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1 Introduction 
The work of L. Fadeyev dedicated to the 

many-dimensional inverse problem of scattering theory 
inspired the author of this article to conduct this research. 
The first results obtained by the author are described in 
the works [2,3,4]. This problem includes a number of 
subproblems which appear to be very interesting and 
complicated. These subproblems are thoroughly 
considered in the works of the following scientists: R. 
Newton [6], R. Faddeyev [1], R. Novikov and G. 
Khenkin [5], A. Ramm [4] and others. The latest 
advances in the theory of SIPM(Scattering Inverse 
Problem Method) were a great stimulus for the author as 
well as other researchers. Another important stimulus 
was the work of M. Lavrentyev on the application of 
analytic functions to Hydrodynamics. Only 
one-dimensional equations were integrated by SIPM. The 
application of analytic functions to Hydrodynamics is 
restricted only by bidimensional problems. The further 
progress in applying SIPM to the solution of nonlinear 
equations in R3 was hampered by the poor development 
of the three-dimensional inverse problem of scattering in 
comparison with the progress achieved in the work on the 
one-dimensional inverse problem of scattering and also 
by the difficulties the researchers encountered building 
up the corresponding Lax' pairs. It is easy to come to a 
conclusion that all the success in developing the theory of 
SIPM is connected with analytic functions, i.e., solutions 

to Schrodinger's equation. Therefore we consider 
Schrodinger's equation as an interrelation between 
real-valued functions and analytic functions, where 
real-valued functions are potentials in Schrodinger's 
equation and analytic functions are the corresponding 
eigenfunctions of the continuous spectrum of 
Schrodinger's operator. The basic aim of the paper is to 
study this interrelation and its application for obtaining 
new estimates to the solutions of the problem for 
Navier-Stokes' equations. We concentrated on 
formulating the conditions of momentum and energy 
conservation laws in terms of potential instead of 
formulating them in terms of wave functions. As a result 
of our study, we obtained non-trivial nonlinear 
relationships of potential. The effectiveness and novelty 
of the obtained results are displayed when solving the 
notoriously difficult Chauchy problem for Navier-Stokes' 
equations of viscous incompressible fluid. 

 
 
2 Basic Notions and Subsidiary 

Statement 
Letusconsider Shr̈݋dingerse equation  
   −Δ௫߮ + ߮ݍ = |݇|ଶ߮  (1) 

where ݍ - is a bounded fast-decreasing function,  

݇ ∈ ܴଷ, |݇|ଶ = ෍  
ଷ

௝ୀଵ
௝݇
ଶ . 
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Definition 1. Rolnik's Class ࡾ  is a set of 
measurable functions ݍ,   

܀||ݍ|| = න  
ோల

(ݕ)ݍ(ݔ)ݍ
ݔ| − ଶ|ݕ ݕ݀ݔ݀ < ∞. 

It is considered to be a general definition ([8], p. 
110). 

Theorem 1.  Suppose that ݍ ∈  then a exists a ;ࡾ
unique solution of equation (1), with asymptotic form (2) 
as |ݔ| → ∞  

߮±(݇, (ݔ = ݁௜(௞,௫) + 

  + ௘±೔|ೖ||ೣ|

|௫|
,݇)±ܣ ݇ ′) + 0 ቀ ଵ

|௫|
ቁ,  (2) 

where 

ݔ ∈ ܴଷ, ݇ ′ = |݇|
ݔ

|ݔ|
, (݇, (ݔ = ෍  

ଷ

௝ୀଵ
௝݇ݔ௝ , 

,݇)±ܣ (ߣ =
1

ଷ(ߨ2) න  
ோయ

,݇)±߮(ݔ)ݍ  .ݔ݀௜(ఒ,௫)ି݁(ݔ

The proof of this theorem is in [8], p. 110.    
Consider the operators ܪ = −Δ௫ + (ݔ)ݍ ଴ܪ , =

−Δ௫  defined in the dense set ଶܹ
ଶ(ܴଷ)  in the space 

 .is called Schrodinger's operator ܪ ଶ(ܴଷ). The operatorܮ
Povzner [9] proved that the functions ߮±(݇,  form a (ݔ
complete orthonormal system of eigenfunctions of the 
continuous spectrum of the operator ܪ, and the operator 
fills up the whole positive semi-axis. Besides the 
continuous spectrum the operator ܪ  can have a finite 
number ܰ  of negative eigenvalues Denote these 
eigenvalues by −ܧ௝

ଶ  and conforming normalized 
egenfunctions by ߰௝(ݔ, ௝ܧ−

ଶ)(݆ = 1, ܰ) , where 
߰௝(ݔ, ௝ܧ−

ଶ) ∈  .ଶ(ܴଷ)ܮ
Theorem 2 (About Completeness). For any 

vector-function ݂ ∈ ଶ(ܴଷ)ܮ  and eigenfunctions of the 
operator ܪ, we have Parseval's identity  

|݂|௅మ
ଶ = ∑  ே

௝ୀଵ | ௝݂|ଶ + ∫  ோయ  ,ݏଶ݀|(ݏ)݂̅|
where ௝݂  and ݂̅  are Fourier coefficients in case of 
discrete of and continuous spectrum respectively.   

The proof of this theorem is in [9]. 
Theorem 3 (Birman - Schwinger's Estimate). 

Suppose ݍ ∈ ܴ. Then the number of discrete eigenvalues 
of Shr̈݋dinger operator satisfies the estimate  

(ݍ)ܰ ≤
1

ଶ(ߨ4) න  
ோయ

න  
ோయ

(ݕ)ݍ(ݔ)ݍ
ݔ| − ଶ|ݕ  .ݕ݀ݔ݀

The proof of this theorem is in [14], p.114. 
Definition 2.  ([8], p.118)  

±ܶ(݇, ݇ ′) =
1

ଷ(ߨ2) න  
ோయ

,ݔ)±߮ ݇ ′)݁∓௜(௞,௫)ݔ݀(ݔ)ݍ. 

±ܶ(. , . )  is called T-matrix. Let us take into 
consideration a series for ±ܶ: 

±ܶ(݇, ݇ ′) = ෍  
∞

௡ୀ଴
௡ܶ±(݇, ݇ ′), 

where 

଴ܶ±(݇, ݇ ′) =
1

ଷ(ߨ2) න  
ோయ

݁௜(௞ ′∓௞,௫)ݔ݀(ݔ)ݍ, 

௡ܶ±(݇, ݇ ′) =
1

ଷ(ߨ2)
(−1)௡

௡(ߨ4) න  
ோయ(೙శభ)

݁∓௜(௞,௫బ) × 

× (଴ݔ)ݍ
݁±௜|௞′||௫బି௫భ|

଴ݔ| − |ଵݔ
.(ଵݔ)ݍ . . (௡ିଵݔ)ݍ × 

×
݁±௜|௞′||௫೙షభି௫೙|

௡ିଵݔ| − |௡ݔ
.଴ݔ݀௜(௞′,௫೙)݁(௡ݔ)ݍ . . ௡ݔ݀ . 

As well as in [8], p.120 we formulate. 
Definition 3.  Series (4) is called Born's series.   
Theorem 4.  Let ݍ ∈ ଵ(ܴଷ)ܮ ∩ ݍܲ If . ࡾ ࡾܲ

ଶ ≤  ,ߨ4
then Born's series for ܶ(݇, ݇ ′) converges as ݇, ݇ ′ ∈ ܴଷ.   

The proof of the theorem is in [8], 121. 
Definition 4.  Suppose ݍ ∈ ܴ; then the function 

,݇)ܣ  denoted by the following equality ,(ߣ

,݇)ܣ ݈) =
1

ଷ(ߨ2) න  
ோయ

(ݔ)ݍ × 

× ߮ା(݇,  ,ݔ݀௜(ఒ,௫)ି݁(ݔ
 ݁݀ݑݐ݈݅݌݉ܽ ݃݊݅ݎ݁ݐݐܽܿݏ ݈݈݀݁ܽܿݏ݅

Corollary 1. Scattering amplitude ܣ(݇,  is equal (ߣ
to ܶ-matrix  

,݇)ܣ ݈) = ାܶ(݈, ݇) = 

=
1

ଷ(ߨ2) න  
ோయ

,݇)ା߮(ݔ)ݍ  .ݔ݀௜(ఒ,௫)ି݁(ݔ

The proof follows from definition 4. 
It is a well-known fact [1] that the solutions 

߮ା(݇, (ݔ  and ߮ି(݇, (ݔ  of equation (1) are linearly 
dependent  

  ߮ା = ܵ߮ି    (3) 
where ܵ is a scattering operator with the nucleus ܵ(݇,  (ߣ
of the form 

ܵ(݇, (ߣ = න  
ோయ

߮ା(݇, ା߮(ݔ
∗ ,ߣ)  .ݔ݀(ݔ

Theorem 5 (Conservation law of Impulse and 
Energy). Assume that ݍ ∈   then ,ࡾ

ܵܵ∗ = ,ܫ ܵ∗ܵ =  ,ܫ
were ܫ - isanunit operator. 

