) 

niuuu ii          ,,3,2,ˆˆ 1 ⋯=−=                (17) 

[ ]T1n1312 ˆˆˆˆˆˆ uuuuuu −= −          u - ⋯          (18) 

where niui     ,,2,1,ˆ ⋯=  are the fictitious nodal values 

of the function u.  

Minimizing J in equation (15) with respect to α  

yields 

u B Aα
1−=                              (19) 

 WHB
T=                                (20) 

H BA = .                                  (21) 

Substituting equation (19) into equation (11) gives a 

relation which may be written as 

uB A Hu
1h −= .                           (22) 

equation (10) can be rewritten as: 

( )αxs 1
h
11 −= uα                           (23) 

( ) [ ]2111
2

1111 zzrrzr=xs .               (24) 

equation (4) can be written as: 

( )α xs+= 1
h αu                            (25) 

( ) [ ]22 zrzrzr=xs .                  (26) 

Substituting equation (19) and equation (23) into 

equation (25), the following equation can be obtained: 

( ) uBA xq
1h

1
h −+= uu                       (27) 

( ) ( ) ( ) xs xsxq 1−=                           (28) 

( ) 01 =xq                                    (29) 

( ) h
11

h uu =x .                               (30) 

û  may be defined as: 

[ ]Tn21 ˆˆˆˆ uuu          u ⋯=                       (31) 

then, from equation (27), the following equation may 

be obtained: 

( )uxN ˆh =u                               (32) 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )



















−=

×−×−×

−

××
   1  B  A  xqxN

1-n1-m1-m1-m1

⋮
111

1

1

1
nmn

            ( )
( ) ( ) ( ) ( ) ( )






−×−×

−

× 11

1

nm 1-m1-m1-m1

B  A  xq .         (33) 

In equation (33), 1 is vector of dimension (n-1) with all 

entries being equal to unity. Recall form equation (29), 

using this result in equation (33), the Kronecker-delta 

property of ( )xN  may be established: 

( ) [ ]0001
1

1 ⋯    xN =
×n

                  (34) 

which means that at node 1, the shape function for node 

1 takes a value of unity and all other shape function 

take zero values. Therefore, equation (33) is the shape 

functions of the MLS approximation with 

Kronecker-delta property. 

In this paper, the weight functions ( )xw  may use a 

spline function as follows:  

( ) o
ooo

rd
r

d

r

d

r

d
w ≤≤








−








+








−= 0,3861

432

      x  

  (35a) 

ordw ≥=             , x 0)(                                    (35b) 

where 1xx −=d  is the distance from point x  to the 

center node 1x , and or  is the radius of xΩ , which is 

taken as a circle for a 2-D problem or an axisymmetric 

problem and its center is the point 1x . 

 

 

2.2  The Local Coordinate System 
As anisotropy of the point distribution in xΩ , matrix A 

in equation (21) becomes ill-conditioned and the 

quality of the approximation deteriorates. In order to 

prevent such undesirable effect, a local coordinate 

system ηξ  ,  [13] is chosen with origin at the point 1x  

for an axisymmetric problem: 

R

RR

∆

−
= 1ξ ,        

Z

ZZ

∆

−
= 1η                   (36) 

where R∆  and Z∆  denote maximum distances along 

R and Z measured from the point 1x  to exterior nodes 

in xΩ . In equation (35a), spline function has now the 

following form in terms of the local coordinates: 

( )
3

22
2

22

861












 +
+













 +
−=

ρ
ηξ

ρ
ηξ

ξw         

4
22

3












 +
−

ρ
ηξ

                               (37) 

6=ρ  is used in this paper and as usual 

11,11 ≤≤−≤≤− ηξ  . 

The matrix A is not longer dependent on the 

dimensions of xΩ . The approximate function is also 

expressed in terms of the local coordinates as 
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∑==
=

n

i
ii

h
uNu

1

T ˆ)(ˆ)()( ξξξ uN                (38)

BA 1−  in equation (33) can be defined as C: 

BAC
1−=                                 (39) 

Then, from equation (33), entries of ( )xN  for the 

quadratic basis (m=6) can be written as: 

( ) ( ) ( )



∑ ∑ +−+−−=
−

=

−

=

1

1

1

1
21111 1N

n

i

n

i
ii CyyCxxx  

( ) ( ) +∑ ∑−+−
−

=

−

=

1

1

1

1
4113

2
1

2
n

i

n

i
ii CyxxyCxx

( ) 



∑−
−

=

1

1
5

2
1

2
n

i
iCyy                            (40) 

