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Abstract: In this paper we propose a method for identification of two parameters that define the structure of
lubricated journal bearings. In rotordynamics literature these parameters are named Sommerfeld number and
Mass Number, respectively. The system analyzed belongs to the class of systems that are described by n non-
linear second order differential equations. We have obtained the analytical solutions of these equations using Lie
series expansion. This method can be applied to a vast class of dynamical systems, provided that they are described
by smooth equations. Lie series expansion is a mathematical tool that allows us to obtain the system response in
recursive way using symbolic PC-codes. Besides, this procedure involves only a few experimental data and makes
the identification process very quick. It is worth noting that the application that we propose does not take into
account neither the issue connected to experimental data noise nor the unavoidable disturbances that occurs in
measurement process. Actually, in applied system identification one must always pay attention to the signal noise
and to the robustness of the solution with respect to disturbances, but these issues are over the goal of this paper.

Key–Words: Nonlinear System Identification, Parameter Identification, Lubricated Journal Bearings

1 Introduction
Nonlinear system identification is the art of determin-
ing a model of a nonlinear dynamical process by com-
bining information obtained from experimental data
with that derived from an a priori knowledge of the
physical behavior of the system. In general, the sys-
tem or the physical process to be modeled can be of
any kind, even though applied system identification
usually considers only deterministic processes.

Nonlinear system identification is a discipline that
can be studied at different levels. From the basic point
of view, the purpose of identification is to determine
just how many states or modes are needed to construct
a model of the system. Once past this stage, one can
begin an higher level system identification. On the
other hand, the most refined level of identification is
the parametric identification. In the case of nonlinear
parametric identification one knows the mathematical
form of the nonlinear differential equation describing
the motion of the system but some parameters of the
equations are unknown.

Between these two extremes there are the non-
linear system identification techniques whose purpose
is to model the dynamic behavior of a physical sys-
tem without determining its equations of motion. In
general, there is a wide range of identification tech-

niques for nonlinear systems and the choice of the
technique to be used needs to be decided from time
to time. In the field of nonlinear parametric identi-
fication there are basically three possible approaches:
time-domain analysis, frequency-domain analysis and
bifurcations analysis. In the case of time-domain anal-
ysis, one should find an approximate analytical ex-
pression, written in terms of unknown parameters, and
compare it with experimentally measured data. In this
case we need to measure only one output signal and
then is possible to perform an efficient identification
procedure.

We propose a method that allow us to construct
an approximated analytical solution for nonlinear sys-
tem equations of motion. This method is based on
Lie series expansion. The method can be applied to a
vast class of dynamical systems, provided that they are
described by smooth equations. This tool allows us
to obtain the system response in recursive way, using
symbolic codes on PC. Besides, this procedure needs
only a few experimental data and makes the identifi-
cation process efficient.

In this paper we have used this method in or-
der to identify of Sommerfeld and Mass parameters
of a rotor on lubricated journal bearings. The model
assumed is the cavitated short bearing whose details
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can be found in reference [1].
Dynamic characteristics of turbomachine are in-

fluenced strongly by bearings on which the rotor runs.
This is because the stiffness of the rotor-bearing sys-
tem is mainly determined by the bearing support stiff-
ness acting in series with shaft stiffness and the damp-
ing of the system is usually determined almost entirely
by the bearing damping properties. In some machines,
there are also significant fluid forces developed on the
rotor by the rotating seals and of the centrifugal or
axial-flow process. The latter are traditionally outside
the control of the machine designer. Analytical pre-
diction and experimental measurement of these forces
is the subject of current research, and it may soon be
possible to modify rotor-dynamic characteristics by
redesigning seals, impellers, and turbine stages.

One of the most important design parameter for
rotordynamics is the ratio of bearing support stiffness
to shaft stiffness. It is usually good design practice to
keep this ratio as small as practical. Another impor-
tant parameter is the ratio of support damping to inter-
nal damping in the rotor. This ratio should be kept as
large as possible to insure rotor stability. In addiction
to direct stiffness and damping, some types of fluid
bearings, as well as seals and process wheels, also
produce cross-coupled stiffness and damping. Cross-
coupling can have profound effects on whirl instabil-
ity. Finally, we can say that stiffness and damping of
bearings influence stability of the rotor. Stiffness and
damping depend on Sommerfeld and Mass parameter
then the latter are very important parameters in design
and maintenance in turbomachinery.

