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Abstract: - In this work we present two systems with non-linear neo–Hookean components. In such systems 
there always exists an element with a non-linear characteristic equation. This element can be considered to be 
a rubber or another equivalent structure. We shall prove that the utilization of a neo–Hookean element will not 
destroy the properties of the structure, but it riches these properties and it could be a good solution in many 
cases. The first model describes a quarter of an automobile and the second one is dedicated to a half-
automobile model. We obtain the equilibrium positions, study their stability in the most general case and for 
the first model we also discuss the stability of the motion. In the paper there are also numerical applications. 
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1   Introduction 
In this work we shall present two systems with non-
linear neo–Hookean components. In such systems 
there always exists an element with a non-linear 
characteristic equation. This element can be 
considered to be a rubber or another equivalent 
structure. 
     We shall prove that the utilization of a neo–
Hookean element will not destroy the properties of 
the structure, it riches these properties and it could 
be a good solution in many cases. 
 
 

2   Neo–Hookean Suspension for a 

Quarter of an Automobile 
It is known the specialists’ preoccupation in the field 
of automotive to realize cars with high degree of 
comfort, equipped with suspensions which don’t 
lead to resonance for a large enough set of excitation 
from the road. A solution in this direction is to equip 
the automobile with suspensions with neo-Hookean 
elements. 
 
 
2.1 Formulation of the problem 
We shall consider a quarter of an automobile 
schematized as two masses that oscillate in the 
vertical direction (Fig. 1). 
     The mass 1m  characterizes the wheel and the all 

other elements jointed to it, and the mass 2m  marks 

the quarter of the automobile. 
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Fig. 1. The model quarter of automotive. 

 
     The mass 1m  is linked to the road by the linear 

spring of stiffness k , and the mass 2m  is linked to 

the mass 1m  by the neo–Hookean element denoted 

by ENH for which the elastic force reads 

2
2

1
z

k
zkFe −= , (1) 

where 1k  and 2k  are two strict positive constants, 

and z  is the elongation of the neo–Hookean 
element. 
 
 
2.2 The equations of motion 
Isolating the two masses 1m  and 2m  (fig. 2) and 

writing for each one the Newton’s law, it results 
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Denoting now 
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Fig. 2. Isolation of the two masses. 

 

11 z=ξ ; 22 z=ξ ; 13 zɺ=ξ ; 24 zɺ=ξ , (3) 

the system (2) of the equations of motion can be 
written as a system of four first order non-linear 
differential equations, that is 
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2.3 The determination of the equilibrium 

positions 
The equilibrium positions are found at the 
nullclines’ intersection of the system (4). Equating 
with 0 the right-hand expressions of the equations 
(4), results the system 

03 =ξ ; 04 =ξ ; 

( )
( )
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2
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−ξ−ξ+ξ− gm
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kk ; 
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12

2
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k
k . (5) 

     Summing now the last two relations (5), one 
obtains 

( )gmmk 211 +=ξ , (6) 

wherefrom 

g
k

mm 21
1

+
=ξ . (7) 

     The last relation (5) offers 

( ) ( ) 02
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122
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121 =−ξ−ξ−ξ−ξ kgmk . (8) 

     Let us denote by ( )2ξf  the function 

( ) ( ) ( ) 2
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     The derivative of the function f  is 

( ) ( ) ( )122
2

1212 23 ξ−ξ−ξ−ξ=ξ′ gmkf , (10) 

which, equated to 0, leads us to 
( ) ( )[ ] 023 212112 =−ξ−ξξ−ξ gmk . (11) 

     The roots of the derivative are 
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     For ( )1
2ξ  we have 
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according to the hypothesis 02 >k , and for ( )2
2ξ  we 

can write 
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     In addition, we also have 
( ) 01
2 >ξ ; ( ) 02

2 >ξ . (15) 

     Graphically, the situation is presented in the 
figure3. 
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Fig. 3. The graphic of the function ( )2ξf . 

 
     We deduce that the equation ( ) 02 =ξf  has only 

one root ( )2
22 ξ>ξ . 
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2.4 The stability of the equilibrium 
Let us consider the system (4) of the moving 
equations and let us rewrite it as 
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d
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; 4 ,1=i , (16) 

where 
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     Let us denote by 

l

k
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f
j

ξ∂
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= ; 4 ,1=k ; 4 ,1=l . (18) 

     We have 
011 =j ; 012 =j ; 113 =j ; 014 =j , (19) 

021 =j ; 022 =j ; 023 =j ; 124 =j , (20) 
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     The characteristic equation 
[ ] [ ]( ) 0det =ϕ− IJ , (23) 

in which [ ]J  is the Jacobi matrix, 
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and [ ]I  is the fourth order unity matrix, offers us 
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     The discriminate of this bi-square equation is 
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because both 41j  and 32j  are strict positive 

expressions. 
     On the other hand, 

042 <j ; 031 <j  (29) 

and 
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     Indeed, the relation (30), keeping into account 

that 0>∆  and ( ) 03142 >+− jj , reads in the 

equivalent form 
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the last relation being obviously true from the above 
discussion. 
     The roots of the bi-squared equation read 