( ) ( ) ( ) ( ) iiii CxxCyyCxx 3
2

1
2

21111 −+−+−=+ xN  

                                                                                                                                                       

( ) ( ) ii CyyCyxxy 5
2

1
2

411 −+−+   

( )1,,2,1 −= ni    ⋯                (41) 

where ( )1 , ,2 ,1  ;5 , ,2 ,1  , −== nijC ji ⋯⋯  are 

entries of C. At the point 1x , because 0  ,0 11 == ηξ , 

then the first-order derivatives of the shape function 

with the local coordinates can be obtained from 

equations (40) and (41): 

( )
( )








∑−=

∂

∂
−

−

=
111211

1

1
1

1
n

n

i
i CCCC

ξ
⋯   

N

ξ
       (42) 

( )
( )








∑−=

∂

∂
−

−

=
122221

1

1
2

1
n

n

i
i CCCC

ξ
⋯   

N

η
     (43) 

From equations (42) and (43), we may see that formul

as of the shape function derivatives with the local coor

dinates are very simple, and in fact, it is a merit of the 

above-mentioned PCM using the local coordinates. 

 

 

2.3    The Weighted Residual Method 
Over inΩ  of Ω , the following weighted residual 

method is used: 

( ) 0)ˆ(ˆ =Ω−∫
Ω

dbDwi

in

u                        (44) 

where iŵ  is a weight functions, and may be defined as 

follow in this paper. 

iiw δ=ˆ                                   (45) 

where iδ  is Dirac δ  function. 

Substituting equation (45) into equation (44), the 

following equation is obtained: 

( ) 0ˆ =− bD u                                (46) 

Over the boundary domain boΩ  of Ω , the FEM 

with one layer of finite element is used. The boundary 

conditions of equations (2) and (3) are imposed with 

the FEM, too. 

By using the same nodes over the finite elements 

and in the small domain xΩ , which center point 1x  is 

located on S or is close to S, the compatibility of nodal 

values of the nodes located on S and over boΩ , may be 

obtained. 

 

 

2.4   The Positivity Conditions 
The positivity conditions [12] on the approximation 

function ( )xiN  of equation (33) and its second-order 

derivatives are stated as 

( ) 0≥jiN x                              (47) 

( ) ijN ji ≠≥∇      x ,0
2                     (48) 

( ) 02
≺iiN x∇                             (49) 

where ( )jiN x  is the approximation function of a point 

i evaluated at a point j. 

Patankar [30] included the positivity conditions in 

a series of basic rules for the construction of finite 

differences and pointed out that the consequence of 

violating the positivity conditions give a physically 

unrealistic solution. It has been shown that the 

satisfaction of the positivity conditions ensures the 

convergence of the finite difference method with 

arbitrary irregular meshes for some class of elliptic 

problems [31]. It has been shown that the significance 

of the positivity conditions in meshless collocation 

approaches, and violation of the positivity conditions 

can significantly result in a large error in the numerical 

solution [12]. 

For a boundary point, a neighborhood centered on 

the point cannot be defined, so the positivity conditions 

on the boundary point cannot be satisfied, obviously. 

But for point 1x  on S, because it is not a boundary 

point, a small domain xΩ , the neighborhood of the 

point 1x , can be defined. Therefore, the unsatisfactory 

issue of the positivity conditions of boundary points 

can be avoided in the hybrid PCM/FEM. 

 

 

2.5   Formulation for Forming Problems 
For an axisymmetric metal forming problem, the 

partial differential equations of mechanical equilibrium 

can be expressed as (in this paper, the body forces are 

omitted for simplicity): 
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            (50a) 

0=+
∂

∂
+

∂

∂

RZR

RZZRZ σσσ
 

 

 

 
                  (50b) 

where θσσσ  , ZR， and RZσ are stress components. By 

the concept referring originally to a (nonlinear) viscous 

solid, the relating equation of stress vector σ  and 

strain rate vector εɺ  can be written as: 
εσ ɺ D=                                    (51) 

for the rigid-plastic material 
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where eσ  and eεɺ  denote the equivalent stress and the 

equivalent strain rate, respectively, and g is a material 

constant and a function of material density for slightly 

compressible materials. 