2 Overview on Mechanism of Load
Support of Rotors on Lubricated
Bearings

In hydrodynamic bearings, the fluid pressure is gen-
erated entirely by motion of the journal and depends
on the viscosity of the lubricating fluid. The fluid sup-
ply pressure needs only to be high enough to maintain
a copious supply of lubricant in the load-supporting
clearance around the journal. This is normally accom-
plished by introducing the fluid through one or more
supply holes or grooves located in the areas where
the hydrodynamic pressure is low. If there is an in-
sufficient supply of fluid, or if any other factor pre-
vents the generation of a high enough pressure in the
film fluid to support the load, then the hydrodynamic
film breaks down and the journal contacts the bear-
ing surface. Bearing in which this continuously oc-
curs are called boundary-lubricated bearings. Hydro-
dynamic bearings often acts as boundary-lubricated

bearings during the initial phase of the machine start-
up, when the journal rotation speed is too slow to gen-
erate sufficient hydrodynamic pressure to support the
load. Boundary lubrication is characterized by higher
friction and a much greater potential for overheating
than is hydrodynamic lubrication.

Besides the friction coefficient varies with vis-
cosity, speed and load for these two different types
of lubrication. The temperature stability of the two
cases can be considered as follows. With boundary
lubrication, a rise in the temperature reduces the vis-
cosity, which rises the friction factor, which further
rises the temperature. This cycle, repeated, tends to
induce overheating. With hydrodynamic lubrication,
a rise of the temperature which reduces the viscos-
ity will reduce the friction factor, thus reducing the
heat generated. This cycle tends to produce a stable
operating temperature. Boundary-lubricated bearings
are used satisfactorily in small mechanisms and ap-
pliances with light loads and light duty cycles, but
they obviously are not desirable in industrial turbo-
machinery applications. Thus the maintenance of a
load-supporting fluid film is of prime importance for
reliability of all the various types of hydrodynamic
bearings used in turbomachinery. As has already been
mentioned, the supply pressure to the bearing is of
limited importance in this regard.

In the case of hydrodynamic lubricated bearings,
the mechanism of load support can be explained as
follows. The lubricating fluid is pulled by viscous
shear into the converging wedge produced by the off-
center displacement of the journal. Note that it is ro-
tation of the journal that produces the relative velocity
along the film wall and induces the viscous shear. As
the fluid is pulled into the converging wedge, its pres-
sure is raised. Conversely, the fluid pressure decreases
as the viscous shear pulls it out into the diverging
wedge downstream from the point of minimum film
thickness. The net effect of the distribution of hydro-
dynamic pressure around the journal is to produce a
force which reacts the applied load. The converging-
diverging wedge effect becomes more pronounced as
the off-center journal displacement, also called eccen-
tricity in the bearing literature, is increased. Thus, as
in the case of the hydrostatic bearing, there is an equi-
librium position where the support force developed by
the fluid-film pressure equals the applied load. Fur-
thermore, since a change in applied load produces a
new equilibrium position with an equal change in sup-
port force, it can be seen that the hydrodynamic bear-
ing also acts like a spring. Translational velocity of
the journal also induces hydrodynamic pressure in the
film, with a resulting force, so the bearing acts like a
damper as well. From the standpoint of rotordynam-
ics, the most desirable feature of a hydrodynamic jour-
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nal bearing is its damping, which is high compared to
other types of bearings. The plain journal bearing is
the simplest of all hydrodynamic bearings. Its geom-
etry is that of a plain right circular cylinder, and it
is the least expensive bearing to manufacture. Rotors
running on this type of bearing are often speed lim-
ited by oil whip.Therefore more complex types of hy-
drodynamic bearings have been developed to remove
or reduce this limitation. Most industrial turboma-
chines are designed to use some type of hydrodynamic
bearing, and nearly all aircraft turbine engines employ
some type of hydrodynamic bearing damper.