2
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and one observes that 
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that is, the roots of the characteristic equation are 
pure imaginary, 
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     Therefore, the equilibrium is simply stable. 
     Let us consider the equilibrium position 
( )0 ,0 , , 21 ξξ  and a deviation ( )4321  , , , uuuu  

sufficiently small in its norm. 
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     Keeping into account that ( )0 ,0 , , 21 ξξ  is a 

solution of the differential equations system (4), it 
results the system in deviations 
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     We can make the approximation 
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such that the system (39) becomes 
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     The Jacobi matrix of the system (41) has the 
expression 
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the characteristic equation reading 
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     The roots of the characteristic equation (45) are 
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     THEOREM 1. If 02 >k , then the system has 

only one equilibrium position which is stable and 

not asymptotically stable. 
     Proof: Since the roots (47) of the characteristic 
equation (45) are pure imaginary, it follows that the 
system (41) has the solution 

( ) ( )tpCtpCu 22111 coscos += ; 

( ) ( )tpDtpDu 22112 coscos += , (48) 

where 1C , 2C , 1D , 2D  are constants of integration 

which result from the initial conditions, and 1p , 2p  

have the expressions 
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     The solutions (48) are bounded and it follows 
that the equilibrium is stable but not asymptotically 
stable. 
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2.5  The small oscillations around the 

position of stable equilibrium 
Let us return to the system (4) and let us make the 
approximation 
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obtained developing the function ( )
2
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xg =  about a 

point 0x  and retaining only the first term of the 

development. 
     The system (39) takes now the form 
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     Let us denote 
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the system (51) reading 

211111 ubuaum +=ɺɺ ; 221222 ubuaum +=ɺɺ . (53) 

     For the system (53) we shall look for solutions in 
the form 
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     The system (55) has non-zero solution if its 
determinant is equal to 0, that is 
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2.6 Comparison with the linear case 
The linear case is defined by 

02 =k . (63) 

     In this situation, the parameter a  takes its 
minimum value, which is 

1ka = . (64) 

     Let us consider the expression (62), which gives 
the eigenpulsations and let 2

1ω  be the value 

corresponding to the sign – and 2
2ω  the value 

corresponding to the sign +. 
     If a  increases, then 2

2ω  will increase, such that 

we can always write 
( )

l22 ω>ω , (65) 

where the index l  signifies linear. 
     On the other hand, the increasing of a  implies 
both the increasing of the expression ( )21 mma +  

and the expression under the radical, the increasing 
of the expression ( )21 mma +  being greater than that 

of the expression under the radical. It therefore 
results 

( )
l11 ω>ω . (66) 

     Finally, we found that the use of the neo–
Hookean element leads to the displacement of the 
fundamental pulsation in an increasing sense. 
     In addition, the increasings of the two 
fundamental pulsations 1ω  and 2ω  are not equal, in 

the sense that 2ω  increases more than 1ω . This 

thing is mathematically written by the relation 
( ) ( )

ll 1212 ω−ω>ω−ω . (67) 

     In this way, the safety domain where the 
resonance doesn’t appear increases and it goes to 
superior value comparing to those in the linear case. 
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2.7 Numerical application 
Let us consider a numerical case defined by 

[ ]N/m 104 5⋅=k ; [ ]N/m 105 4
1 ⋅=k ; 

[ ]2
2 Nm 5=k ; [ ]kg251 =m ; [ ]kg3502 =m ; 

[ ]2m/s8065.9=g . (68) 

     The static elongations (the equilibrium position) 
are given by 

[ ]m00919.01 =ξ ; [ ]m0923.02 =ξ . (69) 
 

 a) 

 b) 

 c) 

 d) 
Fig. 4. The graphics of variation for different 

characteristic variables; a) ( )t11 ξ=ξ  for 

[ ]s10 ≤≤ t ; b) ( )t22 ξ=ξ  for [ ]s10 ≤≤ t ; c) 

( )t33 ξ=ξ  for [ ]s10 ≤≤ t ; d) ( )t44 ξ=ξ  for 

[ ]s10 ≤≤ t . 

 

     The initial values are 
[ ]m009.00

1 =ξ ; [ ]m09.00
2 =ξ ; [ ]m/s00

3 =ξ ; 

[ ]m/s00
4 =ξ , (70) 

and the parameter a  from the expression (58) is 
[ ]N/m68.67419=a . (71) 

     In figure 4 were drawn the graphics of variation 
for different characteristic variables obtained by 
numerical simulation. 
     One can obviously see the quasi-periodic 
character of the presented variations. 
     The formula (62) offers us the eigenpulsations in 
the non-linear case 
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     In the linear case one obtains the values 
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     The breadth of the non-dangerous 
eigenpulsations is in the non-linear case 

[ ]-1
12 s01.124=ω−ω=ω∆ , (74) 
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     The results are in good agreement with the above 
theoretical considerations. 
 
 
2.8 The stability of the motion 

Let us consider that iξ , 4 ,1=i  is a solution of the 

system (4) of the moving equations and let 
( )4321  , , , uuuu  be a deviation sufficiently small in its 

norm. 
     The system in deviations has the expression 
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mt

u

 (76) 

     Let us denote by ( )4321  , , , uuuug  the functions in 

the right-hand terms of the expressions (76) and by 

klj  the partial derivatives 

l

k
kl

u

g
j

∂
∂

= ; 4 ,1=k ; 4 ,1=l . (77) 

     We have 
011 =j ; 012 =j ; 113 =j ; 014 =j , (78) 
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021 =j ; 022 =j ; 023 =j ; 124 =j , (79) 

( ) 








−+ξ−ξ
−−−=

3
1212

2
1

1
31

21

uu

k
kk

m
j ; 

( ) 








−+ξ−ξ
+=

3
1212

2
1

1
32

21

uu

k
k

m
j ; 033 =j ; 

034 =j , (80) 

( ) 