The proof is in [1]. 
Let us use the following definitions  

(݇)෤ݍ = න  
ோయ

 ,ݔ݀௜(௞,௫)݁(ݔ)ݍ

݇)෤ݍ − (ߣ = න  
ோయ

 ,ݔ݀௜(௞ିఒ,௫)݁(ݔ)ݍ
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(݇)෤୫୴ݍ = න  
ோయ

݇)෤ݍ − ଶ|݇|)ߜ((ߣ −  ,ߣ݀(ଶ|ߣ|

(݇)୫୴ܣ = න  
ோయ

,݇)ܣ ଶ|݇|)ߜ((݈ − |݈|ଶ)݈݀, 

න  ݂ (݇, ݈)݀݁௞     =     න  
ோయ

݂(݇, ଶ|݇|)ߜ(݈ − |݈|ଶ)݀݇,

න  ݂ (݇, ݈)݀ ఒ݁     =     න  
ோయ

݂(݇, ଶ݇)ߜ(݈ − |݈|ଶ)݈݀,
 

where ݇, ߣ ∈ ܴଷ and ݁௞ = ௞
|௞|

, ݁ఒ = ఒ
|ఒ|

. 
 
 
3 Estimate of Amplitude Maximum 
Let us consider the problem of estimating the 

maximum of amplitude, i.e., max
௞∈ோయ

,݇)ܣ| ݇)| . Let us 
estimate the ݊ term of Born's series | ௡ܶ(݇, ݇)|. 

Lemma 1.  | ௡ܶ(݇, ݇)| satisfies the inequality  

| ௡ܶାଵ(݇, ݇)| ≤
1

ଷ(ߨ2)
1

௡ାଵ(ߨ4) × 

×
௡ߛ

ଶ(௡ାଵ)(ߨ2) න  
ோయ

෤(݇)|ଶݍ|

|݇|ଶ ݀݇, 

ߛ = ||ݍ||ߜܥ + ,ߜ෤ݍܯߨ4 ߜܥ = 2
ߨ√
ߜ√

, 

where ߜ -is a small value, ܥ  is a positive number, 
෤ݍܯ = ݔܽ݉

௞∈ோయ
   .|෤ݍ|

Theorem 6.  Suppose that ߛ < ଷߨ16 , then 
ݔܽ݉
௞∈ோయ

,݇)ܣ| ݇)| satisfies the following estimate  

max
௞∈ோయ

,݇)ܣ| ݇)| ≤
1

ଷ(ߨ2)
1

ଷߨ16 − ߛ
න  

ோయ

෤(݇)|ଶݍ|

|݇|ଶ ݀݇, 

where ߛ = ||ݍ||ߜܥ + ߜ෤ݍܯߨ4 ߜ ,  is a small value, 

ߜܥ = 2ටగ
ఋ
ߜܯ , = ݔܽ݉

௞∈ோయ
 .|෤ݍ|

 
 
4 Representation of Functions by its 

Spherical Averages 
Let us consider the problem of defining a function 

by its spherical average. This problem emerged in the 
course of our calculation and we shall consider it 
hereinafter. 

Let us consider the following integral equation  
∫  ோయ ݐ|)ߜ(ݐ)෤ݍ − ݇|ଶ − |݇|ଶ)݀ݐ = ݂(2݇), 

where ݇, ݐ ∈ ܴଷ, ߜ is Dirac's delta function,  
݂ ∈ ଶܹ

ଶ(ܴଷ), |݇|ଶ = ∑  ଷ
௜ୀଵ ݇௜

ଶ, (݇, (ݐ = ∑  ଷ
௜ୀଵ ݇௜ݐ௜ . 

Let us formulate the basic result. 
Theorem 7.  Suppose that ݂ ∈ ଶܹ

ଶ(ܴଷ), then  

,ݎ)෤ݍଶ(ߨ2) ,ߦ (ߟ = 

= −
1
ݎ

∂ଶ

ଶݎ∂ න  
గ

଴

න  
ଶగ

଴

൬݂(
ݎ2

(݁௞ , ݁௦)
, ݁௞) +� 

+ �݂(
ݎ2

(݁௞ , ݁௦)
, −݁௞)൰ × 

×
ଶݎ

(݁௞ , ݁௦)ଶ   sinߠ݀  ߠ  ݀߮, 

where  

݂(
ݎ2

(݁௞, ݁௦)
, ݁௞) = )෤ݍ

ݎ2
(݁௞, ݁௦)

, ݁௞), 

sinߠ݀  ߠ  ݀߮ = ݀݁௞, 
sinߟ݀ߦ݀  ߦ = ݀݁௦, ݎ =  .|ݐ|

Theorem 8. Fourier transformation of the function 
q satisfies the following estimate  

෤|௅భݍ| ≤
1
4

ฬݖ
෤௠௩ݍ∂

ଶݖ∂ ฬ
௅భ

+ 2 ฬ
෤௠௩ݍ∂

ଶݖ∂ ฬ
௅భ

+ ฬ
෤௠௩ݍ

ݖ
ฬ

௅భ

, 

 
 
5 Correlation of Amplitude and Wave 

Functions 
We take the relationship for ߮ା, ߮ି from (6)  

߮ା(݇, (ݔ = ߮ି(݇, (ݔ − 

݅ߨ2− න  
ோయ

ଶ|݇|)ߜ − |݈|ଶ) × 

  × ,݇)ܣ ,ߣ)ି߮(ߣ  (4)   .ߣ݀(ݔ
Let us denote new functions and operators we will 

use further  
߮଴(√݁ݖ௞ , (ݔ = ݁௜(√௭௘ೖ ,௫), 

Φ଴(√݁ݖ௞ , (ݔ = ߮଴(√݁ݖ௞, (ݔ + ߮଴(−√݁ݖ௞ ,  ,(ݔ
Φା(√݁ݖ௞, (ݔ = ߮ା(√݁ݖ௞, (ݔ − ݁௜(√௭௘ೖ ,௫) + 

+߮ା(−√݁ݖ௞, (ݔ − ݁ି௜(√௭௘ೖ ,௫), 
Φି(√݁ݖ௞, (ݔ = ,௞݁ݖ√)ି߮ (ݔ − ݁௜(√௭௘ೖ ,௫) + 

,௞݁ݖ√−)ି߮+ (ݔ − ݁ି௜(√௭௘ೖ ,௫),  

ଵ݂ܦ = ݅ߨ2− න  
ோయ

,݇)ܣ ݖ)ߜ(ߣ − ,ߣ)݂(݈  ,ߣ݀(ݔ

ଶ݂ܦ = ݅ߨ2− න  
ோయ

,݇−)ܣ ݖ)ߜ(ߣ − ,ߣ)݂(݈  ,ߣ݀(ݔ

ଷ݂ܦ = ଵ݂ܦ +  ,ଶ݂ܦ
where ݖ = |݇|ଶ, ݈ = ,ଶ|ߣ| ±݇ = ௞݁ݖ√± . Let us 
introduce the operators ±ܶ , ܶ  for the function ݂ ∈

ଶܹ
ଵ(ܴ) by the formulas  

ା݂ܶ = ଵ
గ௜

lim
ூ௠௭→଴

∫  ஶ
ିஶ

௙(√௦)
௦ି௭

 ,ݏ݀
where ݖ݉ܫ > 0, 

ܶି ݂ = ଵ
గ௜

lim
ூ௠௭→଴

∫  ஶ
ିஶ

௙(√௦)
௦ି௭

 ,ݏ݀
where  ݖ݉ܫ < 0, 
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݂ܶ = ଵ
ଶ

( ାܶ + ܶି )݂. 

Use (4) and the symbols ݁௥ = ௞
|௞|

 to come to 
Riemann' problem of finding a function Φା, which is 
analytic by the variable z in the top half plane, and the 
function Φି, which is analytical on the variable z in the 
bottom half plane by the specified jump of discontinuity 
݂ onto the positive semi axis. 

For the jump the discontinuity of an analytical 
function, we have the following equations  

݂ = Φା − Φି, 
݂ = ଷ[Φି]ܦ −  ,[ି߮]ଷܦ

where ߮ି = ,ߣ−)ି߮  .(ݔ
Theorem 9.  Suppose that ݍ ∈   ,ࡾ

߮±|௫ୀ଴,௭ୀ଴ = 0; 
then the functions  

ଵߖ = ,௞݁ݖ√)±ߔ ௫ୀ଴|(ݔ − ,௞݁ݖ√)଴ߔ  ,,௫ୀ଴|(ݔ
ଶߖ = ±݂ܶ|௫ୀ଴ 

are coincided according to the class of analytical 
functions, coincide with bounded derivatives all over the 
complex plane with a slit along the positive semi axis.   

