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1 Introduction

The work of L. Fadeyev dedicated to the
many-dimensional inverse problem of scattering theory
inspired the author of this article to conduct this research.
The first results obtained by the author are described in
the works [2,3,4]. This problem includes a number of
subproblems which appear to be very interesting and
complicated. These subproblems are thoroughly
considered in the works of the following scientists: R.
Newton [6], R. Faddeyev [1], R. Novikov and G.
Khenkin [5], A. Ramm [4] and others. The latest
advances in the theory of SIPM(Scattering Inverse
Problem Method) were a great stimulus for the author as
well as other researchers. Another important stimulus
was the work of M. Lavrentyev on the application of
analytic ~ functions to  Hydrodynamics.  Only
one-dimensional equations were integrated by SIPM. The
application of analytic functions to Hydrodynamics is
restricted only by bidimensional problems. The further
progress in applying SIPM to the solution of nonlinear

to Schrodinger's equation. Therefore we consider
Schrodinger's equation as an interrelation between
real-valued functions and analytic functions, where
real-valued functions are potentials in Schrodinger's
equation and analytic functions are the corresponding
eigenfunctions of the continuous spectrum of
Schrodinger's operator. The basic aim of the paper is to
study this interrelation and its application for obtaining
new estimates to the solutions of the problem for
Navier-Stokes' equations. We  concentrated on
formulating the conditions of momentum and energy
conservation laws in terms of potential instead of
formulating them in terms of wave functions. As a result
of our study, we obtained non-trivial nonlinear
relationships of potential. The effectiveness and novelty
of the obtained results are displayed when solving the
notoriously difficult Chauchy problem for Navier-Stokes'
equations of viscous incompressible fluid.

equations in R3 was hampered by the poor development 2 Basic Notions and Subsidiary
of the three-dimensional inverse problem of scattering in Statement

comparison with the progress achieved in the work on the Letusconsider Shrodingerse equation
one-dimensional inverse problem of scattering and also —A@ +qp = |k|?@ (1)

by the difficulties the researchers encountered building
up the corresponding Lax' pairs. It is easy to come to a
conclusion that all the success in developing the theory of
SIPM is connected with analytic functions, i.e., solutions
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where g - is a bounded fast-decreasing function,

3
keRS, [kJ?= z k2.
=1
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Definition 1. Rolnik's Class R is a set of
measurable functions q,
lallx = q(x)q(y)
R= | ———
lx =yl
It is considered to be a general definition ([8], p.
110).
Theorem 1. Suppose that q € R; then a exists a
unique solution of equation (1), with asymptotic form (2)
as |x| » o

dxdy < .

91 (k) = 19
+i|k]|x|
" A (k, k)+o( )

(kx)_kaJ,

1
Ay(k, ) =W j q(x) @4 (k, x)e“()"x)dx.
R3

The proof of this theorem is in [8], p. 110.

Consider the operators H = —A, +q(x), Hy =
—A, defined in the dense set WZ(R3) in the space
L,(R®). The operator H is called Schrodinger's operator.
Povzner [9] proved that the functions ¢4 (k,x) form a
complete orthonormal system of eigenfunctions of the
continuous spectrum of the operator H, and the operator
fills up the whole positive semi-axis. Besides the
continuous spectrum the operator H can have a finite
number N of negative eigenvalues Denote these
eigenvalues by —Ejz and conforming normalized
egenfunctions by  ;(x, —Ejz)(j =1,N) ,
¥; (6, —EP) € Ly(R?).

Theorem 2 (About Completeness). For any
vector-function f € L,(R®) and eigenfunctions of the
operator H, we have Parseval's identity

IfIE, = L35t Ifil? + Jgs If ()P ds,
where f; and f are Fourier coefficients in case of
discrete of and continuous spectrum respectively.

The proof of this theorem is in [9].

Theorem 3 (Birman - Schwinger's Estimate).
Suppose q € R. Then the number of discrete eigenvalues
of Shrodinger operator satisfies the estimate

(x)q(y)
N(")—(Lm)zj J -y ¢

The proof of this theorem isin [14], p.114.
Definition 2. (/8],p.118)

Ty k) = o [ 200 K)eTE0g(ax
@ )

Ty(.,.) is called T-matrix. Let us take into
consideration a series for Ty:

2)

where

x € R3 K = Il

where
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Ty (k k') = z Tn, (k K),
n=0

where
, 1 o
Toi(k'k)z(zn.)?, J el(k+k,x)q(x)dx’
R3
, 1 (=" _
T, (k k) = eFilko) x
+ 21)3 (47"
(2m)° (4m) .

e¥ilk llxg=x1]
X Q(xo)mﬂxl)-- q(xXp-1) X

ei'”k [1Xn—1—%nl

|1 — Xn|
As well as in [8], p.120 we formulate.
Definition 3. Series (4) is called Born's series.
Theoremd. Let q € Ly(R®)NR . If PqP; < 4m,
then Born's series for T(k, k") converges as k, k' € R3.
The proof of the theorem is in [8], 121.
Definition 4. Suppose q € R; then the function
A(k, 1), denoted by the following equality
Ak, D) = K J q(x) %
R3
X @ (k,x)e AN dy,
iscalled scattering amplitude
Corollary 1. Scattering amplitude A(k, 1) is equal
to T-matrix

q(xy)el > dx,. .. dx,.