3 Fluid-Film Pressure Distribution
The basic problem of hydrodynamic bearing analysis
is a determination of the fluid-film pressure distribu-
tion p(x, z) for a given bearing geometry. Bearing
designers normally accomplish this by solving vari-
ous forms of the Reynolds’ equation for special cases.
The Reynolds’ equation provides the basis of modern
lubrication theory, and a number of its solutions for
special cases of practical interest have been verified
by experimental measurements. For any general thin
film geometry, the equation is:

∂
∂x

(
h3 ∂p

∂x

)
+ ∂

∂z

(
h3 ∂p

∂z

)
=

= 6µ
{
∂
∂x [(U0 + U1)h] + 2∂h∂t

} (1)

where p = p(x, z) is the pressure distribution;
x and z are coordinates that locate a point in the
film; h is the local film thickness; µ is the viscosity
of the fluid; U0 and U1 are tangential velocities at
the two walls bounding the film; and ∂h

∂t is the time
rate of change of the local film thickness. Reynolds
employed a number of simplifying assumptions in
deriving the equation:

1. Viscous shear effects dominate, so the viscosity
is the only important fluid parameter.

2. The fluid inertia forces are neglected.

3. The fluid is incompressible.

4. The fluid film is very thin, so that the pressure
does not vary across the thickness of the film and
any curvature of the film can be neglected.

5. The viscosity is constant throughout the film.

6. There is no slip at the wall.

Most bearings employed for rotor support in tur-
bomachinery have cylindrical geometry, or some vari-
ation of it, to match a cylindrical journal. In cylindri-
cal coordinates, Reynolds’ equation becomes:

∂
∂ϑ

{
[1 + ε cos(ϑ)]3 ∂p

∂ϑ

}
+

R2 ∂
∂z

{
[1 + ε cos(ϑ)]3 ∂p

∂z

}
=

= −6µ
(
R
C

)2 [
(ω − 2ψ̇) ε sin(ϑ)− 2ε̇ cos(ϑ)

]
(2)

where e is the journal eccentricity, c is the ra-
dial clearance, R is the journal radius; Also h =
c (1 + ε cosϑ) is the local film thickness; ω, ψ̇ are the
angular velocities of the journal and line of centers,
respectively. and ε̇ = ė/c is the dimensionless radial
velocity. For a plain journal bearing, open to the at-
mosphere at the ends z = 0 and z = L, and with an
uncavitated fluid film, the boundary conditions are:

{
p(ϑ, z = 0) = p(ϑ, z = L) = pa
p(ϑ = 0, z) = p(ϑ = π, z) = p0

(3)

where pa is atmospheric pressure and p0 is deter-
mined by the supply pressure to the bearing. Closed-
form solutions to equation (2) in functional form, with
realistic boundary conditions such as (3), have not
been obtained to date, except for the special case of
small eccentricities. There are also additional factors,
such as film cavitation, which must be included for a
realistic model in some cases and which make a func-
tional solution even more difficult. To obtain useful
solutions, two successful alternative approaches have
been employed:

1. Simplification of the Reynold’s equation for spe-
cial cases of practical interests, so that functional
solutions can be obtained.

2. Reformulation of the equation into finite-
difference ore finite-element form, for numerical
solution.

For journal bearings, the first approach has
yielded to solutions for two notable special cases: a)
the long bearing and b) the short bearing. For the
long bearing, the major simplifying assumption is that
the second term in equation (2) is of negligible mag-
nitude compared with the first; that is, the pressure
distribution around the bearing is invariant along the
length of the bearing. Thus the second term in the

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS Domenico Guida, Carmine M. Pappalardo

ISSN: 1991-8747 207 Issue 4, Volume 4, October 2009



equation is omitted, which makes the equation inte-
grable. Physically, this means that there is no flow
in the axial direction. For the short bearing, the first
term of the equation is omitted on the basis that it has
a negligible effect on the flow compared to the other
terms in the equation. Practically, this will occur when
L/D ≤ 0.25, where L is the axial length of the bear-
ing and D = 2R is the journal diameter. In this case
the film pressure turns out to be a parabolic function
of the axial coordinate.