Lemma 2. There exists 0 < |ߝ| < ∞ such that it 
satisfies the following condition ߮ା|௫ୀ଴,௭ୀ଴ = 0 holds 
for the potential of the form ݒ = ݍ where ,ݍߝ ∈    .ࡾ

Now, we can formulate Riemann's problem. Find 
the analytic function Φ±  that satisfies (5), (6) and its 
solution is set by the following theorem. 

Theorem 10. Assume that ݍ ∈   ,ࡾ
߮±|௫ୀ଴,௭ୀ଴ = 0, 

then  
Φ± = ±݂ܶ + Φ଴, 

݂ = ିܶ]݂]ଷܦ ݂ + Φ଴]] −  ,ଷ߮ିܦ
where ߮ି = ,ߣ−)ି߮    .(ݔ

Lemma 3. Suppose that ݍ ∈ ௫ୀ଴,௭ୀ଴|±߮ ,ࡾ = 0; 
then  

Δ௫ ±ܶ[݂]|௫ୀ଴ = ±ܶΔ௫[݂]|௫ୀ଴. 
Theorem 11.  Suppose that ݍ ∈  ,ࡾ

߮±|௫ୀ଴,௭ୀ଴ = (0)ݍ ,0 ≠ 0, 
then  

௫ୀ଴|݂(0)ݍ = ଷܶିܦ ௫ୀ଴|݂ݍ] − 

௫ୀ଴|[ି߮ݍ]ଷܦ− + ଷܦ න  
ஶ

଴

 .௫ୀ଴|ݏ݂݀

 
 
6 Auxiliary Propositions 
For wave functions let us use integral 

representations following from Lippman-Schwinger's 
theorem  

߮±(݇, (ݔ = ݁௜(௞,௫) + 

+
1

ߨ4
න  

ோయ

݁±௜√௭|௫ି௬|

ݔ| − |ݕ
,݇)±߮(ݕ)ݍ  ,ݕ݀(ݕ

߮±(−݇, (ݔ = ݁ି௜(௞,௫) + 

+
1

ߨ4
න  

ோయ

݁∓௜√௭|௫ି௬|

ݔ| − |ݕ
,݇−)±߮(ݕ)ݍ  .ݕ݀(ݕ

Lemma 4.  Suppose that ݍ ∈  ,ࡾ
߮±|௫ୀ଴,௭ୀ଴ = 0; 

then  
,݇)ܣ ݇ᇱ) = ܿ଴ݍ෤(݇ − ݇ᇱ) + 

+
ܿ଴

ߨ4
න  

ோయ

න  
ோయ

݁ି௜(௞ᇲ,௫)(ݔ)ݍ
݁௜√௭|௫ି௬|

ݔ| − |ݕ
× 

× ݔ݀ݕ݀௜(௞,௬)݁(ݕ)ݍ + ,݇)ଷܣ ݇ᇱ), 
,݇−)ܣ ݇ᇱ) = ܿ଴ݍ෤(−݇ − ݇ᇱ) + 

+
ܿ଴

ߨ4
න  

ோయ

න  
ோయ

݁ି௜(௞ᇲ,௫)(ݔ)ݍ
݁ି௜√௭|௫ି௬|

ݔ| − |ݕ
× 

× ݔ݀ݕ݀௜(௞,௬)ି݁(ݕ)ݍ + ,݇−)ଷܣ ݇ᇱ), 
where ܿ଴ = ଵ

(ଶగ)మ, and ܣଷ(݇, ݇ᇱ), ,݇−)ଷܣ ݇ᇱ)  are terms 
of order higher than 2 with regards to ݍ.   

Theorem 12 (Parseval). The functions 
݂, ݃ ∈  ଶ(ܴଷ)ܮ

satisfy the equation  
(݂, ݃) = ܿ଴( ሚ݂, ෤݃∗), 

where (⋅,⋅) is a scalar product and ܿ଴ = ଵ
(ଶగ)య.   

The Proof is in work [12]. 
Lemma 5. Suppose that ݍ ∈ ௫ୀ଴,௭ୀ଴|±߮ ,ࡾ = 0, 

then  
,݇)ܣ ݇ᇱ) = ܿ଴ݍ෤(݇ − ݇ᇱ) − 

−ܿ଴
ଶ න  

ோయ

݇)෤ݍ + ݌)෤ݍ(݌ − ݇ᇱ)
ଶ|݌| − ݖ − ݅0

݌݀ + 

,݇)ଷܣ+ ݇ᇱ), 
,݇−)ܣ ݇ᇱ) = ܿ଴ݍ෤(−݇ − ݇ᇱ) − 

−ܿ଴
ଶ න  

ோయ

݇−)෤ݍ + ݌)෤ݍ(݌ − ݇ᇱ)
ଶ|݌| − ݖ − ݅0

݌݀ + 

,݇−)ଷܣ+ ݇ᇱ). 
Corollary 2. Suppose that ݍ ∈  ,ࡾ

߮±|௫ୀ଴,௭ୀ଴ = 0, 
then  

(݇)୫୴ܣ = ܿ଴ݍ෤୫୴(݇) − 

−ܿ଴
ଶ ݖ√

2
න  

గ

଴

න  
ଶ∗గ

଴

න  
ோయ

݇)෤ݍ + ݌)෤ݍ(݌ − ݇ᇱ)
ଶ|݌| − ݖ − ݅0

௞ᇲ݁݀݌݀ + 

 ,(݇)ଷ୫୴ܣ+
where  

(݇)ଷ୫୴ܣ = න  
ோయ

,݇)ଷܣ ݇ᇱ)ݖ)ߜ − |݇ᇱ|ଶ)݀݇ᇱ. 
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And 
(݇−)୫୴ܣ = ܿ଴ݍ෤୫୴(−݇) − 

−ܿ଴
ଶ ݖ√

2
න  

గ

଴

න  
ଶ∗గ

଴

න  
ோయ

݇−)෤ݍ + ݌)෤ݍ(݌ − ݇ᇱ)
ଶ|݌| − ݖ − ݅0

௞ᇲ݁݀݌݀ + 

 ,(݇−)ଷ୫୴ܣ+
where  

(݇−)ଷ୫୴ܣ = න  
ோయ

,݇−)ଷܣ ݇ᇱ)ݖ)ߜ − |݇ᇱ|ଶ)݀݇ᇱ. 

Lemma 6.  Suppose that ݍ ∈ ܴ and ݔ = 0, then  

߮±(݇, 0) = 1 +
1

ߨ4
න  

ோయ

݁±௜√௭|௬|

|ݕ|
ݕ݀௜(௞,௬)݁(ݕ)ݍ + 

+
1

ଶ(ߨ4) න  
ோయ

න  
ோయ

݁±௜√௭|௬|

|ݕ|
(ݕ)ݍ

݁±௜√௭|௬ି௧|

ݕ| − |ݐ
× 

× ݕ݀ݐ݀௜(௞,௧)݁(ݐ)ݍ + ߮±
(ଷ)(݇, 0), 

where ߮±
(ଷ)(݇, 0) are terms of order higher than 2 with 

regards to ݍ., i.e.,  

߮±
(ଷ)(݇, (ݔ =

1
ଷ(ߨ4) න  

ோయ

න  
ோయ

න  
ோయ

݁±௜√௭|௫ି௬|

ݔ| − |ݕ
(ݕ)ݍ × 

×
݁±௜√௭|௬ି௧|

ݕ| − |ݐ
(ݐ)ݍ

݁±௜√௭|௧ି௦|

ݐ| − |ݏ
,݇)±߮(ݏ)ݍ  .ݕ݀ݐ݀ݏ݀(ݏ

And 

߮±(−݇, 0) = 1 +
1

ߨ4
න  

ோయ

݁∓௜√௭|௬|

|ݕ|
ݕ݀௜(௞,௬)ି݁(ݕ)ݍ + 

+
1

ଶ(ߨ4) න  
ோయ

න  
ோయ

݁∓௜√௭|௬|

|ݕ|
(ݕ)ݍ

݁∓௜√௭|௬ି௧|

ݕ| − |ݐ
(ݐ)ݍ × 

× ݁ି௜(௞,௧)݀ݕ݀ݐ + ߮±
(ଷ)(−݇, 0), 

where ߮±
(ଷ)(−݇, 0) are terms of order higher than 2 with 

regards to ݍ., i.e.,  

߮±
(ଷ)(−݇, (ݔ =

1
ଷ(ߨ4) න  

ோయ

න  
ோయ

න  
ோయ

݁∓௜√௭|௫ି௬|

ݔ| − |ݕ
(ݕ)ݍ × 

×
݁∓௜√௭|௬ି௧|

ݕ| − |ݐ
(ݐ)ݍ

݁∓௜√௭|௧ି௦|

ݐ| − |ݏ
,݇−)±߮(ݏ)ݍ  .ݕ݀ݐ݀ݏ݀(ݏ

Lemma 7.  Suppose that ݍ ∈ ௫ୀ଴,௭ୀ଴|±߮ ,ࡾ = 0, 
then 

߮±(݇, 0) = 1 − ܿ଴ න  
ோయ

݇)෤ݍ + (݌
ଶ|݌| − ݖ ∓ ݅0

݌݀ + 

+ܿ଴
ଶ න  

ோయ

න  
ோయ

݇)෤ݍ + ݌)෤ݍ(݌ + (ଵ݌
ଶ|݌|) − ݖ ∓ ଵ|ଶ݌|)(0݅ − ݖ ∓ ݅0)