A(k’ l) = T+(l; k) =
1 .
- s [ 1090, O
R3

The proof follows from definition 4.
It is a well-known fact [1] that the solutions
@4+ (k,x) and ¢@_(k,x) of equation (1) are linearly
dependent
P+ =S 3)
where S is a scattering operator with the nucleus S(k, 1)
of the form

Stk = [ 9.k 02
R3

Theorem S5 (Conservation law of Impulse and
Energy). Assume that q € R, then

S§*=1,§"'S=1,

were | - isanunit operator.

The proofisin [1].

Let us use the following definitions

100 = | qwe o,

R3

Gk —2) = f q(x)eit-A0 gy,

R3
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Gmv(k) = j Gk — ))S(lk|? — |A]»)dA, (2ﬂ) q(r $, n) =
R3 — _la_zzj J f( ek)+
Any (k) = J A(k,D)8(|k|? — |11*)dl, ror (ek'es)
R3 r
+ ,—
J f(k,Dde, = J f(k,DS(k|? = |11*)dk, f((zek'es) ek)> 8
r
R X —— sinf df do,
[ rnae, = [ raense - upa o (eues)
R3 2r 2r
where k,A € R? and e, = I%I’ e = Ij:_l f(m'ek) Q(( es) ex),

sinf df do = dey,
siné dédn = de, r=|t|.
Theorem 8. Fourier transformation of the function
q satisfies the following estimate
0Gmv
0z?

3 Estimate of Amplitude Maximum
Let us consider the problem of estimating the

. . . 1
maximum of amplitude, i.e., kmE%%(lA(k, k)|. Let us G|, < <7l

qmv
z

quu

0z2

)

Ly

Ly Ly

estimate the n term of Born's series |1y, (k, k)]|.
Lemma 1. |T,(k, k)| satisfies the inequality
1

[Tyt (kK| < 2 @y X 5 ?orrelatlon of Amplitude and Wave
yn |Gk |2 Functions
X (2m)20 D) FE dk, We take the relationship for ¢, ¢_ from (6)
R3 - @+ (kx) = @_(k,x) —
I .
y = Collall + 4ngs, c5 = 27 —2ni [ 8k - 1) x
3
where 6-is a small value, C is a positive number, X A(k},?l)(p_(l, x)dA. 4)
Mg = max g]. Let us denote new functions and operators we will
Theorem 6. Suppose that y < 16m3, then use further '
;(ré%%cm(k, k)| satisfies the following estimate 0o(Vzey, x) = el0Vzer),
1 G (k) [? Do (Vzer, X) = Po(VZew, x) + po(=Vzey, x),
pasldle 1 = o Tems - v ) kP dk, O, (Vzey, X) = 94 (Vzey, x) — e (7e®) 4

. (—Vzey, x) — e,

where y = C6||q|| +4nMGs, & is a small value, b_(VZe x) = ¢ (Nzey x) — pi(VZerx) 4

C6 = 2\/%, M6 = ;ZéaR%Clql +(p_(_\/Eek’ x) — e_i(\/Eeer)’
D,f = —2mi j A(k, D)8(z = DF(A,x)dA,
. . . R3
4 .Representatlon of Functions by its D,f = —2mi J A=k, D)5(z — DF (2 x)dA,
Spherical Averages A

) .tLet E.S f:or1151der the p;%blem (Lfl defining a gupcti(l)ln Dsf = D, f + D,f,
y its spherical average. This problem emerged in the where z = |k|2, | =|A]%, +k=+vVze, . Let us

course of our calculation and we shall consider it introduce the operators Ty, T for the function f €

hereinafter. 1
Let us consider the following integral equation W2 (R) by the formulas o F(E)
Jgs GOS8t — k|> = [k|?)dt = f(2k), T.f = ;,,}lzﬁo oo 5 45
where k,t € R3, § is Dirac's delta function, where Imz > 0,
f e WER®), Ikl = T3y K2, (t) = TEy kit T =l i [7 L9
Let us formulate the basw result T Imz—0" "% $-z
Theorem 7. Suppose that f € WZ(R®), then where Imz <0,
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Tf = (Te + T2)f.