4 Bearing Stability Characteristics
It is common practice in the rotordynamics literature
to describe whirl stability characteristics of a hydro-
dynamic bearing with a stability map, which gives the
dimensionless threshold speed of instability versus the
equilibrium eccentricity. Typically, these curves are
generated by computing the dimensionless speed at
which the real pert of the eigenvalue becomes posi-
tive, for various values of static eccentricity.

The fully cavitated journal bearing is stable for
all speeds if it is very highly loaded. Consequently,
modified versions of the simple journal bearing are
designed to supplement the actual supported load with
hydrodynamic pressure in the oil film and thereby in-
crease the operating eccentricity at high speed. It
should be realized that stability maps are usually gen-
erated from a rigid rotor model and therefore do not
accurately represent the stability characteristics of the
bearing on a flexible rotor. Also, the whirl stability
characteristics of a turbomachine are determined by
a number of factors in addition to the bearing coeffi-
cients. Yet there have been a number of cases in the
field where turbomachines with tilt-pad bearings were
observed to be unstable with violent sub-synchronous
rotor whirling. This is due to other sources of cross-
coupled stiffness or negative damping not in the bear-
ing, such as internal friction in the rotor assembly,
seals, or aerodynamic forces on process wheels.

5 Experimental Verification of Bear-
ing Characteristics

Measurement of hydrodynamic bearing characteris-
tics have been made on special test apparatus by en-
gineering researchers. Agreement with the Reynolds
theory just presented has been good, in most cases,
or the discrepancies can be explained in terms of un-
knowns errors. Direct measurements of the bearing
damping coefficients is especially difficult since both
the force and journal motion are time-varying quan-
tities. Parkins measured journal bearing coefficients

by shaking the test journal in horizontal and verti-
cal straight line harmonic motions. Nordmann and
Shollhorn used an impact impedance method, con-
verting the vibratory response to frequency-dependent
transfer functions to measure journal bearing coeffi-
cients. Tripp and Murphy measured the stiffness of
tilt-pad bearings by applying a known static load at
various shaft speed and measuring the change in the
static eccentricity. In a number of cases, the mea-
sured critical speeds and response to imbalance of tur-
bomachines running on very large journal bearings,
when compared to computer predictions based on the-
oretical bearings coefficients, have suggested that the
Reynolds theory overpredicts the direct bearing co-
efficients. Nicholas and Barret have shown that the
discrepancies may actually be due to the additional
flexibility of the journal bearing housing or support-
ing structure, which is often neglected in a computer
model. The effect of the housing flexibility is to re-
duce the effective stiffness and damping of the journal
bearing and lower the critical speed.

6 Journal Bearing Model
The system analyzed is showed in figures 1 and 2.

Figure 1: Physical System

 

  x 

y

y

r

t

e

w 
N

Figure 2: Journal Bearing Model

It is composed of a rotor on two lubricated jour-
nal bearings. This configuration is used very often for
studying the dynamic behavior of many machine ba-
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sic components like: turbines, internal combustion en-
gines, electric motors, mechatronic devices, medical
devices and so on. The goal of lubricated journal bear-
ings is to minimize the friction loss between rotor and
stator substituting the oil friction to the dry friction
that occurs between the surfaces in relative motion.

In this analysis we have assumed that the rotor is
symmetric in reference to bearing planes so that we
can study only one bearing. The dynamics of the ro-
tor can be described starting from the pressure field
in the gap between rotor and bearing. This pressure
field is obtained integrating the Reynolds lubrication
equation. This is a very complicated task. Reynolds
lubrication equation is a bi-dimensional partial differ-
ential equation and needs boundary conditions to be
solved. These conditions are not easy to impose be-
cause they require a deep knowledge about the fluidy-
namics of the system. It is worth noting that boundary
conditions can make discontinue the force field on the
journal and they can also make unsuitable the method
proposed because it requires smooth equations, so as
we have mentioned in the introduction.