݌ଵ݀݌݀ + 

   +߮±
(ଷ)(݇, 0),    (7) 

߮±(−݇, 0) = 1 − ܿ଴ න  
ோయ

݇−)෤ݍ + (݌
ଶ|݌| − ݖ ∓ ݅0

݌݀ + 

+ܿ଴
ଶ න  

ோయ

න  
ோయ

݇−)෤ݍ + ݌)෤ݍ(݌ + (ଵ݌
ଶ|݌|) − ݖ ∓ ଵ|ଶ݌|)(0݅ − ݖ ∓ ݅0)

݌ଵ݀݌݀ + 

     +߮±
(ଷ)(−݇, 0).    (8) 

Lemma 8.  Suppose that ݍ ∈ ݔ ,ܴ = 0; then  

,݇)ܨ 0) = ݖ√଴ܿ݅ߨ− න  
గ

଴

න  
ଶగ

଴

݇)෤ݍ − ௣)݀݁௣݁ݖ√ + 

଴ܿ݅ߨ+
ଶ√ݖ න  

గ

଴

න  
ଶగ

଴

ܸ. .݌ න  
ோయ

݇)෤ݍ − (௣݁ݖ√
ଵ|ଶ݌| − ݖ

× 

× ௣݁ݖ√−)෤ݍ − ଵ݀݁௣݌݀(ଵ݌ + 

଴ܿ݅ߨ+
ଶ√ܸݖ. .݌ න  

ோయ

න  
గ

଴

න  
ଶగ

଴

݇)෤ݍ − (݌
ଶ|݌| − ݖ

× 

× ݌−)෤ݍ − ݌௣భ)݀݁௣భ݀݁ݖ√ + 
+߮ା

(ଷ)(݇, 0) − ߮ି
(ଷ)(݇, 0). 

And 

,݇−)ܨ 0) = ݖ√଴ܿ݅ߨ− න  
గ

଴

න  
ଶగ

଴

݇−)෤ݍ − ௣)݀݁௣݁ݖ√ + 

଴ܿ݅ߨ+
ଶ√ݖ න  

గ

଴

න  
ଶగ

଴

ܸ. .݌ න  
ோయ

݇−)෤ݍ − (௣݁ݖ√
ଵ|ଶ݌| − ݖ

× 

× ௣݁ݖ√−)෤ݍ − ଵ݀݁௣݌݀(ଵ݌ + 

଴ܿ݅ߨ+
ଶ√ݖ ܸ. .݌ න  

ோయ

න  
గ

଴

න  
ଶగ

଴

݇−)෤ݍ − (݌
ଶ|݌| − ݖ

× 

× ݌−)෤ݍ − ݌௣భ)݀݁௣భ݀݁ݖ√ + 
+߮ା

(ଷ)(−݇, 0) − ߮ି
(ଷ)(−݇, 0). 

 
 
7 Two Representations of Scattering 

Amplitude 
Lemma 9.  Suppose that ݂ ∈ ଶܹ

ଵ(ܴ), then  
±݂ܶ = ∓݂ + ݂ܶ. 

Lemma 10.  Suppose that ݍ ∈ ௫ୀ଴,௭ୀ଴|±߮ ,ࡾ = 0, 
then  

݂(݇, 0) = ,݇)ܨ 0) + ,݇−)ܨ 0). 
Lemma 11.  Suppose that ݍ ∈ ௫ୀ଴,௭ୀ଴|±߮ ,ࡾ = 0, 

then  
(݇)୫୴ܣ + (݇−)୫୴ܣ = ܿ଴(ݍ෤୫୴(݇) + ((݇−)෤୫୴ݍ + 

଴ܿ݅ߨ+
ଶ√ݖ න  

గ

଴

න  
ଶగ

଴

݇)෤ݍ) − ݖ√ ఒ݁) + ݇−)෤ݍ − ݖ√ ఒ݁)) × 

× ݖ√)෤୫୴ݍ ఒ݁)݀݁ఒ + 

଴ܿ݅ߨ+
ଶ ݖ√

2
න  
గ

଴

න  
ଶగ

଴

݇)෤ݍ) − ݖ√ ఒ݁) + ݇−)෤ݍ − ݖ√ ఒ݁)) × 
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× ݖ√−)෤୫୴ݍ ఒ݁)݀ ఒ݁ − 

଴ܿ݅ߨ−
ଶ√ݖ න  

గ

଴

න  
ଶగ

଴

݇)෤ݍ) − ݖ√ ఒ݁) + ݇−)෤ݍ − ݖ√ ఒ݁)) × 

× ݖ√)[෤୫୴ݍ]ܶ) ఒ݁) + ఒ݁݀((ఒ݁ݖ√−)[෤୫୴ݍ]ܶ − 

−ܿ଴
ଶ√ݖ න  

గ

଴

න  
ଶగ

଴

݇)෤ݍ) − ݖ√ ఒ݁) + ݇−)෤ݍ − ݖ√ ఒ݁)) × 

× ܸ. .݌ න  
ோయ

ݖ√−)෤ݍ ఒ݁ − (݌
ଶ|݌| − ݖ

݀݌݀ ఒ݁ + 

+ܿ଴
ଶ ݖ√

2
ܸ. .݌ න  

ோయ

න  
గ

଴

න  
ଶగ

଴

݇)෤ݍ − (ߣ + ݇−)෤ݍ − (ߣ
݈ − ݖ

× 

× ݈−)෤ݍ − ߣ௣)݀݁௣݀݁ݖ√ − ,݇)(ଷ)ܨ)݅ߨ2 0) + 
,݇−)(ଷ)ܨ+ 0) + ܳଷ(݇, 0) + ܳ(ଷ)(݇, 0)), 

where ܳଷ(݇, 0), ܳ(ଷ)(݇, 0) are defined by formulas  

ܳଷ(݇, 0) = ଶܿ଴ߨ4−
ଶ න  

ோయ

,݇)ଶܣ) (ߣ + ,݇−)ଶܣ ((ߣ × 

× ݖ)ߜ − (ߣ)෤୫୴ݍ)(݈ + ߣ݀((ߣ−)෤୫୴ݍ + 

଴ܿ݅ߨ2+ න  
ோయ

,݇)ଶܣ) (ߣ + ,݇−)ଶܣ ݖ)ߜ((ߣ − ݈) × 

× ଶ݂(݈, 0)݈݀ + ଶܿ଴ߨ4
ଶ න  

ோయ

,݇)ଶܣ) (ߣ + ,݇−)ଶܣ ((ߣ × 

× ݖ)ߜ − (ߣ)[෤୫୴ݍ]ܶ)(݈ + ߣ݀((ߣ−)[෤୫୴ݍ]ܶ − 

଴ܿ݅ߨ2− න  
ோయ

,݇)ଶܣ) ݈) + ,݇−)ଶܣ ݈)) × 

  × ݖ)ߜ − ݈)ܶ[ ଶ݂](ߣ,  (9)   .ߣ݀(0

ܳ(ଷ)(݇, 0) = ଴ܿ݅ߨ2
ଶ න  

ோయ

݇)෤ݍ) − (ߣ + ݇−)෤ݍ − ((ߣ × 

× ݖ)ߜ − ݈)߮ି
(ଶ)(−ߣ, ߣ݀(0 + 

଴ܿ݅ߨ2+
ଶ න  

ோయ

,݇)ଶܣ) (ߣ + ,݇−)ଶܣ ((ߣ × 

× ݖ)ߜ − ݈)( න  
ோయ

ߣ−)෤ݍ − (݌
ଶ|݌| − ݈ + ݅0

݌݀ + 

   +߮ି
(ଶ)(−݈,  (10)   .ߣ݀((0

correspondingly,  
,݇)(ଷ)ܨ 0) = ߮ା

(ଷ)(݇, 0) − ߮ି
(ଷ)(݇, 0), 

,݇−)(ଷ)ܨ 0) = ߮ା
(ଷ)(−݇, 0) − ߮ି

(ଷ)(−݇, 0), 
and ߮±

(ଷ)(±݇, 0) are terms of order 3 and higher w.r.t. ݍ෤ 
in the representations (7), (8).   

Lemma 12. Suppose that ݍ ∈ ௫ୀ଴,௭ୀ଴|±߮ ,ࡾ = 0, 
then  

(݇)୫୴ܣ + (݇−)୫୴ܣ = 

= −
ݖ√݅

(0)ݍߨ4
න  

గ

଴

න  
ଶగ

଴

,݇)ܣ) ݖ√ ఒ݁) + ,݇−)ܣ ݖ√ ఒ݁)) × 

× න  
ஶ

଴

ݏ)݂ ఒ݁ , ఒ݁݀ݏ݀(0 . 