Use (4) and the symbols e, = I%I
Riemann' problem of finding a function @, which is
analytic by the variable z in the top half plane, and the
function @_, which is analytical on the variable z in the
bottom half plane by the specified jump of discontinuity
f onto the positive semi axis.

For the jump the discontinuity of an analytical
function, we have the following equations

f=d, -,
f =D3[P_] = D3[e-],

where ¢_ = p_(—4,x).

Theorem 9. Suppose that q € R,

to come to

®+lx=02=0 = 0;
then the functions
Y1 = @ (Vzey, X)|x=0 — Po(Vzey, ) |x=0,
Y2 =Tiflx=0

are coincided according to the class of analytical
functions, coincide with bounded derivatives all over the
complex plane with a slit along the positive semi axis.

Lemma 2. There exists 0 < |e| < o such that it
satisfies the following condition @ |y=0z=0 = 0 holds
for the potential of the form v = eq, where q € R.

Now, we can formulate Riemann's problem. Find
the analytic function @, that satisfies (5), (6) and its
solution is set by the following theorem.

Theorem 10. Assume that q € R,

Pxlx=07=0 =0,
then
cbi‘ = Ti‘f + q)O'
f = Ds[IT-f + o] - Dsgr_,

where @_ = @_(—1,x).

Lemma 3. Suppose that ¢ € R, @4|x=0z=0 = 0;
then

Ay Ty [fllx=0 = T+Ax[f 1l x=0-
Theorem 11. Suppose that q € R,

@P+lx=02=0 =0, q(0) # 0,
q(0)flx=0 = DsT_ [gloﬂx:o -

‘J%[Q¢—“x=o+'D3J‘fd5H=w
0

then

6 Auxiliary Propositions
For wave functions let us use integral
representations following from Lippman-Schwinger's
theorem
@+ (k,x) = e'tb®) 4
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1 eTiVzlx-y|
= WQ(}’)fpi(k' y)dy,
R3
0(—k x) = e kX 4
1 eTivzlx-y|

i ] AT q)e+(—k,y)dy.
R

Lemma 4. Suppose that q € R,

®+lx=0z=0 = 0;
then
Ak, k") = coq(k— k") +

iVz|x-y|
Co J J —i(k’ %) e
+—= ik
] q(x) =yl
x q(y)e &N dydx + A (k, k'),
e—i\/Elx—y|
—X
|x =yl
X q(y)e—i(kry)dydx + A3(_k, kl)’
(271r)2’ and Az(k,k"),A3(—k,k") are terms

of order higher than 2 with regards to q.
Theorem 12 (Parseval). The functions

f,9 € L,(R®)
satisfy the equation

(f,9) = co(£, 3",
where (-,) is a scalar product and cy =

The Proof'is in work [12].
Lemma 5. Suppose that q € R, @4|x=0z=0 =0,

where ¢y =

em¥

then
Ak, k") = coq(k — k") —
2 J g(k+p)g—k')

C :
° ) IpP-z-i0
R

dp +

+As(k, k),
A(=k k") = cof(~k = k') =
o2 J Gg=k+p)al@—k)

0 Ip|? —z—i0

dp +
R3
+As(—k, k).
Corollary 2. Suppose that q € R,
@P+|x=02=0 =0,
then
Amv(k) = Coqmv(k) -
T 2%TT - . ,
zx/Ej f f Gk +p)G(p — k")
—ct—
2
0 0

Ip|? —z—i0
R3
where

dpder +

+A3mv(k)'