In this paper we have assumed the theory of
the cavitated short bearing for describing in explicit
form the force field fr(ε(t), ψ(t), ε̇(t), ψ̇(t)) and
ft(ε(t), ψ(t), ε̇(t), ψ̇(t)). Referring the notations in-
dicated in figure 2 and the hypothesis assumed in [1]
we can express the journal motion equations by fol-
lowing relations (4-7). We have indicated with ω ro-
tor angular speed, R journal radius, C the difference
between bearing and journal radius, m rotor mass, µ
oil dynamic viscosity, p0 inlet pressure and N exter-
nal load. While with ε(t) we have indicated the di-
mensionless eccentricity of the journal and with ψ(t)
the attitude angle, so as showed in figure 2. With
P we have indicated the inlet dimensionless pres-
sure while whit Q and W the dimensionless param-
eters which have to be identified. In rotordynamics
these parameters are named Sommerfeld number and
Mass number.



ε̈(t)− ε(t)ψ̇(t)2 +Qfr(ε(t), ψ(t), ε̇(t), ψ̇(t))+

+W sin(ψ(t)) = 0

ε(t)ψ̈(t) + 2ε̇(t)ψ̇(t)−Qft(ε(t), ψ(t), ε̇(t), ψ̇(t))+

+W cos(ψ(t))− P = 0
(4)

where



fr(ε(t), ψ(t), ε̇(t), ψ̇(t)) =
[∣∣∣1− 2ψ̇(t)

∣∣∣ ε(t)2

(1−ε(t)2)2
+

+ π
2

(1+2ε(t)2)ε̇(t)
(1−ε(t)2)5/2

]

ft(ε(t), ψ(t), ε̇(t), ψ̇(t)) =
[(

1− 2ψ̇(t)
)

π ε(t)

4(1−ε(t)2)3/2 +

+ 2ε(t)ε̇(t)
(1−ε(t)2)

]
(5)

and

Q =
µRL3

mC3ω
, W =

N

mC ω2
(6)

P =
2RLp0

mC ω2
, ε =

e

C
(7)

7 Identification of Journal Bearing
Parameters

Nonlinear system identification is the art of determin-
ing a model of a nonlinear dynamical process by com-
bining information obtained from data with that of
physical insight or a priori knowledge. The system
to be modeled may be an experiment, a natural pro-
cess, or even a large-scale computer simulation. Dy-
namic responses of such deterministic systems may
be periodic or non-periodic. Nonlinear system iden-
tification is a broad subject. At the most basic level,
the goal might be to merely identify how many states
or modes are needed to construct a model of the sys-
tem.With such information at hand, a more detailed
system identification can begin. At the more refined
extreme is parametric system identification, for which
the form of the differential equations of motion that
model the system is known, but unknown parame-
ters need to be identified. In between these two ex-
tremes lie techniques of nonparametric identification
and nonlinear prediction, where the goal might range
from revealing a nonlinear restoring force character-
istic, to modeling the dynamic behavior without de-
termining the differential equations of motion. This
article summarizes some ideas spanning this range of
problems. We start with the most basic case of esti-
mating the number of active states or modes, since in
the most raw situation, this is where the analyst may
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start. We then discuss nonparametric identification
methods, and finally, parametric system identification.
There are many approaches to system identification in
the literature, and we only touch on some of them.
The goal here is to introduce basic ideas. Our focus is
on deterministic systems, although methods are avail-
able for systems with random components. The tools
discussed should enable system identification for a va-
riety of nonlinear response regimes, be they periodic,
quasiperiodic, or chaotic. Periodic responses may be
more tractable for standard analyses, while nonperi-
odic responses tend to explore the response space and
produce a large amount of information.

7.1 Parametric Nonlinear System Identifica-
tion

In this scenario, the ordinary differential equations of
motion are known, and the forms of nonlinear terms
are known. However, parameters in the equations of
motion remain unknown and need to be identified.
Among the approaches to consider in this situation
are time-domain analysis, frequency-domain analysis,
and bifurcation analysis. The basic idea in time do-
main analysis is to take measured time histories of
displacements, velocities and accelerations, and find
parameters such that the equations of motion best ac-
commodate the measured response for all time sam-
ples. This ultimately amounts to a least-squares solu-
tion with a minimized cost function based on a resid-
ual. One perspective is the direct evaluation of terms
in the differential equation based on measured quan-
tities. Here, the optimal parameters can be chosen
to best balance the equation of motion at each time
sample, for example by singular value decomposition.
Another method is to use an analytical expression of
the time response, written in terms of unknown pa-
rameters, and compare it with the measured response
of the system to be identified. Then just one mea-
surement signal is needed. Such methods have been
reviewed by Stry and Mook, who in turn proposed the
use of a correction term to accommodate modeling er-
rors, which is then recast into a two-point boundary
value problem for the solution of the correction term.
The correction term is then used to fit the nonlinear
functions to be identified. The idea in frequency-
domain analysis is to take the Fourier transforms of
the measured time histories, insert them into the dif-
ferential equations of motion, and find parameter val-
ues that balance harmonics in the least-squares sense.
If the system is linear in its parameters, i.e., the pa-
rameters are external coefficients on the nonlineari-
ties in the equations of motion, then the balance equa-
tions are linear in the parameters, and a straightfor-
ward least squares solution suffices. Differentiation