 
 
8 Nonlinear Representation of 

Potential 
Let us proceed to the construction of potential 

nonlinear representation. 
Lemma 13. Assume that ݍ ∈ ௫ୀ଴,௭ୀ଴|±߮ ,ࡾ = 0; 

then  
(݇)෤୫୴ݍ + (݇−)෤୫୴ݍ = 

= ݖ√଴ܿ݅ߨ− න  
గ

଴

න  
ଶగ

଴

݇)෤ݍ) − ݖ√ ఒ݁) + ݇−)෤ݍ − ݖ√ ఒ݁)) × 

× ݖ√)෤୫୴ݍ ఒ݁)݀݁ఒ − 

଴ܿ݅ߨ−
ݖ√
2

න  
గ

଴

න  
ଶగ

଴

݇)෤ݍ) − ݖ√ ఒ݁) + ݇−)෤ݍ − ݖ√ ఒ݁)) × 

× ݖ√−)෤୫୴ݍ ఒ݁)݀݁ఒ + 

ݖ√଴ܿ݅ߨ+ න  
గ

଴

න  
ଶగ

଴

݇)෤ݍ) − ݖ√ ఒ݁) + ݇−)෤ݍ − ݖ√ ఒ݁)) × 

× ݖ√)[෤୫୴ݍ]ܶ) ఒ݁) + ఒ݁݀((ఒ݁ݖ√−)[෤୫୴ݍ]ܶ − 

−ܿ଴√ݖ න  
గ

଴

න  
ଶగ

଴

݇)෤ݍ) − (ఒ݁ݖ√ + ݇−)෤ݍ − ݖ√ ఒ݁)) × 

× ܸ. .݌ න  
ோయ

ݖ√−)෤ݍ ఒ݁ − (݌
ଶ|݌| − ݖ

݀݌݀ ఒ݁ − 

−ܿ଴
ݖ√
2

ܸ. .݌ න  
ோయ

න  
గ

଴

න  
ଶగ

଴

݇)෤ݍ) − (ߣ + ݇−)෤ݍ − ((ߣ
݈ − ݖ

× 

× ݈−)෤ݍ − ߣ௣)݀݁௣݀݁ݖ√ − 

−
ݖ√݅

(0)ݍ଴ܿߨ4
න  

గ

଴

න  
ଶగ

଴

,݇)ܣ) ݖ√ ఒ݁) + ,݇−)ܣ ݖ√ ఒ݁)) × 

× න  
ஶ

଴

ݏ)݂ ఒ݁ , ఒ݁݀ݏ݀(0 +
݅ߨ2
ܿ଴

,݇)(ଷ)ܨ) 0) + 

,݇−)(ଷ)ܨ+ 0) + ܳଷ(݇, 0) + ܳ(ଷ)(݇, 0)), 
where ܳଷ(݇, 0) , ܳ(ଷ)(݇, 0)  are  defined by formulas 
(9), (10) accordingly,  

,݇)(ଷ)ܨ 0) = ߮ା
(ଷ)(݇, 0) − ߮ି

(ଷ)(݇, 0), 
,݇−)(ଷ)ܨ 0) = ߮ା

(ଷ)(−݇, 0) − ߮ି
(ଷ)(−݇, 0), 

and ߮±
(ଷ)(±݇, 0) are term of order 3 and higher w.r.t. ݍ෤ 

in representations (7), (8).   
Lemma 14. Suppose that ݍ ∈ ௫ୀ଴,௭ୀ଴|±߮ ,ࡾ = 0, 

then  
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ܸ. .݌ න  
ோయ

න  
గ

଴

න  
ଶగ

଴

݇)෤ݍ) − (ߣ + ݇−)෤ݍ − ((ߣ
݈ − ݖ

× 

× ݈−)෤ݍ − ௣)݀݁௣݈݀݁ݖ√ = 

= ݅ߨ න  
గ

଴

න  
ଶగ

଴

݇)෤ݍ) − (ఒ݁ݖ√ + ݇−)෤ݍ − ݖ√ ఒ݁)) × 

× ݖ√−)෤୫୴ݍ ఒ݁)݀݁ఒ. 
Lemma 15. Let ݍ෤ ∈ ଶܹ

ଵ(ܴ) and ݍ ∈ ܴ, then  

න  
గ

଴

න  
ଶగ

଴

݇)෤ݍ) − ݖ√ ఒ݁) + ݇−)෤ݍ − ݖ√ ఒ݁)) × 

× ݖ√)[෤୫୴ݍ]ܶ) ఒ݁) + ఒ݁݀((ఒ݁ݖ√−)[෤୫୴ݍ]ܶ = 

= න  
గ

଴

න  
ଶగ

଴

݇)෤ݍ) − ݖ√ ఒ݁) + ݇−)෤ݍ − ((ఒ݁ݖ√ × 

× ݖ√)෤୫୴ݍ) ఒ݁) + ݖ√−)෤୫୴ݍ ఒ݁))݀݁ఒ, 

න  
గ

଴

න  
ଶగ

଴

݇)෤ݍ) − ݖ√ ఒ݁) + ݇−)෤ݍ − ݖ√ ఒ݁)) × 

× ܸ. .݌ න  
ோయ

ݖ√−)෤ݍ ఒ݁ − (݌
ଶ|݌| − ݖ

݀݌݀ ఒ݁ = 

= ݅ߨ න  
గ

଴

න  
ଶగ

଴

݇)෤ݍ) − (ఒ݁ݖ√ + ݇−)෤ݍ − ݖ√ ఒ݁)) × 

× ݖ√−)෤୫୴ݍ ఒ݁)݀݁ఒ. 
Theorem 14.  Let ݍ ∈ ௫ୀ଴,௭ୀ଴|±߮ ,ࡾ = 0, then  

(݇)෤୫୴ݍ + (݇−)෤୫୴ݍ = 

= ݖ√଴ܿ݅ߨ− න  
గ

଴

න  
ଶగ

଴

݇)෤ݍ) − ݖ√ ఒ݁) + ݇−)෤ݍ − ݖ√ ఒ݁)) × 

× ݖ√−)෤୫୴ݍ ఒ݁)݀݁ఒ +  ,(݇)ߤ

(݇)ߤ =
݅ߨ2
ܿ଴

,݇)(ଷ)ܨ) 0) + ,݇−)(ଷ)ܨ 0) + 

+ܳଷ(݇, 0) + ܳ(ଷ)(݇, 0)), 
where ܿ଴ =    .ߨ4

Theorem 15.  Suppose ݍ ∈ ࡾ , ߮±|௫ୀ଴,௭ୀ଴ = 0 ; 
then 

(݇)ߤ = ݖ√ න  
గ

଴

න  
ଶగ

଴

න  
గ

଴

න  
ଶగ

଴

݇−)෤ݍ) − ݖ√ ఒ݁) + 

݇)෤ݍ+ − ݖ√ ఒ݁))ݍ෤(√݁ݖఒ − (௦݁ݖ√ × 
×  ,ఒ݀݁௦݁݀(௦݁ݖ√)଴ߤ

where |ߤ଴| <    |୫୴ݍ|ܥ
 
 
9 The Cauchy Problem for 

Navier-Stokes' Equations 
Let us apply the obtained results to estimate the 

solutions of Cauchy problem for Navier-Stokes' set of 
equations 

௧ݍ − ݍΔߥ + ෍  
ଷ

௞ୀଵ

௫ೖݍ௞ݍ = 

  = ݌∇− + ,ݔ)଴ܨ ,(ݐ ݍݒ݅݀ = 0,  (11) 
௧ୀ଴|ݍ    =  (12)    (ݔ)଴ݍ

in the domain of ்ܳ = ܴଷ × (0, ܶ). With respect to ݍ଴, 
assume  

଴ݍ  ݒ݅݀    = 0.    (13) 
Problem (11), (12), (13) has at least one weak 

solution (q,p) in the so-called Leray-Hopf class, see [4]. 
Let us mention the known statements proved in [13]. 
Theorem 16.  Suppose that  

଴ݍ ∈ ଶܹ
ଵ(ܴଷ),    ݂ ∈  ;(்ܳ)ଶܮ

then there exists a unique weak solution of problem (11), 
(12), (13), in ܳ భ் , ଵܶ ∈ [0, ܶ], that satisfies  

,௧ݍ ௫௫ݍ  , ݌∇ ∈  .(்ܳ)ଶܮ
Note that ଵܶ depends on ݍ଴, ݂.   
Lemma 16.  If ݍ଴ ∈ ଶܹ

ଵ(ܴଷ), ݂ ∈   ଶ(்ܳ), thenܮ

sup
଴ஸ௧ஸ்

௅మ(ோయ)||ݍ||
ଶ + න  

௧

଴

௫||௅మ(ோయ)ݍ||
ଶ ݀߬ ≤ 

≤ ଴||௅మ(ோయ)ݍ||
ଶ +  ଴||௅మ(ொ೅)ܨ||

Our goal is to prove the global unicity weak solution 
of (11), (12), (13) irrespective of initial velocity and 
power smallness conditions. 