Azmy(k) = JAs(k.k’)S(Z—Ik’IZ)dk’-

R3
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And 3 o2 J J G(=k +p)a(p +p1) do. d +
Amy(=) = Colmy(—F) - 0 (% =z F 0)(|p. 2 — z T i0) PP
T Z*TC - - , R R
2 o o g3 Ip|* —z—i0 Lemma 8. Suppose thczlt qER, x=0;then
T T
+Azmy(=K),
where F(k 0) = —nicoﬁj J q(k— \/Eep)dep +
Azmy(—k) = J As(—k,k")8(z — |k'|*)dk'.
e i \/— gk - \/—ep)
Lemma 6. Suppose that ¢ € R and x = 0, then Mo Ip1 |2 —z
etiVzly| ]
¢k, 0) =1+~ J M q(y)etENdy + X CI( \/_ep P1)dp1d€p
R3 k —
1 eiri\/EIyl etiVzly—t| +miciVzV.p. j j j atk —p) — p)
+— J J q) X Ipl* -z
(4m) ly =t \/— de. d
5 Xq(-=p— epl) ep,dp +
X q(t)e‘(k t)dtdy + (p( (k, 0), (3)(k 0) — (p(3)(k 0).
where (pJ(_r )(k, 0) are terms of order higher than 2 with And
regards to q., i.e., T2
@ etiVZIx-y| F(—k,0) = —nicoﬁj j G(—k —Vze,)de, +
Ok, x) = 3]jj a0 x
(4 ) T 2T \/_
eiVZly—t| +l\/—|t s| +7TiCo\/_J J J q(—k — ep) y
And X q( \/_ ze, — pl)dpldep
eTivzlyl ] G(—k — )
9+(—k,0) =1 +— J q(y)e " Ndy + +ric2VZ V. p. J J J ql : P
pl>?—z
\/— TNl R3
1 J J e TiVzlyl o Fivzly-t| (O x X §(—p— \/_epl)de,,ldp +
(41r)2 ly —tl +9®(—k, 0) — @ (=k,0).

x e"iDdedy + ¢ (—k, 0),
where (pf)(—k, 0) are terms of order higher than 2 with

_ 7 Two Representations of Scattering
regards to q., i.e.,

Amplitude

e TVzlx—y|
)( kx) = — J J J gy X Lemma 9. Suppose that f € W, (R), then
(4m) T.f =¥f +Tf.
eTivzly—t| +l\/—|t SI Lemma 10. Suppose that q € R, @4 |x=0z=0 = 0,
q(t) q(s)p4(—k,s)dsdtdy. then

ly — ¢l |t = s|

Lemma 7. Suppose that q = R, (pi—lx=0,z=0 — 0’ f(k, 0) = F(k, 0) + F(_k, 0)

Lemma 11. Suppose that q € R, ¢ |y=0z=0 = 0,

then " then

92 (k,0)=1— “;’(_72’_’310 A0+ Ay (<10) = € @) + Ty (—10) +
a0+ D) +p1) iV [ | @k~ Ve + G(—k —VZey) x

+C°J J(|p|2—2+10)(|p1|2—z+ 0y Piap ojoj

o X qmy(Vze)de; +
(k 0) (7) \/E T 2T

pikm =1 [ AP gy snicg [ [ @0 aey + a(k - Vzen) x

. p| z+1i0 0 0
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X Gmv(—Vzey)de; —
—ric3 j j @k = Vzey) + G(=k —VzeR) X
(Vzey) + T[Gmv](—Vzey))dey —

0 0
(T‘Z ]

j j @@k —Vzey) + d(—k — Vze)) x

0 0

X
~ __\/Ee _
xV p.judpdel+

2 _
Sl

g | [ [ st

R30 O
X §(—l —Vze,)de,dA — 2mi(F®)(k, 0) +

+F®(=k,0) + Q3(k, 0) + Q¥ (k, 0)),
where Q3(k,0), Q®)(k,0) are defined by formulas
(Ay(k, 1) + Ay (—k, 1)) X

Q3(k,0) = —4m?c?
R3

D (@mv(D) + Gmy(=4))dA +

X 6(z—
+2micy | (Ax(k,A) +A(—k,1)6(z—1) x
R3
X fo(L,0)dl + 4m2cd | (A(k, ) + Ay(—k,A)) X

R3

X 6(z = D(T[qmv](D) + T[dmv](=A))dA —
(A (k1) + Ay (kD)) x

x gzz — DT[f,](4, 0)dA. 9)

(Gl =) +q(=k—-A) X

—2mic

Q®)(k,0) = 2mic3
R3

X 8(z — DpP(=1,0)dA +
(Ay(k, 2) + Ay (=K, 1)) x

+2mic?
R3
q(— —p)

+<p£2>( 1,0))dA. (10)

correspondingly,
FO(&,0) = 93 (k, 0) — 9@ (k, 0),

F®(~k,0) = <p(3>( k,0) = 9 (=k, 0),

and (p(g)(+k, 0) are terms of order 3 and higher w.r.t. 4

in the representations (7), (8).
Lemma 12. Suppose that q € R, ¢4 |x=0z=0

then
Amy(k) + Apy(—k) =

T 2T

~ 4mq(0) J

ISSN: 1991-8747
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X j f(sey,0)dsde;.