−+ξ−ξ
+=

3
1212

2
1

2
41

21

uu

k
k

m
j ; 

( ) 








−+ξ−ξ
−−=

3
1212

2
1

2
42

21

uu

k
k

m
j ; 043 =j ;  

044 =j . (81) 

     We denote by a  the expression 

( )31212

2
1

2

uu

k
ka

−+ξ−ξ
+= , (82) 

such that we can write 

1
31

m

ak
j

−−
= ; 

1
32

m

a
j = ; 

2
41

m

a
j = ;  

2
42

m

a
j

−
= . (83) 

     The characteristic equation 
[ ] [ ]( ) 0det =ϕ− IJ , (84) 

where [ ]J  is the Jacobi matrix, 

[ ] [ ]
4 ,1
4 ,1

=
==

l

k
kljJ , (85) 

and [ ]I  is the fourth order unity matrix, takes the 

form 

0

0

0

100

010

22

11

=

ϕ−−

ϕ−
+

−

ϕ−

ϕ−

m

a

m

a

m

a

m

ka
, (86) 

00

10

0

0

10

22

11

2

1

=

ϕ−−

+
−

ϕ−

+

ϕ−−

ϕ−

ϕ−

ϕ−

m

a

m

a

m

a

m

ka

m

a

m

a
, (87) 

0
21

2

12

4 =+ϕ






 +
++ϕ

mm

ak

m

ka

m

a
. (88) 

     The discriminate of this equation is 

( ) ( )

( ) ( )

. 0
4

42

42

4

2
1

2

12

2
121

2
1

2

2
2

2

2121
2
1

2

2
2

2

21

2

12

>+






 −
+=

+
−

+
+

+=

−
+

+
+

+=

−






 +
+=∆

m
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m

ka

m

a

m
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m
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m

a
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ak
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m
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m

a

mm

ak

m

ka

m

a

 (89) 

     The roots of the characteristic equation (88) read 







−







 +
+±

±


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
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
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


 +
+−=ϕ

21

2

12

12

2
2 ,1

4

2

1

mm

ak

m

ka

m

a

m

ka

m

a

 (90) 

and one can easy see that they are pure imaginary, 

, 
2

4

i

21

2

1212

1

mm

ak

m

ka

m

a

m

ka

m

a
−







 +
++

+
+

×=ϕ

 (91a) 

, 
2

4

i

21

2

1212

2

mm

ak

m

ka

m

a

m

ka

m

a
−







 +
++

+
+

×−=ϕ

 (91b) 

, 
2

4

i

21

2

1212

3

mm

ak

m

ka

m

a

m

ka

m

a
−







 +
+−

+
+

×=ϕ

 (91c) 

. 
2

4

i

21

2

1212

4

mm

ak

m

ka

m

a

m

ka

m

a
−







 +
+−

+
+

×−=ϕ

 (91d) 

     Result the solutions of the system (81) in the 
form 

( ) ( )tpCtpCu 22111 coscos += ; 

( ) ( )tpDtpDu 22112 coscos += , (92) 

in which 1C , 2C , 1D , 2D  are constants of 

integration which are obtained from the initial 
conditions, and 1p , 2p  read as 
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; 
2

4

21

2

1212

1

mm

ak

m

ka

m

a

m

ka

m

a

p

−






 +
++

+
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. 
2

4

21

2

1212

2

mm

ak

m

ka
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ka

m

a

p

−






 +
+−

+
+

=

. (93) 

     THEOREM 2. In the case 02 >k  the motion is 

always stable and not asymptotically stable. 
     Proof: It is obvious from the above discussions. 
 
 
2.9 Numerical application 
As numerical application let us consider the case 
defined by the relations (68), the initial conditions 
being 

[ ]m012.00
1 =ξ ; [ ]m022.00

2 =ξ ; [ ]m/s00
3 =ξ ; 

[ ]m/s00
4 =ξ , (94) 

and the deviations 
[ ]m001.00

1 −=u ; [ ]m001.00
2 −=u ; [ ]m/s01.00

3 =u ; 

[ ]m/s00001.00
4 =u . (95) 

     In the figure 5 we presented the representative 
diagrams for the unperturbed motion; in the figure 6 
for the perturbed motion, and in figure 7 the 
deviations of the perturbed motion with respect to 
the unperturbed motion. 
 
 
2.10 Discussion 

Until now we considered the case 02 >k . The Case 

02 =k  is not an interesting one because we arrive 

to the linear case. 
     Let us now consider 02 <k . 

     One obtains the same value for 1ξ  given by the 

formula (7) and the same roots of the derivative 
( )2ξ′f  given by the expressions (12). 

     For ( )1
2ξ  we find 

( )( ) 02
1
2 >−=ξ kf , (96) 

and for ( )2
2ξ  we have 

( )( ) 22
1

33
22

2 27

4
k

k

gm
f −−=ξ . (97) 

     If ( )( ) 02
2 >ξf , that is 

2
1

33
2

2 27

4

k

gm
k −< , (98) 

then we are in the situation drawn in the figure 8, the 

equation ( ) 02 =ξf  having only one root ( )1
22 ξ<ξ . 

 a) 

 b) 

 c) 

 d) 
Fig. 5. The representative diagrams for the 

unperturbed motion; a) ( )t11 ξ=ξ  for [ ]s10 ≤≤ t ; 

b) ( )t22 ξ=ξ  for [ ]s10 ≤≤ t ; c) ( )t33 ξ=ξ  for 

[ ]s10 ≤≤ t ; d) ( )t44 ξ=ξ  for [ ]s10 ≤≤ t . 