Therefore let us obtain uniform estimates. 
Statement 1. Weak solution of problem (11), (12), 

(13), from Theorem 16 satisfies the following equation  
௞݁)ݖ)෤ݍ − ݁ఒ), (ݐ = ௞݁)ݖ)෤଴ݍ − ݁ఒ)) + 

+ න  
௧

଴

݁ିఔ௭మ|௘ೖି௘ഊ |(௧ିఛ)([(ݍ, ෫[ݍ(∇ + (෨ܨ × 

× ௞݁)ݖ) − ఒ݁), ߬)݀߬, 
where ܨ = ݌∇− +  .଴ܨ

Lemma 17. The solution of the problem (11), (12), 
(13) from Theorem 16, satisfies the following equation  

෤݌ = ෍  
௜,௝

݇௜ ௝݇

|݇|ଶ ఫ෦ݍపݍ + ݅ ෍  
௜

݇௜

|݇|ଶ  ప෩ܨ

and the following estimates  

௅మ(ோయ)||݌|| ≤ ௫||௅మ(ோయ)ݍ||3

ଷ
ଶ ௅మ(ோయ)||ݍ||

ଵ
ଶ , 

ฬ
෤݌∂
∂݇

ฬ ≤
|෤ଶݍ|
|݇|

+
|෨ܨ|
|݇|ଶ +

1
|݇|

ቤ
෨ܨ∂
∂݇

ቤ + 3 ቤ
෤ଶݍ∂

∂|݇|
ቤ ; 

Lemma 18. Weak solution of problem (11), (12), 
(13), from Theorem 16 satisfies the following inequalities  

sup
଴ஸ௧ஸ்

[ න  
ோయ

,ݔ)ݍ|ଶ|ݔ| ݔଶ݀|(ݐ + 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS Asset Durmagambetov

ISSN: 1991-8747 65 Issue 1, Volume 5, January 2010



+ න  
௧

଴

න  
ோయ

,ݔ)௫ݍ|ଶ|ݔ| ߬)|ଶ݀߬݀ݔ] ≤  ,ݐݏ݊݋ܿ

sup
଴ஸ௧ஸ்

[ න  
ோయ

,ݔ)ݍ|ସ|ݔ| ݔଶ݀|(ݐ + 

+ න  
௧

଴

න  
ோయ

,ݔ)௫ݍ|ସ|ݔ| ߬)|ଶ݀߬݀ݔ] ≤  ,ݐݏ݊݋ܿ

or  

sup
଴ஸ௧ஸ்

[อฬ
෤ݍ∂
ݖ∂

ฬอ
௅మ(ோయ)

+ 

+ න  
௧

଴

න  
ோయ

,݇)௞෦ݍ|ଶݖ ߬)|ଶ݀݇݀߬] ≤  ,ݐݏ݊݋ܿ

sup
଴ஸ௧ஸ்

[อቤ
∂ଶݍ෤
ଶቤอݖ∂

௅మ(ோయ)

+ 

+ න  
௧

଴

න  
ோయ

௞௞෦ݍ|ଶݖ (݇, ߬)|ଶ݀݇݀߬] ≤  .ݐݏ݊݋ܿ

Lemma 19.  Weak solution of problem (11), (12), 
(13), from Theorem 16, satisfies the following 
inequalities 

max
௞

|෤ݍ| ≤ max
௞

|෤଴ݍ| + 

+
ܶ
2

sup
଴ஸ௧ஸ்

௅మ(ோయ)||ݍ||
ଶ + න  

௧

଴

௫||௅మ(ோయ)ݍ||
ଶ ݀߬, 

max
௞

ฬ
෤ݍ∂
ݖ∂

ฬ ≤ max
௞

ฬ
෤଴ݍ∂

ݖ∂
ฬ + 

+
ܶ
2

sup
଴ஸ௧ஸ்

อฬ
෤ݍ∂
ݖ∂

ฬอ
௅మ(ோయ)

+ න  
௧

଴

න  
ோయ

,݇)௞෦ݍ|ଶݖ ߬)|ଶ݀݇݀߬, 

max
௞

ቤ
∂ଶݍ෤
ଶቤݖ∂ ≤ max

௞
ቤ
∂ଶݍ෤଴

ଶݖ∂ ቤ + 

+
ܶ
2

sup
଴ஸ௧ஸ்

อቤ
∂ଶݍ෤
ଶቤอݖ∂

௅మ(ோయ)

+ න  
௧

଴

න  
ோయ

௞௞෦ݍ|ଶݖ (݇, ߬)|ଶ݀݇݀߬. 

Lemma 20.  Weak solution of problem (11), (12), 
(13), from Theorem 16 satisfies the following inequalities 

,ݖ)෤୫୴ݍ| |(ݐ ≤ ଵܯݖ , ฬ
,ݖ)෤୫୴ݍ∂ (ݐ

ݖ∂
ฬ ≤  ,ଶܯݖ

ቤ
∂ଶݍ෤୫୴(ݖ, (ݐ

ଶݖ∂ ቤ ≤ ଷܯݖ , 

where ܯଵ, ଶܯ ,    .ଷ are limitedܯ
Lemma 21. Weak solution of problem (11), (12), 

(13), from Theorem 16 satisfies the following inequalities 
௜ܥ ≤ ,ݐݏ݊݋ܿ (݅ = 0,2,4), where  

଴ܥ = න  
௧

଴

,෨ଵ|ଶ݀߬ܨ| ଵܨ = ,ݍ) ݍ(∇ +  ,ܨ

ଶܥ = න  
௧

଴

ቤ
෨ଵܨ∂

ݖ∂
ቤ

ଶ

݀߬, ସܥ = න  
௧

଴

ቤ
∂ଶܨ෨ଵ

ଶݖ∂ ቤ
ଶ

݀߬. 

Lemma 22. Suppose that ݍ ∈ ܴ ݔܽ݉ ,
௞

|෤ݍ| < ∞ , 
then  

න  
ோయ

න  
ோయ

(ݕ)ݍ(ݔ)ݍ
ݔ| − ଶ|ݕ ݕ݀ݔ݀ ≤ ௅మ|ݍ|)ܥ + max

௞
෤|)ଶݍ| . 

Lemma 23. Weak solution of problem (11), (12), 
(13), from Theorem 16 satisfies the following inequalities  

௞݁)ݖ)෤ݍ| − ఒ݁), |(ݐ ≤ ௞݁)ݖ)෤଴ݍ| − ఒ݁))| + 

+ ൬
1

ߥ2
൰

ଵ
ଶ ଴ܥ

ଵ
ଶ

௞݁|ݖ − ఒ݁|
, 

where  

଴ܥ = න  
௧

଴

,෨ଵ|ଶ݀߬ܨ| ଵܨ = ,ݍ) ݍ(∇ +  .ܨ

Now, we have the uniform estimates of Rolnik 
norms for the solution of problems (11), (12), (13). Our 
further and basic aim is to get the uniform estimates 
ప෥ݍ| |௅భ(ோయ), a component of velocity components in the 
Cauchy problem for Navier-Stokes' equations. In order to 
achieve the aim, we use Theorem 8 it implies to get 
estimates of spherical average. 

Lemma 24. Weak solution of problem (11), (12), 
(13), from Theorem 16 satisfies the following inequalities  

෤୫୴|௅భ(ோయ)ݍ| ≤
ܥ
2

ቀܣ଴
(ଵ) + ෤୫୴|௅భ(ோయ)ቁݍ|ଵߚ + 

 ,௅భ(ோయ)|ߤ|+
the function ߤ is defined in Theorem 15,  

଴ܣ
(ଵ) = න  

ோయ

ݖ න  
గ

଴

න  
ଶగ

଴

௞݁)ݖ)෤଴ݍ| − ݁ఒ))| × 

× ,ఒ݁ݖ)෤୫୴ݍ| ݀|(ݐ ఒ݁݀݇, ଵߚ = ൬
1
ߥ

൰
ଵ
ଶ

଴ܥߨ8

ଵ
ଶ, 

and ܥ଴ is defined in Lemma 23.   
Theorem 17. Weak solution of problem (11), (12), 

(13), from Theorem 16 satisfies the following inequalities  

ฬ
෤୫୴ݍ

ݖ
ฬ

௅భ(ோయ)
≤

ܥ
2

ቆܣ଴ + ଵߚ ฬ
෤୫୴ݍ

ݖ
ฬ

௅భ(ோయ)
ቇ + ቚ

ߤ
ݖ

ቚ
௅భ(ோయ)

, 

where  

଴ܣ = න  
ோయ

න  
గ

଴

න  
ଶగ

଴

௞݁)ݖ)෤଴ݍ| − ݁ఒ))||ݍ෤୫୴(݁ݖఒ, ݀|(ݐ ఒ݁݀݇ 

and ߚଵ is defined in Lemma 24.   
Corollary 3. Weak solution of problem (11), (12), 

(13), from Theorem 16 satisfies the following inequalities  
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ฬ
෤୫୴ݍ

ݖ
ฬ
௅భ(ோయ)

≤ ቆ
ܥ
2

଴ܣ + ቚ
ߤ
ݖ

ቚ
௅భ(ோయ)

ቇ  ,ܭ

where  

ܭ =
ߥ

ଵ
ଶ

ߥ
ଵ
ଶ − ଴ܥܥߨ4

ଵ
ଶ

. 