Nonlinear  Representation of

Potential
Let us proceed to the construction of potential

nonlinear representation.
Lemma 13. Assume that q € R, ¢4|y=0=0 = 0,

Gmv (k) + Gmv(=k) =

T 2T

= —mico7 [ | @k~ + (K~ VZe) x
0

0
X Gmy(Vzey)de; —

T 2T

ey % [ [ @~ e + 4k ~VEe) x

0
X Gmy(—Vzey)dey +

T 2T

+micoVz ] ] @k —Ze) + (k- v7e) X

x (T ﬁ (\/_ez) + T[Gmy](—Vzep))de; —

s

al ] Gk —Vzey) + G(—k — Vzep)) X
0

xXV. .Jdedel—
& W

k=D+qk-D)

v [ [ [ @

R3 0 0
X §(—l—+zey)deydd —

T 2T

s ] ] (ACkNZer) + A~k V7o) X

X J f(sel,O)dsdel+C—(F(3)(k,0)+
0
0
+F®(=k,0) + Q3(k, 0) + Q¥ (k, 0)),
where Q3(k,0), Q®(k,0) are defined by formulas

(9), (10) accordingly,
F®(k,0) = 7 (k,0) — P (k, 0),

FO(=k,0) = <p(3>( k,0) = o (=, 0),
and ¢(3)(+k, 0) are term of order 3 and higher w.r.t. g

in representations (7), (8).
Lemma 14. Suppose that q € R, ¢4 |y=0z=0 = 0,

then
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T 2T
(k=D +q(=k—-21)
V.p. j j = X
R3 0 0
X G(—1—ze,)deydl =

27

=i [ | @ Vzen + -k~ VFen) x
0 0

X qmy(—Vzey)de;.
Lemma 15. Let § € W} (R) and q € R, then

T 2T

j j @Gk —VZen) + G(—k —V7e) X

X (T va 1(Vzey) + T[Gmv](—Vzey))de; =

- j j @Gk —VZe) + G(—k — Vzep)) X
00
X Gy (VZ€2) + Gy (—VZe))des,

T 2T

[ | @w—vzen + k- vzen x
0

0
<V.p. J G(—zey — p)

I = dpde; =

R3
21

| @iz + -k - vze x
0

X qmy(—Vzey)de;.
Theorem 14. Let q € R, ¢4|x=02=0 = 0, then
Gmy (k) + Gmy(=k) =

T 2T

= —micoVZ ] ] @k —VZen) + G(—k —Vze) x

>< qmv( —Vze;)de; + u(k),
u(k) = —(F(3>(k 0) + F®(—k,0) +

+Qs(k. 0) + Q®(k, 0)),

where ¢y = 4.
Theorem 15. Suppose q € R, @i|x=0z=0 =0;

=mi

O\;i

then

T 2T T 2T

u(k)—fH H (G(—k —VZep) +

+q(k — \/_ea))q(\/_ea—\/_es)x
X Ho (\/_es)deldeS'
where || < Clqmyl

9 The Cauchy

Navier-Stokes' Equations
Let us apply the obtained results to estimate the

Problem for

ISSN: 1991-8747
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solutions of Cauchy problem for Navier-Stokes' set of
equations

qc — vAq + z Tk x; =
k=1
= -Vp+ Fy(x, t), divg =0, (11)
qle=0 = qo(x) (12)
in the domain of Qr = R3 x (0,T). With respect to qq,
assume
div qo = 0. (13)
Problem (11), (12), (13) has at least one weak
solution (q,p) in the so-called Leray-Hopf class, see [4].
Let us mention the known statements proved in [13].
Theorem 16. Suppose that
qo €W (R®), f € L(Qr);
then there exists a unique weak solution of problem (11),
(12), (13), in Q,, Ty € [0,T], that satisfies
qtr Gxx, VP € L2(Qr).
Note that T; depends on qg, f.
Lemma 16. If qo € WA (R®), f € L,(Qr), then
t

z 2
OssltlgrllqllLZ(R3) +J lax|ly,gsydT <

0
< ||CI0||EZ(R3) + 1Follz,c0m

Our goal is to prove the global unicity weak solution
of (11), (12), (13) irrespective of initial velocity and
power smallness conditions.

Therefore let us obtain uniform estimates.

Statement 1. Weak solution of problem (11), (12),
(13), from Theorem 16 satisfies the following equation

q(z(ex = €2) t) = Go((er = €)) +

+ [ eveen (@ Tl + ) x
0
X (z(ex — €y),7)d1,
where F = —Vp + F,.
Lemma 17. The solution of the problem (11), (12),
(13) from Theorem 16, satisfies the following equation

P LR T L
L
and the following estimates

||p||L2(Rs) < 3||qx||L (Rg)uan iy
|F| oF 062

| < +—|—|+3
ok |k| |k|2 |k| ok 0|k|
Lemma 18. Weak solution of problem (11), (12),
(13), from Theorem 16 satisfies the following inequalities

sup [ j % I2lqCx ) [2dx +
0<t<T R3
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t

+J j 1221, (x, ) |?dxdt] < const,
0 RS

sup [ j Ixl*1qCx O)2dx +

<t<
0<t<T 73

+J J |x]|*|q, (x,7)|?dxdt] < const,

0 R3
or

9q

a9z +

sup [

0<t<T

Ly(R®)

+J J 22 |qx (k, 7)|?dkdr] < const,
3

0%

dz2 +

Ly(R3)

sup [

0<t<T

+J J 22| qxx (k,T)|*dkdz] < const.