 

     If ( )( ) 02
2 <ξf , that is 

2
1

33
2

2
27

4

k

gm
k −> , (99) 

then we are in the situation presented in the figure 9, 
the equation ( ) 02 =ξf  having now three real roots 

situated in the intervals ( )( )1
2 , ξ∞− , ( ) ( )( )2

2
1
2  , ξξ , 
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( )( )∞+ξ  ,2
2 . 

 a) 

 b) 

 c) 

 d) 
Fig. 6. The representative diagrams for the perturbed 
motion; a) ( )t11 ξ=ξ  for [ ]s10 ≤≤ t ; b) ( )t22 ξ=ξ  

for [ ]s10 ≤≤ t ; c) ( )t33 ξ=ξ  for [ ]s10 ≤≤ t ; d) 

( )t44 ξ=ξ  for [ ]s10 ≤≤ t . 

 
     No matter in what situation we are, the 
components of the Jacobi matrix have the same 
expressions given by the formulas (19), (21) and 
(22), and the characteristic equation reads in the 
same form (27). 
     Let us consider for the beginning the situation 
described in the figure 8. In this case 012 <ξ−ξ , 

02 <k  and it results 

 a) 

 b) 

 c) 

 d) 
Fig. 7. The deviations of the perturbed motion with 
respect to the unperturbed motion; a) ( )t11 ξ∆=ξ∆  

for [ ]s10 ≤≤ t ; b) ( )t22 ξ∆=ξ∆  for [ ]s10 ≤≤ t ; 

c) ( )t33 ξ∆=ξ∆  for [ ]s10 ≤≤ t ; d) ( )t44 ξ∆=ξ∆  

for [ ]s10 ≤≤ t . 

 
031 <j ; 032 >j ; 041 <j ; 042 <j . (100) 

     The discriminate of the characteristic equation is 
given by the formula (28) and it is also positive, the 
expression (30) remaining true. 
     In addition, the roots of the characteristic 
equation are pure imaginary, the equilibrium being 
simply stable. 
     The system in deviations has again the form (41), 
the roots of the characteristic equation being pure 
imaginary and given by the formulas (47). 
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maxim

minim

O

f (ξ2
)

ξ22ξ
(1) (2)ξ2

 
Fig. 8. The case ( )( ) 02

2 >ξf . 

 

maxim

minim
O

f(ξ2)

2ξ

2ξ

2ξ
(1)

(2)

 
Fig. 9. The case ( )( ) 02

2 <ξf . 

 
     THEOREM 3. In the case 02 <k , 

2
1

33
2

2 27

4

k

gm
k −< , the equilibrium is always stable and 

not asymptotically stable. 
     Proof: It is identical to that of the theorem 1. 
     We shall go now to the case described in the 

figure 9, that is 02 <k , 
2

1

33
2

2
27

4

k

gm
k −> . 

     Obviously, if ( )( )1
22  , ξ∞−∈ξ , the discussion 

doesn’t change being the same as in the previous 
case. 
     THEOREM 4. In the case 02 <k , 

2
1

33
2

2 27

4

k

gm
k −> , the equilibrium position 

( )( )1
22  , ξ∞−∈ξ  is always stable and not 

asymptotically stable. 
     Proof: It is identical to that of the theorem 1. 
     Let us now consider the situations for which 

( ) ( )( )2
2

1
22  , ξξ∈ξ  or ( )( )∞+ξ∈ξ  ,2

22 . 

     In this case, the inequality 

3142 jj +=∆  (101) 

is equivalent, according to formula (35), with 

( )
0

2
13

12

2 >+
ξ−ξ

k
k

, (102) 

or, equivalently, 

( )
2

3
121

2

ξ−ξ
−<

k
k . (103) 

     Let be the equilibrium position ( )( )∞ξ∈ξ ,2
22 . 

From the expression (12) one deduces 

( )

1

2
1

2
212 3

2

k

gm
=ξ−ξ>ξ−ξ . (104) 

     Keeping into account the formula (104) and the 
fact that 02 <k , the relation (102) leads us to 

( )

. 
4

27
1

4

27

3

2

22

33
2

2
2
1

1133
2

2
3
1

13

1

2

2
13

12

2









+=+=

+









>+

ξ−ξ

gm

kk
kk

gm

kk

k

k

gm

k
k

k

 (105) 

     But, since 
2

1

33
2

2 27

4

k

gm
k −> , the relation (105) 

offers us 

( )

. 0
27

4

4

27
1

2

2
1

33
2

33
2

2
1

1

13
12

2

=







−>

+
ξ−ξ

k

gm

gm

k
k

k
k

 (106) 

     Therefore we proved that for ( )2
22 ξ>ξ , the 

relation (102) is always true. 
     On the other hand, the condition 

03142 <+ jj  (107) 

leads us to 

( )
0

211

1
13

12

2

21

<−











−

ξ−ξ
−








+

m

k
k

k

mm
. (108) 

     One observes that if the formula (102) is true, 
then the formula (108) is also true. Therefore, we 
have to verify only the condition (102). 
     THEOREM 5. In the case 02 <k , 

2
1

33
2

2 27

4

k

gm
k −> , the equilibrium position ( )2

22 ξ>ξ  is 

always stable and not asymptotically stable. 
     Proof: It is obvious from the above discussion. 
     Let us consider now the root ( ) ( )( )2

2
1
22 , ξξ∈ξ . 