Substituting the relationship equation of velocity 

and strain rate into equation (51), and then equations 

(50a) and (50b), the following non-linear equation of 

the mechanical equilibrium is derived: 

0fu =+∇2                              (53) 

in which u is the velocity vector: 

[ ]Tvu   u =                              (54) 

[ ]TZR ff    f =                           (55) 

where u and v denote velocity components, and 
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  (56b) 

where vεɺ  is the volumetric strain rate: 

θεεεε ɺɺɺɺ ++= ZRv                           (57) 

Over inΩ , by the MLS approximation, u in 

equation (48) can be written as: 

u N ˆT=u                                    (58a) 

v N ˆT=v                                    (58b) 

Substituting equation (53) into equation (46), the 

partial differential equations on the nodal velocity 

components may be obtained: 

   0)ˆ ,ˆ(ˆT2 =+∇ vufuN                  (59a) 

    v ufvN 0)ˆ,ˆ(ˆT2 =+∇                 (59b) 

In boΩ , the rigid-plastic FEM with one layer of 

finite element is used, and the boundary conditions of 

forming problems are imposed on Γ  by using the 

rigid-plastic FEM, too. 

 

 

3  Analyzed Results 
In this section, an axisymmetric forging problem (see 

Fig. 2) is analyzed by using the rigid-plastic hybrid 

PCM/FEM. Vertical forging velocity of the upper die is 

0.01m/s, and increment of time is taken as 0.2 s. The 

friction factor is taken as 0.05. The MLS approximation 

with the quadratic basis (m=6) is used. The nodal 

number n is taken as 9 in the PCM, and 4-noded 

quadratic finite element are adopted in the rigid-plastic 

FEM. The flow-stress-characteristics data of the material 

is given by the expression, 

( )002.0     ,     86.589
0625.0

e ≥= ee MPa εεσ  (60a) 

( )002.0     ,      400e ≤= e MPa               εσ   (60b) 

where eε  denotes the equivalent strain. 

 

200Φ  

330Φ  

100 75 
Upper die 

Workpiece 

 
Fig. 2. Initial shape and dimensions of the workpiece and  

dies. 

 

 

Figs. 3 and 4 show fields of the nodal velocity at 6% 
reduction and 10% reduction, respectively, and only one 
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Fig. 3.  Nodal velocity field at 6% reduction. 

 

 

 
 

Fig. 4.  Nodal velocity field at 10% reduction. 

 

 

half of the workpiece is calculated owing to 

symmetry. As seen in these figures, the nodal velocities 
of the center zone near to the lower die are low, at both 

the reduction cases. 

Figs. 5 and 6 show contours of equivalent strain rate 

at 6% reduction and 10% reduction, respectively. As 

seen in these figures, the equivalent strain rates of the  

 
 

Fig. 5.  Equivalent strain rate (1/s) at 6% reduction. 

 

 

 
 

Fig. 6.  Equivalent strain rate (1/s) at 10% reduction. 

 

 

zones near to the corners of the upper die and the outer 

zones near to the lower die are larger, at both the 

reduction cases. 

Figs. 7 and 8 show contours of equivalent strain at 

6% reduction and 10% reduction, respectively. As seen 

in these figures and Figs. 5 and 6, the distributions of the  
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Fig. 7.  Equivalent strain at 6% reduction. 

 

 

 
 

Fig. 8.  Equivalent strain at 10% reduction. 

 

 

equivalent strain are similar to those of the equivalent 

strain rate, the equivalent strain of the outer zones near to 

the lower die are larger at 6% reduction, and the 

equivalent strain of the zones near to the corners of the 

upper die and the outer zones near to the lower die are 

 
 

Fig. 9.  Equivalent stress (MPa) at 6% reduction. 

 

 

 
 

Fig. 10.  Equivalent stress (MPa) at 10% reduction. 

 

 

larger at 10% reduction. 

Figs. 9 and 10 show contours of equivalent stress at 

6% reduction and 10% reduction, respectively. As seen 

in these figures and Figs. 7 and 8, the distributions of the 

equivalent stress are similar to those of the equivalent 

strain, the equivalent stress of the outer zones near to the 
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lower die are larger at 6% reduction, and the equivalent 

stress of the zones near to the corners of the upper die 

and the outer zones near to the lower die are larger at 

10% reduction. 

 

 

4   Conclusion 
The axisymmetric forging problem is analyzed by using 

the rigid-plastic hybrid PCM/FEM. By introducing a 

boundary layer of finite element in boundary domain of 

analyzed body, unsatisfactory issue of the positivity 

conditions of boundary points in the PCMs can be 

avoided, and the complicated boundary conditions can 

be easily imposed with the boundary layer of finite 

element. By making such an improvement, the hybrid 

PCM/FEM can be used for analyzing problems of 

forming effectively. 

In addition, the modified MLS approximation is 

used in this paper; its shape functions have 

Kronecker-delta property. Then, the unsatisfactory issue 

of the essential node condition of the classical MLS 

approximation can be avoided in the modified MLS 

approximation. 
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