0 R3
Lemma 19. Weak solution of problem (11), (12),

(13), from Theorem 16, satisfies the following
inequalities
max|g] < max|qo| +

T 2
+ 5up 1411 g, + ] 19112, sy,

9q 94,
<
max P I‘ilaX 37 +
T 0(? g 5
+ = sup +j jz |qx (k, ©)|“dkdr,
20<t<T aZ
L,(R®) 0 RS
02§ 02%q,
max 372 _m]?x 372 +
t
T %4 . 5
+= sup |53 + Z°|qrr (k, T)|“dkdrT.
20<t<T 0z
L,(R®) 0 RS
Lemma 20. Weak solution of problem (11), (12),
(13), from Theorem 16 satisfies the following inequalities
~ 0Gmv(2,t)
|Grmv(z )| < zMy, —‘“CY,Z < zM,,
0*Gmv (2, 1)
o |

where My, M,, M3 are limited.
Lemma 21. Weak solution of problem (11), (12),
(13), from Theorem 16 satisfies the following inequalities

C; < const, (i=0,2,4), where
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t
Co = j \Fil2dr,  Fy=(q,V)q +F,
tO t
oF,|? A
CZ =J a_ dT, C4_ =J aZZ dr.
0 0

Lemma 22. Suppose that q € R, mlgxkﬂ < oo,

j ]"( )q(y)d dy < C(lqls, + maxid))®

Lemma 23. Weak solution of problem (11), (12),
(13), from Theorem 16 satisfies the following inequalities

1G(z(ex —en), )| < |qO(Z(ek —e))l+

2

t

CO = J |F1|2dT,F1 = (q, V)q + F.

then

where

0

Now, we have the uniform estimates of Rolnik
norms for the solution of problems (11), (12), (13). Our
further and basic aim is to get the uniform estimates
|G.11,,(r%)> @ component of velocity components in the
Cauchy problem for Navier-Stokes' equations. In order to
achieve the aim, we use Theorem 8 it implies to get
estimates of spherical average.

Lemma 24. Weak solution of problem (11), (12),
(13), from Theorem 16 satisfies the following inequalities

~ Cr.a ~
|GmvlL, &3y < 5(‘45 b+ 51|va|L1(R3)) +

+1ulL, r3y
the function W is defined in Theorem 15,

T 2T

40 = [ 2] [ttt el x
R3 0 0

1\2 1
X |dmy(ze2, 0 lderdic y = (=) 87CZ,

and Cy is defined in Lemma 23.
Theorem 17. Weak solution of problem (11), (12),
(13), from Theorem 16 satisfies the following inequalities

q C

dmv < (AO + B Gmv ) .u|

z Lg% =2 z lp@ws)  2l,@3
where

T 2T
to= [ [ | 1aotete — el zes, 0 laera

R3 0 0
and By is defined in Lemma 24.
Corollary 3. Weak solution of problem (11), (12),
(13), from Theorem 16 satisfies the following inequalities
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q C
Jmv < (—AO + |E| )K,
z 1, (r% 2 AINGE)
where
1
v2
K = I-
v — ancC?

Let's consider the influence of the following large
scale transformations in Navier-Stokes' equation on K

v=ta, v=t w=l gl
=tA, v = v' = 0=z

A )
Statement 2. Let

4
A=

v3(CC0 + 1)3
then K < g.
Lemma 25. Weak solution of problem (11), (12),

(13), from Theorem 16 satisfies the following inequalities
0q(z(ex — €2), )| _ |90 (z(ex — €2))

0z - 0z +
1 1 1 1
AV 1\z C2?
ol s (it
v/ z%lex —ey| \2v/ z|ex — e
where
L =2
c _J oF, 4
) = 57| 4%
0

Theorem 18. Weak solution of problem (11), (12),
(13), from Theorem 16 satisfes the following inequalities

0Gmy
—(Ag+A;+A
0z L(R3)_2( O+ 1+ 2

+B3|GmvlL, r3) + (B + B2)

ou
0z

Gmv

V4

+
L1(R%)

Gy
0z

Vs
RJ3 0J
X |qmy
Vs
RJ3 C’)oj
zey,t
x M|dqdk,
1
1\z 11 1\2 1
B, = (;) 27 naC2 B, = (;) 8mC?,
and C, is defined in Lemma 25, C = const.