     THEOREM 6. In the case 02 <k , 

2
1

33
2

2 27

4

k

gm
k −> , the equilibrium position 

( ) ( )( )2
2

1
22 , ξξ∈ξ  is always unstable. 
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     Proof: From the second formula (5) we deduce 

( )
( ) gmk

k
21212

12

2 −ξ−ξ=
ξ−ξ

, (109) 

wherefrom 

( ) 12

2
113

12

2 2
3

2

ξ−ξ
−=+

ξ−ξ

gm
kk

k
. (110) 

     But ( ) ( )( )2
2

1
22 , ξξ∈ξ  and from the expression (13) 

we have 

1

2
12 3

2

k

gm
<ξ−ξ . (111) 

     The relation (110) offers now 

( )
0

3

2
2

3
2

1

2

2
113

12

2 =−<+
ξ−ξ

k

gm

gm
kk

k
. (112) 

     It results that the equilibrium is unstable and the 
theorem is proved. 
 
 

3   Neo–Hookean Suspension for a 

Half of an Automobile 
 
 
3.1 Mathematical model 
We shall now present the study of the motion for 
four degrees of freedom system that models a half of 
an automobile. The model is presented in figure 10. 
This model consists of the masses 1m  and 2m , 

which mark the wheels of the automobile, masses 
linked to the ground by linear elastic springs of 
stiffness 1k  and 2k , respectively. By wheels is 

attached the chassis marked by the bar AB  of mass 
M . The linking of the chassis is made by the non-
linear neo–Hookean elastic elements by elastic 
stiffness 1d , 1e , respectively 2d , 2e . The elastic 

force that appears in such element is given by 

2
i

i
ii

z

e
zdF −= , (113) 

where 2,1=i , iz  marks the elongation of the 

respective element, and 0>id , 01 >e , 2,1=i . 

     The four degrees of freedom of the system were 
selected as follows: 1q , 2q  the elongations of the 

linear springs, 3q  the displacement in the vertical 

direction of the gravity centre G  of the chassis and 

4q  the rotation of the chassis with respect to the 

horizontal. 
     We assume that there are known the dimensions 

1L  and 2L  that define the position of the gravity 

centre G  of the chassis with respect to the two 

wheels and J  the moment of the inertia with respect 
to a horizontal axis that passes through its gravity 
centre. 

 1L 2L

22 ,ed11,ed

0G

G

g1m

1k 2k

2q

3q
4q

A B

1q

 
Fig. 10. The mathematical model. 

 
 
3.2 The equations of motion 
The kinetic energy of the system has the expression 

2
4

2
3

2
22

2
11 2

1

2

1

2

1

2

1
qJqMqmqmT ɺɺɺɺ +++= . (114) 

     The forces, which appear in the system, derive 
from a potential, hence the potential energy reads 

( )

( )

, 

2

2

1
2

1

2

1

3
2423

2

2
2423

2

3141

1

2
3141122

2
2211

2
11

Mgq
qqLq

e

qqLq
d

qqqL

e

qqqLdgqm

qkgqmqkV

−
−−

+

−−+
+−

+

+−+−

+−=

 (115) 

g  being the gravitational acceleration. 

     We successively calculate 

11
1

qm
q

T
ɺ

ɺ
=

∂
∂

; 22
2

qm
q

T
ɺ

ɺ
=

∂
∂

; 3
3

qM
q

T
ɺ

ɺ
=

∂
∂

;  

4
4

qJ
q

T
ɺ

ɺ
=

∂
∂

, (116) 

11
1d

d
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q

T

t
ɺɺ

ɺ
=









∂
∂

; 22
2d

d
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q

T

t
ɺɺ

ɺ
=









∂
∂

; 

3
3d

d
qM

q

T

t
ɺɺ

ɺ
=









∂
∂

; 4
4d

d
qJ

q

T

t
ɺɺ

ɺ
=









∂
∂

, (117) 
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0
1

=
∂
∂
q

T
; 0

2

=
∂
∂
q

T
; 0

3

=
∂
∂
q

T
; 0

4

=
∂
∂
q

T
, (118) 

( )

( )
, 

2
3141

1

31411111
1

qqqL

e

qqqLdgmqk
q

V

+−
+

+−−−=
∂
∂

 (119a) 

( )

( )
, 

2
2423

2

24232222
2

qqLq

e

qqLqdgmqk
q

V

−−
+

−−−−=
∂
∂

 (119b) 

( )

( )
( )

( )
, 

2
2423

2

242322
3141

1

31411
3

Mg
qqLq

e

qqLqd
qqqL

e

qqqLd
q

V

−
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−
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−
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∂
∂

 (119c) 

( )
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( )

( )
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2
2423
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242322

2
3141
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314111
4

qqLq

eL

qqLqdL

qqqL

eL

qqqLdL
q

V

−−
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−
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∂
∂

 (119d) 

such that the Lagrange equations read 
( )

( )
, 0

2
3141

1

3141111111

=
+−

+

+−−−+

qqqL

e

qqqLdgmqkqm ɺɺ

, (120a) 

( )

( )
, 0

2
2423

2

2423222222

=
−−

+

−−−−+

qqLq

e

qqLqdgmqkqm ɺɺ

, (120b) 
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2
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     Let us denote 

11 q=ξ ; 22 q=ξ ; 33 q=ξ ; 44 q=ξ ; 15 qɺ=ξ ; 

26 qɺ=ξ ; 37 qɺ=ξ ; 48 qɺ=ξ  (121) 

obtaining a system of eight first order non-linear 
differential equations 
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3.3 The equilibrium positions 
These are obtained at the intersection of the 
nullclines, resulting the system 