can be done by multiplying the transformed signal by
io. As such, for example, only measurements of dis-
placements are needed, and velocities and accelera-
tions can be obtained in the frequency domain. If the
system response is periodic, then the Fourier coeffi-
cients can be computed by Fourier series or Fourier
transforms. If the system response is chaotic, then nu-
merous saddle-type unstable periodic orbits are ‘vis-
ited’ during the response. These periodic orbits can be
approximately extracted and treated similarly to the
way the stable periodic responses were treated, thus
extending the idea to handle chaotic responses as well
as stable periodic responses. The numerous periodic
orbits from the chaotic response provide ample redun-
dancy for the least-squares approximation of the pa-
rameters. Bifurcation behavior can be exploited by
finding parameters such that bifurcation events occur
at the right parameter values. Bifurcations are con-
sidered to be rather sensitive to parameters, which
is good for parameter identification. The bifurca-
tion behavior is usually determined by using pertur-
bation methods, such as multiple scales, averaging,
and normal forms; to obtain analytical expressions
of the bifurcation events as functions of parameters,
which can then be used for the purposes of identifica-
tion. In order to use bifurcations in system identifica-
tion, bifurcations need to be observed experimentally.
This means that the parameter space must be explored
in the experiments, and parameter values for which
sudden qualitative changes in the dynamical behavior
must be recorded. The type of bifurcation must be rec-
ognized. As a cautionary note, bifurcation behavior is
usually analyzed for steady-state, constant-parameter
behavior. Experimental sweeps of parameter space re-
ally mean that the system has non-constant, slowly
varying parameters. Systems with slow varying pa-
rameters may have significantly different bifurcation
occurrences than systems with truly constant param-
eters. Thus, the experimenter must be patient in the
exploration of parameter space.

7.2 Nonparametric Nonlinear System

In nonparametric identification, vibration behavior is
modeled or predicted by means other than differen-
tial equations. Some approaches include Volterra se-
ries (or Weiner series) modeling, neural networks, and
nonlinear time-series prediction, or merely the iden-
tification nonlinear stiffness characteristics. First we
mention the Volterra series approach. The response
of a linear system to an input can be represented by a
convolution integral, in which the input is convolved
with the impulse response function. In the Volterra se-
ries approach, this convolution integral is a first-order
Volterra functional. The impulse response is the ker-
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nel. For modeling nonlinear inputoutput dynamics, a
series of Volterra functionals is constructed, the kth
term consisting of a k-fold nested convolution inte-
gral involving k delays of the input and a kth order
kernel, which acts as a weighting function in the in-
tegral. In identifying the system, these kernels are
to be identified, typically with a least-squares fit in
the time-series response. (The time-series values of
the kernals or weighting values are identified). The
Weiner G-functionals, which are orthogonal function-
als constructed from the Volterra functionals, can be
used in place of the Volterra functionals in the sys-
tem identification. Backpropagation artificial neural
networks can be applied to model discrete-time dy-
namics of sampled dynamic systems. In the learning
process, the inputs and outputs are applied to the neu-
ral network, and a steepest descent (for example) with
respect to network parameters, is used to minimize
the error. The neural networks are highly nonlinear,
and may have many local minima in the error. The
aim would be to settle on a suitable local minimum.
The problem of identifying h in the inputoutput de-
scription is akin to nonlinear time-series prediction,
for which the sampled output represents the time se-
ries to be predicted. In time-series prediction, the goal
is to take recent samples of an output, and predict the
input for the near future. Time-series prediction can
be done in the phase space reconstruction of the time
series. When the reconstruction is in the appropriate
dimension, as described earlier, and trajectories do not
cross, then there is a unique shorttime dynamical evo-
lution for any point in the reconstructed phase space.
That is, there is a well defined function that maps a
given point in the phase space to its iterate, a few
samples later. This function is to be identified. One
way to do it is to find localized dynamics near ref-
erence trajectories in the dynamics. These localized
dynamics are good within a specified distance of the
reference trajectory, and are often modeled with linear
functions. This can also be done by dividing the phase
space into cells. Thus, when identified, the dynam-
ics are approximated with piecewise linear maps. The
nonlinear dynamics of single-input/single-output dy-
namical systems and control systems can be modeled
by setting up equivalent reverse multipleinput/ single-
output linear systems to represent the system at hand.
When the system input and output are reversed, the
nonlinearities can then be treated as additional corre-
lated inputs [13,14]