Lemma 26. Weak solution of problem (11), (12),
(13), from Theorem 16 satisfies the following inequalities

+B1

Ly(R?) Ly(R%)

where

0% (Z(ek - ea))|

Go(z(ex —ex))] X

2T
oJ
(ze;, t)|deydk,
2T
oJ
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0°q(z(ex = ea) t)| _ |9°Go(z(ex — )|,

d0z2 - d0z2
1 1 1
1\2 160{C02 1\2 80(62
+(3) +(3)
v Z3|€k—€a| v Zzlek_ell

1
2

(1 )2 C,
2v) zley — eyl

where
sup|t™e!| < a,
t
as m> 0,
t ~ 12
c J 0%F, 4
= T.
4 0z2

0
Theorem 19. Weak solution of problem (11), (12),

(13), from Theorem 16 satisfies the following estimate
02 ~mV

C
622 < _(2(A1 + A2 + A3) +

Ly (R®)
+A,+ As + (2P, + Ba)

Gmv 4
Z 1L, (R
+(2B3 + 55)|C~Imv|L1(R3) + BelzGmvlL, r3) +
+2(B1 + B2) "‘“V +28; |z
0%u
dz2

0qmy

0z

L1(R?)

)+ |z

Li(R®)

%Gy

+ﬁ”€7

)

Ly (R®)

L1 (R?)
7 10d0(2(ex — €)
qolZ( e — €,
w= 2] ] E
A dz

d zey,t
X| qmv( 7] )|dldk
f 192
4y = J 2 J J qo(zgzz; |,
R3 0 0

X |Gy (ze1,£)|deadk,

T 2T

As—j ” 1o (2(e — )] X

Py (22,
x ‘ oG

where

de,dk,

1
1

1\2 15 2
B4 = (;) 22maCy,
1
1\2z 13 1
fs = (;) 22maC?,
1
n_ 2
o= ;) onc?
and C, is defined in Lemma 26.

Lemma 27. Weak solution of problem (11), (12),

Issue 1, Volume 5, January 2010



WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS

(13), from Theorem 16 satisfies the following estimate
dmv < ByK,
Z 1L, (R%)
|GmvlL, g3y < BiK,
12GmvlL, r3) < B2K,

where
1
V2 C u
1 l’BO = |
vZ — 4nCC}

K =

C a
B, = EAE) )+ 1], r2ys

C @
BZ = EAE) ) + |Z,U|L1(R3),

T 2T

a2 = [ [ [ ot —enix
R3 0 O

X |Gmv(Zey, t)|de,dk.
Lemma 28. Weak solution of problem (11), (12),
(13), from Theorem 16 satisfies the following estimates
oG
Ty < DoK? + Dy K,
0z 11, (&%)
|20qmv
0z

< D,K? + D;K,
L1(R®)
where

C
Do =5 (BS7B1 + (B + BB,
C d
Dy == b )
2 0zl r%)

C
D, = (BB, + (B + BBy,
ou
0zl %)

T 2T a~
Agl)= JZZJJ | qO(Z(SI; ez))|x
R3 00

X |Gmy(zez, t)|deydk,
T 2T

2P = [ 2 [ [ laotate - enix
R3 0 0

c
Dy == (AP + AP +4D) + |2

2

0Gmv(zey, t)
X |——————=|de,; dk,
| 0z | K
1 11 1
2 -5 2
© _87C o) _ 22maly
1 - 1 P2 - 1 4
V2 V2
1
2
(0)_81IC2
3 - T 1

V2
Lemma 29. The solution of the problem (11), (12),
(13), from Theorem 16, satisfies the following estimate
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2~
a mv

0z2

< PyK3 + PiK? + P,K,
L1(R®)

N

where
Py = C(BSD, + (B + BS)Dy),
P = (B2 + BB +
+285 + BBy + BB, +

0 0 0
+2857D5 + 2(8 + Bi)Dy ),

P_c
L)

+A4 + Ag) +

(2(A1+ 4, + A3) +

Z )

Theorem 20. The solution of the problem (11),
(12), (13), from Theorem 16, satisfies the following

estimate
11

1G], r3) < (Vlco +y2C5CF + Y3C2>K3 +
1 1 1
+ (ncg +ysC2 + y6C42>K2 +

1 1
+ (Y7C02 +7vsC; + V9> K,

where
1 t

v2 o
1 yCo = | |F|"dz,
vZ —4nCC; 0
Fi1=(qV)q+F,

t ~ 2 t - 2
oF, 92F,
C2 = _aZ dT, C4_ =
0 0

022
C?23m? 5
(1 + ZZ)BOi
C?2*m? 5
(1 + 22)315

C?23m?