05 =ξ ; 06 =ξ ; 07 =ξ ; 08 =ξ , (123) 

( )

( )
, 0

2
3141

1

31411111

=
ξ+ξ−ξ

−

ξ+ξ−ξ++ξ−

L

e

Ldgmk

 (124a) 

( )

( )
, 0

2
2423

2

24232222

=
ξ−ξ−ξ

−

ξ−ξ−ξ++ξ−

L

e

Ldgmk

 (124b) 

( )
( )

( )

( )
, 0

2
2423

2

24232

2
3141

1
31411

=+
ξ−ξ−ξ

+

ξ−ξ−ξ−

ξ+ξ−ξ
+ξ+ξ−ξ−

Mg
L

e

Ld

L

e
Ld

 (124c) 
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( )
( )

( )

( )
. 0

2
2423

22

242322

2
3141

11
314111

=
ξ−ξ−ξ

−

ξ−ξ−ξ+

ξ+ξ−ξ
+ξ+ξ−ξ−

L

eL

LdL

L

eL
LdL

 (124d) 

     Adding the first three relations (124), one obtains 
the equation 

( ) 0212211 =+++ξ−ξ− gMmmkk . (125) 

     Multiplying the first relation (124) by 1L , the 

second relation (124) by 2L−  and summing the 

results at the last expression (124), we deduce 
( ) 02211222111 =−+ξ+ξ− gmLmLkLkL . (126) 

     The relations (125) and (126) form a linear 
system of two equations with two unknowns ( 1ξ  

and 2ξ ) 

( )gMmmkk ++=ξ+ξ 212211 ;  

( )gmLmLkLkL 2211222111 −=ξ−ξ , (127) 

the solution of this system being 
( )
( )

( )
( )

, 
121

2211

2211

21

222211

221

1

g
kLL

MLLLm

kLkL

kk

kLgmLmL

kgMmm

+

++
=

−

−−

++

=ξ

 (128a) 

( )
( )

( )
( )

. 
221

1212

2211

21

221111

211

2

g
kLL

MLLLm

kLkL

kk

gmLmLkL

gMmmk

+

++
=

−

−

++

=ξ

 (128b) 

     We multiply now the third equation (124) by 

1L−  and we add it to the last equation (124) 

obtaining 
( ) ( )

( )
( )

012
2423

221

2423221

=−
ξ−ξ−ξ

+
−

ξ−ξ−ξ+

MgL
L

eLL

LdLL

 (129) 

or, equivalently, 

( )
( )

( ) . 0
2

22
2423

221

13
2423

=−ξ−ξ−ξ×

+
−ξ−ξ−ξ

d

e
LMg

dLL

L
L

 (130) 

     We multiply the third equation (124) by 2L  and 

we add it to the last equation (124) resulting 

( ) ( )
( )

( )
022

1413

121

3
1413121

=+
ξ−ξ+ξ

+
+

ξ−ξ+ξ+−

MgL
L

eLL

LdLL

 (131) 

or, equivalently, 

( )
( )

( ) . 0
1

12
1413

121

23
1413

=−ξ−ξ+ξ×

+
−ξ−ξ+ξ

d

e
LMg

dLL

L
L

 (132) 

     Let us consider for the beginning the equation 
(130) and let us denote 

2423 ξ−ξ−ξ= Lz ; 
( )

Mg
dLL

L

121

1

+
=α ;  

2

2

d

e
=β ; 0>α ; 0>β , (133) 

resulting the relation 
023 =β−α− zz . (134) 

     In the sequence of the coefficients for the 
equation (134) there exists only one variation of sign 
and applying the Descartes theorem, it results that 
the equation (134) has only one positive real root. 
Making the change of variable zz −֏ , one obtains 
the equation 

023 =β+α+ zz  (135) 

for which there exists no variation of sign in the 
sequence of the coefficients. Applying again the 
Descartes theorem, it results that the equation (135) 
has no positive real root and therefore the equation 
(134) has no negative real root. In the end, we 
obtained that the equation (134) has only one real 
root, thus the equation (130) has one real root, too. 
Let us denote this root by 1z . 

     Proceeding in an analogous way, one deduces 
that the equation (132) has one real root and we 
denote this root by 2z . 

     It results the system 

12423 zL =ξ−ξ−ξ ; 21413 zL =ξ−ξ+ξ , (136) 

for which the solution is 

( ) ( )
, 

1

1

21

122211

1

2

112

221

3

LL

zLzL

L

L

Lz

Lz

+

ξ++ξ+
=

−

ξ+

−ξ+

=ξ

 (137a) 

respectively 
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( ) ( )
. 

1

1

1

1

21

2112

1

2

12

21

4

LL

zz

L

L

z

z

+

ξ+−ξ+
=

−

ξ+

ξ+

=ξ

 (137b) 

     We obtained that there exists only one 
equilibrium position defined by the relations (128) 
and (137). 
 