7.3 Dynamic Response Using Lie Series

The system (1) can be rewritten in the following vec-
tor form:  ẋ(t) = f(x(t), Q)

x(0) = x0

(8)

with: 
x1(t) = ε(t)
x2(t) = ψ(t)
x3(t) = ε̇(t)
x4(t) = ψ̇(t)

(9)

Where with x we have denoted the state vector, with
x0 the initial conditions while with f(x) the vector force
field due to the oil pressure. Lie Series expansion is a
powerful method that allow us to express the solution of
nonlinear ordinary differential equation by means of an
operator used in recursive way [1,2,3,4,5 and 6]. From a
mathematical viewpoint the solution is given by:

x(t) = [et [D(Q)]](x0) =

= [
∞∑
k=0

tk

k! [D(Q)]k](x0) =

= x0 + t [D(Q)](x0) + t2

2 [D(Q)]2(x0) + ...
(10)

with

[D(Q)] = [fT(x(t), Q)
∂

∂x(t)
]
∣∣∣∣
x(t)=x0

(11)

In practice, the use of this operator is crucial in or-
der to find solution by means of Lie series expansion. If
Lie operator is built in an appropriate way, it allows us to
obtain a very quick approximate analytical solution of the
system equations of motion. From the operative viewpoint,
we must truncate the solution (7) at k = n:

x̂(t) = [
n∑
k=0

tk

k! [D(Q)]k](x0) =

= x0 + t [D(Q)](x0) + t2

2 [D(Q)]2(x0) + ...+

+ tn

n! [D(Q)]n(x0)

(12)

Where with x̂(t) we have indicated the approximated
analytical solution of (7). It is worth noting that (9) can be
built in recursive way using PC code for symbolic calculus.
Substituting the (1) and (2) in (5) we obtain the following
relations:
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f1(x(t), Q) = x3(t)

f2(x(t), Q) = x4(t)

f3(x(t), Q) = +x1(t)x4(t)2+
−Qfr(x1(t), x2(t), x3(t), x4(t))−W sin(x2(t))

f4(x(t), Q) = −2x3(t)
x1(t)

x4(t)+

+Qft(x1(t),x2(t),x3(t),x4(t))
x1(t)

− W cos(x2(t))
x1(t)

+ P
x1(t)

(13)

Substituting the (10) in (8) and the (8) in (9) obtain
the solution of (5) written in explicit form:

[D(Q)] =
[
fT(x(t), Q) ∂

∂x(t)

]∣∣∣
x(t)=x0

=

=
[
f1(x(t), Q) · ∂

∂x1(t)
+ f2(x(t), Q) · ∂

∂x2(t)
+

+f3(x(t), Q) · ∂
∂x3(t)

+ f4(x(t), Q) · ∂
∂x4(t)

]∣∣∣
x(t)=x0

=

=
{
x3(t) · ∂

∂x1(t)
+ x4(t) · ∂

∂x2(t)
+

+
[
x1(t)x4(t)2 −Qfr(x1(t), x2(t), x3(t), x4(t))+

−W sin(x2(t))] · ∂
∂x3(t)