V3 = v BZ:
3t 9 5
Ya = —1 ((1 +22)Bo + (1 + 22)Dy),
v2

K =

dr,

V1=

Y2 =

231

Vs = 1
V2

((1+22)B; + D),
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C23m
Y6 = 1
v2
C2°m 5 C2°m
Y7 = (1+22)By,ys = —5 By,
v2 v2
C
Yo = E(D1 + P;),
C U
By = EAO + |E| )
L1(R%)
C «a
B, = EAE) [ |4l L, r3)
Cc
B = §A(2) + |Z‘U|L (R3)’
0
aZ L (R3)
C au
@ D @

Dy == (A% + 4 +4V) + |z—= ,
3 2 ( 0 C 1 2 ) OZ L1(R3)
P2 = E(Z(Al +A2 +A3) +

62;1
+A,+ A45) + |z 6 - ,
Ly(R3)
C _ 9n
2 42m)?¥

the function W is defined in Theorem 15.

Lemma 30. The function y, defined in Theorem 15,

satisfies the following estimates
|41, (r3) < const, |zul L, (r3) < comst,

0
ok < const,
0zl (r3)
i) 92
z—# < const, Z—l; < const.
aZ Ll(R3) aZ Ll(R3)

Lemma 31. Weak solution of problem (11), (12),

(13), from Theorem 16 satisfies the following estimates
Ao < 2M; [ (0(zer)Dmedk
R3

[ “aoe0nmar,

R3
4P < 2m, j 22 (G0 (ze) D mydll,

R3

Ay < 2M, J (|

1
A < 2m,

C"CIo(Zek) |)mV

2|99 (Zek)|)
0z mv

4, <2M, j 2(1Go(ze)Dmdll,

R3
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AP < 2My [ 22080 e Dmud
R3
5
As < 2M, j z2 %bmv
R3
Ay < 2M,; J z%(
R3
As < 2My [ 2200z Dyt

R3
Theorem 21. Suppose that

q0 € W3 (R?), Fo € L,(Qr),
F
Fo e Ll(QT) € L,(Qr),

” =
0z2

2771 (1o (zex) Dmydk < const,
1_
J o

R3

4-

R3
Then there exists a unique weak solution of (11),
(12), (13), satisfying thefollowing inequalities

0% qo (zex)

7Pk,

> € L1(Qr), 4o € L1 (R?),

0 e
Golz k)|)mvdk < const,

6 ze
qO( ) Jmyvdk < const.

maxz G211, r3) < const,

where const depends only on the theorem conditions.

Note. In the estimate for § the condition q(0) > 1
is used. This conditioncan be obviated if we use smooth
and bounded function w and make all the estimates for
q1 = q +w such that q;(0) > 1 is satisfied. Using the
function w, we also choose the constant A concordant
with the constant & from Lemma 3.

Theorem 21 proves the global solvability and
unicity of the Cauchy problem for Navier-Stokes'
equation.

10 Conclusion

In Introduction we mentioned the authors whose
scientific researches we consider appropriate to call the
prehistory of this work. The list of these authors may be
considerably extended if we enumerate all the
predecessors diachronically or by the significance of their
contribution into this research. Actually we intended to
obtain evident results which were directly and indirectly
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indicated by these authors in their scientific works. We do
not concentrate on the solution to the multi-dimensional
problem of quantum scattering theory although it follows
from some certain statements proved in this work. In fact,
the problem of overdetermination in  the
multi-dimensional inverse problem of quantum scattering
theory is obviated since a potential can be defined by
amplitude averaging when the amplitude is a function of
three variables. In the classic case of the
multi-dimensional inverse problem of quantum scattering
theory the potential requires restoring with respect to the
amplitude that depends on five variables. This obviously
leads to the problem of overdetermination. Further
detalization could have distracted us from the general
research line of the work consisting in application of
energy and momentum conservation laws in terms of
wave functions to the theory of nonlinear equations. This
very method we use in solving the problem of the
century, the problem of solvability of the Cauchy
problem for Navier-Stokes' equations of viscous
incompressible fluid. Let us also note the importance of
the fact that the laws of momentum and energy
conservation in terms of wave functions are conservation
laws in the microworld; but in the classic methods of
studying nonlinear equations scientists usually use the
priori estimates reflecting the conservation laws of
macroscopic quantities. We did not focus attention either
on obtaining exact estimates dependent on viscosity, lest
the calculations be complicated. However, the pilot
analysis shows the possibility of applying these estimates
to the problem of limiting viscocity transition tending to
Zero.
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