Let's consider the influence of the following large 
scale transformations in Navier-Stokes' equation on ܭ  

ᇱݐ = ,ܣݐ ᇱߥ =
ߥ
ܣ

, ᇱݒ =
ݒ
ܣ

, ଴ܨ
ᇱ =

଴ܨ

 .ଶܣ
Statement 2. Let  

ܣ =
4

ߥ
ଵ
ଷ(ܥܥ଴ + 1)

ଶ
ଷ

, 

then ܭ ≤ ଼
଻
. 

Lemma 25. Weak solution of problem (11), (12), 
(13), from Theorem 16 satisfies the following inequalities  

ฬ
௞݁)ݖ)෤ݍ∂ − ఒ݁), (ݐ

ݖ∂
ฬ ≤ ฬ

௞݁)ݖ)෤଴ݍ∂ − ఒ݁ ))
ݖ∂

ฬ + 

ߙ4+ ൬
1
ߥ

൰
ଵ
ଶ ଴ܥ

ଵ
ଶ

ଶ|݁௞ݖ − ݁ఒ|
+ ൬

1
ߥ2

൰
ଵ
ଶ ଶܥ

ଵ
ଶ

௞݁|ݖ − ݁ఒ|
, 

where  

ଶܥ = න  
௧

଴

ቤ
෨ଵܨ∂

ݖ∂
ቤ

ଶ

݀߬. 

Theorem 18. Weak solution of problem (11), (12), 
(13), from Theorem 16 satisfies the following inequalities  

ฬ
෤୫୴ݍ∂

ݖ∂
ฬ
௅భ(ோయ)

≤
ܥ
2

଴ܣ) + ଵܣ + ଶܣ + 

෤୫୴|௅భ(ோయ)ݍ|ଷߚ+ + ଵߚ) + (ଶߚ ฬ
෤୫୴ݍ

ݖ
ฬ
௅భ(ோయ)

+ 

ଵߚ+ ฬ
෤୫୴ݍ∂

ݖ∂
ฬ

௅భ(ோయ)
) + ฬ

ߤ∂
ݖ∂

ฬ
௅భ(ோయ)

, 

where  

ଵܣ = න  
ோయ

ݖ න  
గ

଴

න  
ଶగ

଴

ฬ
௞݁)ݖ)෤଴ݍ∂ − ݁ఒ))

ݖ∂
ฬ × 

× ݖ)෤୫୴ݍ| ఒ݁ ,  ,ఒ݀݇݁݀|(ݐ

ଶܣ = න  
ோయ

ݖ න  
గ

଴

න  
ଶగ

଴

௞݁)ݖ)෤଴ݍ| − ఒ݁))| × 

× ฬ
ݖ)෤୫୴ݍ∂ ఒ݁ , (ݐ

ݖ∂
ฬ ݀ ఒ݁݀݇, 

ଶߚ = ൬
1
ߥ

൰
ଵ
ଶ

2
ଵଵ
ଶ ଴ܥߙߨ

ଵ
ଶ, ଷߚ = ൬

1
ߥ

൰
ଵ
ଶ

ଶܥߨ8

ଵ
ଶ, 

and ܥଶ is defined in Lemma 25, ܥ =    .ݐݏ݊݋ܿ
Lemma 26. Weak solution of problem (11), (12), 

(13), from Theorem 16 satisfies the following inequalities  

ቤ
∂ଶݍ෤(ݖ(݁௞ − ఒ݁), (ݐ

ଶݖ∂ ቤ ≤ ቤ
∂ଶݍ෤଴(ݖ(݁௞ − ఒ݁))

ଶݖ∂ ቤ + 

+ ൬
1
ߥ

൰
ଵ
ଶ ଴ܥߙ16

ଵ
ଶ

ଷ|݁௞ݖ − ݁ఒ|
+ ൬

1
ߥ

൰
ଵ
ଶ ଶܥߙ8

ଵ
ଶ

ଶ|݁௞ݖ − ݁ఒ|
+ 

+ ൬
1

ߥ2
൰

ଵ
ଶ ସܥ

ଵ
ଶ

௞݁|ݖ − ఒ݁|
, 

where  
sup

௧
|௠݁ି௧ݐ| <  ,ߙ

as ݉ > 0,  

ସܥ = න  
௧

଴

ቤ
∂ଶܨ෨ଵ

ଶݖ∂ ቤ
ଶ

݀߬. 

Theorem 19. Weak solution of problem (11), (12), 
(13), from Theorem 16 satisfies the following estimate  

ቤݖ
∂ଶݍ෤୫୴

ଶݖ∂ ቤ
௅భ(ோయ)

≤
ܥ
2

ଵܣ)2) + ଶܣ + (ଷܣ + 

ସܣ+ + ହܣ + ଶߚ2) + (ସߚ ฬ
෤୫୴ݍ

ݖ
ฬ

௅భ(ோయ)
+ 

ଷߚ2)+ + ෤୫୴|௅భ(ோయ)ݍ|(ହߚ + ෤୫୴|௅భ(ோయ)ݍݖ|଺ߚ + 

ଵߚ)2+ + (ଶߚ ฬ
෤୫୴ݍ∂

ݖ∂
ฬ
௅భ(ோయ)

+ ଷߚ2 ฬݖ
෤୫୴ݍ∂

ݖ∂
ฬ

௅భ(ோయ)
+ 

ଵߚ+ ቤݖ
∂ଶݍ෤୫୴

ଶݖ∂ ቤ
௅భ(ோయ)

) + ቤݖ
∂ଶߤ
ଶቤݖ∂

௅భ(ோయ)
, 

where  

ଷܣ = න  
ோయ

ଶݖ න  
గ

଴

න  
ଶగ

଴

ฬ
௞݁)ݖ)෤଴ݍ∂ − ݁ఒ))

ݖ∂
ฬ × 

× ฬ
ݖ)෤୫୴ݍ∂ ఒ݁ , (ݐ

ݖ∂
ฬ ݀ ఒ݁݀݇, 

ସܣ = න  
ோయ

ଶݖ න  
గ

଴

න  
ଶగ

଴

ቤ
∂ଶݍ෤଴(ݖ(݁௞ − ఒ݁))

ଶݖ∂ ቤ × 

× ݖ)෤୫୴ݍ| ఒ݁ ,  ,ఒ݀݇݁݀|(ݐ

ହܣ = න  
ோయ

ଶݖ න  
గ

଴

න  
ଶగ

଴

௞݁)ݖ)෤଴ݍ| − ݁ఒ))| × 

× ቤ
∂ଶݍ෤୫୴(݁ݖఒ, (ݐ

ଶݖ∂ ቤ ݀ ఒ݁݀݇, 

ସߚ = ൬
1
ߥ

൰
ଵ
ଶ

2
ଵହ
ଶ ଴ܥߙߨ

ଵ
ଶ, 

ହߚ = ൬
1
ߥ

൰
ଵ
ଶ

2
ଵଷ
ଶ ଶܥߙߨ

ଵ
ଶ, 

଺ߚ = ൬
1
ߥ

൰
ଵ
ଶ

ସܥߨ8

ଵ
ଶ, 

and ܥସ is defined in Lemma 26.   
Lemma 27. Weak solution of problem (11), (12), 
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(13), from Theorem 16 satisfies the following estimate 

ฬ
෤୫୴ݍ

ݖ
ฬ

௅భ(ோయ)
≤  ,ܭ଴ܤ

෤୫୴|௅భ(ோయ)ݍ| ≤  ,ܭଵܤ
෤୫୴|௅భ(ோయ)ݍݖ| ≤  ,ܭଶܤ

where  

ܭ =
ߥ

ଵ
ଶ

ߥ
ଵ
ଶ − ଴ܥܥߨ4

ଵ
ଶ

, ଴ܤ =
ܥ
2

଴ܣ + ቚ
ߤ
ݖ

ቚ
௅భ(ோయ)