 
3.4 Stability of the equilibrium 

Let us denote by if  the expressions in the right-

hand side of the relations (122) and let be 

l

k
kl

f
j

ξ∂
∂

= ; 8 ,1=k ; 8 ,1=l . (138) 

     We have 
011 =j ; 012 =j ; 013 =j ; 014 =j ; 115 =j ; 

016 =j ; 017 =j ; 018 =j , (139) 

021 =j ; 022 =j ; 023 =j ; 024 =j ; 025 =j ; 

126 =j ; 027 =j ; 028 =j , (140) 

031 =j ; 032 =j ; 033 =j ; 034 =j ; 035 =j ; 

036 =j ; 137 =j ; 038 =j , (141) 

041 =j ; 042 =j ; 043 =j ; 044 =j ; 045 =j ; 

046 =j ; 047 =j ; 148 =j , (142) 

( )331411

1

1

1

1

1
51

2

ξ+ξ−ξ
−−−=

Lm

e

m

d

m

k
j ; 052 =j ; 

( )331411

1

1

1
53

2

ξ+ξ−ξ
+=

Lm

e

m

d
j ; 

( )33141

11

1

11
54

2

ξ+ξ−ξ
+=

L

Le

m

Ld
j ; 055 =j ; 056 =j ; 

057 =j ; 058 =j , (143) 

061 =j ; 
( )324232

2

2

2

2

2
62

2

ξ−ξ−ξ
−−−=

Lm

e

m

d

m

k
j ; 

( )324232

2

2

2
63

2

ξ−ξ−ξ
+=

Lm

e

m

d
j ; 

( )324232

22

2

22
64

2

ξ−ξ−ξ
−−=

Lm

Le

m

Ld
j ; 065 =j ; 

066 =j ; 067 =j ; 068 =j , (144) 

( )33141

11
71

2

ξ+ξ−ξ
+=

LM

e

M

d
j ; 

( )32423

22
72

2

ξ−ξ−ξ
+=

LM

e

M

d
j ; 

( )

( )
; 

2

2

3
2423

22

3
3141

11
73

ξ−ξ−ξ
−−

ξ+ξ−ξ
−−=

LM

e

M

d

LM

e

M

d
j

 

( )

( )
; 

2

2

3
2423

2222

3
3141

1111
74

ξ−ξ−ξ
++

ξ+ξ−ξ
−−=

LM

Le

M

Ld

LM

eL

M

Ld
j

  

075 =j ; 076 =j ; 077 =j ; 078 =j , (145) 

( )33141

1111
81

2

ξ+ξ−ξ
+=

LJ

eL

J

dL
j ; 

( )32423

2222
82

2

ξ−ξ−ξ
−−=

LJ

eL

J

dL
j ; 

( )

( )
; 

2

2

3
2423

2222

3
3141

1111
83

ξ−ξ−ξ
++

ξ+ξ−ξ
−−=

LJ

eL

J

dL

LJ

eL

J

dL
j

; 

( )

( )
; 

2

2

3
2423

2
2
22

2
2

3
3141

1
2
11

2
1

84

ξ−ξ−ξ
−−

ξ+ξ−ξ
−−=

LJ

eL

J

dL

LJ

eL

J

dL
j

 085 =j ; 

086 =j ; 087 =j ; 088 =j . (146) 

     The characteristic equation 
( ) 0det =λ− IJ , (147) 

where J  is the Jacobi matrix 
[ ] 8 ,1, ==

lkkljJ , (148) 

 
and I  is the eight-order unity matrix, reads 

0

000

000

0000

0000

1000000

0100000

0010000

0001000

84838281

74737271

646362

545351

=

λ−

λ−

λ−

λ−

λ−

λ−

λ−

λ−

jjjj

jjjj

jjj

jjj
. (149) 

     Multiplying the columns five, six, seven and 
eight by λ  and summing the obtained results to the 
columns one, two, three and four, respectively, one 
deduces the equation 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS Nicolae–Ddoru Stanescu

ISSN: 1991-8747 170 Issue 4, Volume 4, October 2009



. 0

000

000

0000

0000

10000000

01000000

00100000

00010000

2
84838281

74
2

737271

6463
2

62

5453
2

51

=

λ−λ−

λ−λ−

λ−λ−

λ−λ−

jjjj

jjjj

jjj

jjj  

 

(150) 
 

     Developing the determinant after the lines one, 
two, three and four, it results 

0
0

0

2
84838281

74
2

737271

6463
2

62

5453
2

51

=

λ−

λ−

λ−

λ−

jjjj

jjjj

jjj

jjj

 (151) 

or, equivalently, 

( )

. 0

0

0

838281

2
737271

63
2

62

54

2
848281

747271

64
2

62

53

2
848382

74
2

7372

6463
2

62

2
51

=λ−

λ−

−

λ−

λ−

+

λ−

λ−

λ−

λ−

jjj

jjj

jj

j

jjj

jjj

jj

j

jjj

jjj

jjj

j

 (152) 

     The relation (151) is a bi-square equation of the 
fourth order in the unknown 2λ . It also offers the 
condition for the equilibrium position to be stable or 
unstable because it imposes a relation of 
connectivity in the space of the parameters 1k , 2k , 

1d , 2d , 1e  and 2e . 

 
 
3.5 Application 
Let us consider the practical case for which 

[ ]N/m104 5
21 ⋅== kk ; [ ]N/m105 4

21 ⋅== dd ; 

[ ]2
21 Nm5== ee ; [ ]m221 == LL ; [ ]kg900=M ;

 [ ]kg2521 == mm ; [ ]2m/s10=g . (153) 

     The relations (128) offer 
[ ]m0011875.011 ==ξ echq ; 

[ ]m0011875.022 ==ξ echq . (154) 

     The equation (130) becomes 

0
105

5
10900

1054

2
4

2
4

3 =
⋅

−⋅⋅
⋅⋅

− zz  (155) 

wherefrom 
00001.009.0 23 =−− zz  (156) 

with the solution 
[ ]m1.01 == echzz . (157) 

     In an analogous way we find 
[ ]m1.02 =echz . (158) 