+

+
[
−2x3(t)

x1(t)
x4(t) + Qft(x1(t),x2(t),x3(t),x4(t))

x1(t)
+

−W cos(x2(t))
x1(t)

+ P
x1(t)

]
· ∂
∂x4(t)

}∣∣∣
x(t)=x0

(14)

x̂1(t) = ε̂(t) = [
6∑
k=0

tk

k! [D(Q)]k](x1,0) =

= [
6∑
k=0

tk

k! [D(Q)]k](ε0) =

= x1,0 + t [D(Q)](x1,0) + t2

2 [D(Q)]2(x1,0)+

+ t3

3! [D(Q)]3(x1,0) + t4

4! [D(Q)]4(x1,0) + t5

5! [D(Q)]5(x1,0)+

+ t6

6! [D(Q)]6(x1,0) =

= ε0 + t [D(Q)](ε0) + t2

2 [D(Q)]2(ε0)+

t3

3! [D(Q)]3(ε0) + t4

4! [D(Q)]4(ε0) + t5

5! [D(Q)]5(ε0)+

+ t6

6! [D(Q)]6(ε0)
(15)

The (12) and (13) are the approximated analytical
solutions ε̂(t) and ψ̂(t). It is worth noting that these
relations depend on the unknown parameters that have to
be identified.

x̂2(t) = ψ̂(t) = [
6∑
k=0

tk

k! [D(Q)]k](x2,0) =

= [
6∑
k=0

tk

k! [D(Q)]k](ψ0) =

= x2,0 + t [D(Q)](x2,0) + t2

2 [D(Q)]2(x2,0)+

t3

3! [D(Q)]3(x2,0) + t4

4! [D(Q)]4(x2,0) + t5

5! [D(Q)]5(x2,0)+

+ t6

6! [D(Q)]6(x2,0) =

= ψ0 + t [D(Q)](ψ0) + t2

2 [D(Q)]2(ψ0)+

t3

3! [D(Q)]3(ψ0) + t4

4! [D(Q)]4(ψ0) + t5

5! [D(Q)]5(ψ0)+

+ t6

6! [D(Q)]6(ψ0)
(16)

7.4 Parameter identification

If we indicate with xj the measured values of the rotor ec-
centricity and the attitude angle, we can define the error
functions e1(Q) and e2(Q). The minimum of these func-
tions give us the estimated values of the unknown parame-
ter Q despite of the presence of the unavoidable noise that
occurs in all measurement process [7,8 and 9].

e1(Q) =
N∑
j=1

[x1,j − x̂1(t = j∆t)]2 =

=
N∑
j=1

[εj − ε̂(t = j∆t)]2
(17)

e2(Q) =
N∑
j=1

[x2,j − x̂2(t = j∆t)]2 =

=
N∑
j=1

[
ψj − ψ̂(t = j∆t)

]2 (18)
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8 Results and discussion
We have performed the proposed identification procedure
assuming as data the results obtained from the numerical
integration of the system equations of motion (1). In fig-
ure 3 is showed the journal orbit obtained for Q=100 and
W=500 and P=1.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 3: Journal orbit

In figure 4 and 5 are showed the analytical and numeri-
cal solutions on which we have performed the identification
procedure.
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Figure 4: ε and ε̂, Analytical and numeric result vs.
time

Then we have used a solution obtained using Lie series
expansion truncated at the sixth order. We have displayed
the two solution, analytical and experimental response, ob-
tained assuming the following initial conditions:

ε(0) = 0.01

ψ(t) = π
2

ε̇(t) = 0

ψ̇(t) = 0

(19)
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Figure 5: ψ and ψ̂, Analytical and numeric result vs.
time

In figure 3 is indicated the journal orbit obtained nu-
merically. In the figures 4 and 5 are showed the polar coor-
dinates of the journal orbit obtained by Lie series expansion
ε̂(t) and ψ̂(t).

We have performed the identification procedure for di-
mensionless values of the time between 0 and 0.005 and we
have found that the relative error is less than 1 per cent.

Qtrue = 100 ,

{
Qidentifiedε̂ = 100.036
Qidentified
ψ̂

= 98.5198 (20)

The authors hope to improve this method a make it
more and more efficient.
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