, 

ଵܤ =
ܥ
2

଴ܣ
(ଵ) +  ,௅భ(ோయ)|ߤ|

ଶܤ =
ܥ
2

଴ܣ
(ଶ) +  ,௅భ(ோయ)|ߤݖ|

଴ܣ
(ଶ) = න  

ோయ

න  
గ

଴

න  
ଶగ

଴

௞݁)ݖ)෤଴ݍ|ଶݖ − ఒ݁))| × 

× ݖ)෤୫୴ݍ| ఒ݁ ,  .ఒ݀݇݁݀|(ݐ
Lemma 28. Weak solution of problem (11), (12), 

(13), from Theorem 16 satisfies the following estimates  

ฬ
෤୫୴ݍ∂

ݖ∂
ฬ

௅భ(ோయ)
≤ ଶܭ଴ܦ +  ,ܭଵܦ

ฬݖ
෤୫୴ݍ∂

ݖ∂
ฬ
௅భ(ோయ)

≤ ଶܭଶܦ +  ,ܭଷܦ

where  

଴ܦ =
ܥ
2

ቀߚଷ
(଴)ܤଵ + ଵߚ)

(଴) + ଶߚ
(଴))ܤ଴ቁ, 

ଵܦ =
ܥ
2

଴ܣ) + ଵܣ + (ଶܣ + ฬ
ߤ∂
ݖ∂

ฬ
௅భ(ோయ)

, 

ଶܦ =
ܥ
2

ቀߚଷ
(଴)ܤଶ + ଵߚ)

(଴) + ଶߚ
(଴))ܤଵቁ, 

ଷܦ =
ܥ
2

ቀܣ଴
(ଵ) + ଵܣ

(ଵ) + ଶܣ
(ଵ)ቁ + ฬݖ

ߤ∂
ݖ∂

ฬ
௅భ(ோయ)

, 

ଵܣ
(ଵ) = න  

ோయ

ଶݖ න  
గ

଴

න  
ଶగ

଴

ฬ
௞݁)ݖ)෤଴ݍ∂ − ఒ݁))

ݖ∂
ฬ × 

× ݖ)෤୫୴ݍ| ఒ݁ ,  ,ఒ݀݇݁݀|(ݐ

ଶܣ
(ଵ) = න  

ோయ

ଶݖ න  
గ

଴

න  
ଶగ

଴

௞݁)ݖ)෤଴ݍ| − ఒ݁ ))| × 

× ฬ
ݖ)෤୫୴ݍ∂ ఒ݁ , (ݐ

ݖ∂
ฬ ݀ ఒ݁݀݇, 

ଵߚ
(଴) =

଴ܥߨ8

ଵ
ଶ

ߥ
ଵ
ଶ

, ଶߚ
(଴) =

2
ଵଵ
ଶ ଴ܥߙߨ

ଵ
ଶ

ߥ
ଵ
ଶ

, 

ଷߚ
(଴) =

ଶܥߨ8

ଵ
ଶ

ߥ
ଵ
ଶ

, 

Lemma 29. The solution of the problem (11), (12), 
(13), from Theorem 16, satisfies the following estimate  

ቤݖ
∂ଶݍ෤୫୴

ଶݖ∂ ቤ
௅భ(ோయ)

≤ ଴ܲܭଷ + ଵܲܭଶ + ଶܲܭ, 

where  
଴ܲ = ଷߚ)ܥ

(଴)ܦଶ + ଵߚ)
(଴) + ଶߚ

(଴))ܦ଴), 

ଵܲ =
ܥ
2

ቀ(2ߚଶ
(଴) + ସߚ

(଴))ܤ଴ +� 

ଷߚ2)+
(଴) + ହߚ

(଴))ܤଵ + ଺ߚ
(଴)ܤଶ + 

ଷߚ2+�
(଴)ܦଷ + ଵߚ)2

(଴) + ଶߚ
(଴))ܦଵቁ, 

ଶܲ =
ܥ
2

ଵܣ)2) + ଶܣ + (ଷܣ + 

ସܣ+ + (ହܣ + ቤݖ
∂ଶߤ
ଶቤݖ∂

௅భ(ோయ)
, 

ସߚ
(଴) =

2
ଵହ
ଶ ଴ܥߙߨ

ଵ
ଶ

ߥ
ଵ
ଶ

, ହߚ
(଴) =

2
ଵଷ
ଶ ଶܥߙߨ

ଵ
ଶ

ߥ
ଵ
ଶ

, 

଺ߚ
(଴) =

ସܥߨ8

ଵ
ଶ

ߥ
ଵ
ଶ

. 

Theorem 20. The solution  of the problem (11), 
(12), (13), from Theorem 16, satisfies the following 
estimate 

෤|௅భ(ோయ)ݍ| ≤ ቆߛଵܥ଴ + ଴ܥଶߛ

ଵ
ଶܥଶ

ଵ
ଶ + ଶቇܥଷߛ ଷܭ + 

+ ቆߛସܥ଴

ଵ
ଶ + ଶܥହߛ

ଵ
ଶ + ସܥ଺ߛ

ଵ
ଶቇ ଶܭ + 

+ ቆߛ଻ܥ଴

ଵ
ଶ + ଶܥ଼ߛ

ଵ
ଶ + ଽቇߛ  ,ܭ

where  

ܭ =
ߥ

ଵ
ଶ

ߥ
ଵ
ଶ − ଴ܥܥߨ4

ଵ
ଶ

, ଴ܥ = න  
௧

଴

 ,෨ଵ|ଶ݀߬ܨ|

ଵܨ = ,ݍ) ݍ(∇ +  ,ܨ

ଶܥ = න  
௧

଴

ቤ
෨ଵܨ∂

ݖ∂
ቤ

ଶ

݀߬, ସܥ = න  
௧

଴

ቤ
∂ଶܨ෨ଵ

ଶݖ∂ ቤ
ଶ

݀߬, 

ଵߛ =
ଶߨଶ2ଷܥ

ߥ
(1 + 2

ହ
ଶ)ܤ଴, 

ଶߛ =
ଶߨଶ2ସܥ

ߥ
(1 + 2

ହ
ଶ)ܤଵ, 

ଷߛ =
ଶߨଶ2ଷܥ

ߥ
 ,ଶܤ

ସߛ =
ߨ2ଷܥ

ߥ
ଵ
ଶ

((1 + 2
ଽ
ଶ)ܤ଴ + (1 + 2

ହ
ଶ)ܦଵ), 

ହߛ =
ߨ2ଷܥ

ߥ
ଵ
ଶ

((1 + 2
ଷ
ଶ)ܤଵ +  ,(ଷܦ
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the function ߤ is defined in Theorem 15.   
Lemma 30. The function ߤ, defined in Theorem 15, 

satisfies the following estimates  
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Lemma 31. Weak solution of problem (11), (12), 
(13), from Theorem 16 satisfies the following estimates  
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Theorem 21.  Suppose that  
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Then there exists a unique weak solution of (11), 
(12), (13), satisfying the following inequalities  

max
௧

෍  
ଷ

௜ୀଵ

ప෥ݍ| |௅భ(ோయ) ≤  ,ݐݏ݊݋ܿ

where ܿݐݏ݊݋ depends only on the theorem conditions.   
Note. In the estimate for ݍ෤ the condition (0)ݍ > 1 

is used. This conditioncan be obviated if we use smooth 
and bounded function ݓ and make all the estimates for 
ଵݍ = ݍ + ଵ(0)ݍ such that ݓ > 1 is satisfied. Using the 
function ݓ, we also choose the constant A concordant 
with the constant ߝ from Lemma 3.  

Theorem 21 proves the global solvability and 
unicity of the Cauchy problem for Navier-Stokes' 
equation.  

 
 
10 Conclusion 
In Introduction we mentioned the authors whose 

scientific researches we consider appropriate to call the 
prehistory of this work. The list of these authors may be 
considerably extended if we enumerate all the 
predecessors diachronically or by the significance of their 
contribution into this research. Actually we intended to 
obtain evident results which were directly and indirectly 
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indicated by these authors in their scientific works. We do 
not concentrate on the solution to the multi-dimensional 
problem of quantum scattering theory although it follows 
from some certain statements proved in this work. In fact, 
the problem of overdetermination in the 
multi-dimensional inverse problem of quantum scattering 
theory is obviated since a potential can be defined by 
amplitude averaging when the amplitude is a function of 
three variables. In the classic case of the 
multi-dimensional inverse problem of quantum scattering 
theory the potential requires restoring with respect to the 
amplitude that depends on five variables. This obviously 
leads to the problem of overdetermination. Further 
detalization could have distracted us from the general 
research line of the work consisting in application of 
energy and momentum conservation laws in terms of 
wave functions to the theory of nonlinear equations. This 
very method we use in solving the problem of the 
century, the problem of solvability of the Cauchy 
problem for Navier-Stokes' equations of viscous 
incompressible fluid. Let us also note the importance of 
the fact that the laws of momentum and energy 
conservation in terms of wave functions are conservation 
laws in the microworld; but in the classic methods of 
studying nonlinear equations scientists usually use the 
priori estimates reflecting the conservation laws of 
macroscopic quantities. We did not focus attention either 
on obtaining exact estimates dependent on viscosity, lest 
the calculations be complicated. However, the pilot 
analysis shows the possibility of applying these estimates 
to the problem of limiting viscocity transition tending to 
zero. 
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