     The expressions (137) offer 
[ ]m1011875.033 ==ξ echq , (159) 

[ ]m1011875.04 =ξ . (160) 

     The partial derivatives read 
1840051 −=j ; 052 =j ; 240053 =j ;  

480054 =j , (161) 

061 =j ; 1840062 −=j ; 240063 =j ;  

480064 −=j , (162) 

667.6671 =j ; 667.6672 =j ; 333.13373 −=j ; 

074 =j , (163) 

10081 =j ; 10082 −=j ; 083 =j ;  

40084 −=j . (164) 

     Results the characteristic equation 

, 0

400100100

0333.133667.66667.66

48002400184000

48002400018400

22

2

2

2

=

λ−−λ−−

λ−−

−λ−−

λ−−

(165) 
 

wherefrom 

. 01036533.1105872.1

7.356959994333.37333
13211

468

=⋅+λ⋅+

+λ+λ+λ
 (166) 

     We denote 
η=λ2  (167) 

and one obtains the four-order equation 

. 01036533.1105872.1

7.356959994333.37333
1311

234

=⋅+η⋅+

+η+η+η
 (168) 

     The solving of this equation is made by the 
Lobacevski–Graeffe method for which for the 
equation 

043
2

2
3

1
4

0 =++++ axaxaxaxa  (169) 

the passing from the step p  to the step 1+p  takes 

place with the formulas 
( ) ( )[ ]20

1
0

pp aa =+ ; ( ) ( )[ ] ( ) ( ){ }pppp aaaa 20

2

1
1

1 2−−=+ ; 

( ) ( )[ ] ( ) ( ) ( ) ( )pppppp aaaaaa 4031

2

2
1

2 22 +−=+ ; 

( ) ( )[ ] ( ) ( ){ }pppp aaaa 42

2

3
1

3 2−−=+ ; ( ) ( )[ ]24
1

4
pp aa =+ . (170) 

     We shall create the next table. 
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Table 1. The solving of equation (168) by the 
Lobacevski–Graeffe method. 

Step 0a  1a  2a  

0 1 37333.333 356959997.7 
1 1 –679857763.5 1710156.1 ⋅  
2 1 1710310.2 ⋅−  341033.1 ⋅  
3 1 3410668.2 ⋅−  681078.1 ⋅  

 
Step 3a  4a  

0 11105872.1 ⋅  131036533.1 ⋅  
1 221054.1 ⋅−  2610864.1 ⋅  
2 441095.1 ⋅−  521047.3 ⋅  
3 881073.3 ⋅−  1051021.1 ⋅  

 
     Let be the function RR →:h , 

( )
1311

234

1036533.1105872.1

7.356959994333.37333

⋅+η⋅+

η+η+η=ηh
 (171) 

for which 
( )

, 105872.1

4.7139199891120004
11

23

⋅+

η+η+η=η′h
 (172) 

( ) 4.71391998922400012 2 +η+η=η′′h . (173) 

     The equation ( ) 0=η′′h  has the roots 

, 
24

4.713919989124224000

24

224000

2

2,1

⋅⋅−
±

−
=η

 (174) 

wherefrom 
07.40781 −=η ; 6.145882 −=η . (175) 

     In addition, 
( ) 010161.1 12

1 <⋅−=η′h ; 

( ) 010161.1 12
2 >⋅=η′h , (176) 

such that the equation ( ) 0=η′h  has three distinct 

real roots. We also have 
( ) 01042.4230 12 <⋅−≈−h ; 

( ) 01036.11 13 >⋅≈−h ; 

( ) 0108.318000 12 <⋅−≈−h ; 

( ) 0101.45000 15 >⋅≈−h  (177) 

and therefore the equation ( ) 0=ηh  has four distinct 

negative real roots. 
     From the table 1 we get 

( )

( ) 20096
1

1066.2
8

34

8
3

0

3
1

1 −≈
⋅

−=−−=η
a

a
, (178a) 

( )

( ) 16812
1066.2

1078.1
8

34

68

8
3

1

3
2

2 −≈
⋅
⋅

−=−−=η
a

a
, (178b) 

( )

( ) 8.346
1078.1

1073.3
8

68

88

8
3

2

3
3

3 −≈
⋅
⋅

−=−−=η
a

a
, (178c) 

( )

( ) 82.115
1073.3

1021.1
8

88

105

8
3

3

3
4

4 −≈
⋅
⋅

−=−−=η
a

a
. (178d) 

     Result the roots of the characteristic equation 
i76.1411 ≈λ ; i76.1412 −≈λ ; i05.1303 ≈λ ; 

i05.1304 −≈λ ; i62.185 ≈λ ; i62.186 −≈λ ; 

i76.107 ≈λ ; i76.108 −≈λ  (179) 

and all of them are pure imaginary, the equilibrium 
being simply stable. 
 
 

4   Conclusions 
In this work we presented two different models 
using rubber type components modeled as non-
linear neo–Hookean elements. The first model is a 
quarter of an automobile model, and the second is 
the model of a half of automobile. For both models 
we obtained the differential equations of motion and 
we studied the equilibrium positions and their 
stability. For the first model we also studied the 
stability of the motion. A comparison between the 
linear and the non-linear case is also performed for 
both models. We proved that the utilization of the 
neo–Hookean element leads to the increasing zone 
where the resonance doesn’t appears. For this 
reason, the neo–Hookean elements can be a valid 
substitute for the classical linear elements. In our 
future work we shall develop the models presented, 
using also linear and non-linear damping elements. 
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