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Abstract: - In this work we present two systems with non-linear neo—Hookean components. In such systems
there always exists an element with a non-linear characteristic equation. This element can be considered to be
a rubber or another equivalent structure. We shall prove that the utilization of a neo—Hookean element will not
destroy the properties of the structure, but it riches these properties and it could be a good solution in many
cases. The first model describes a quarter of an automobile and the second one is dedicated to a half-
automobile model. We obtain the equilibrium positions, study their stability in the most general case and for
the first model we also discuss the stability of the motion. In the paper there are also numerical applications.
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1 Introduction

In this work we shall present two systems with non-
linear neo—Hookean components. In such systems
there always exists an element with a non-linear
characteristic equation. This element can be
considered to be a rubber or another equivalent
structure.

We shall prove that the utilization of a neo—
Hookean element will not destroy the properties of
the structure, it riches these properties and it could
be a good solution in many cases.

2 Neo—Hookean Suspension for a

Quarter of an Automobile

It is known the specialists’ preoccupation in the field
of automotive to realize cars with high degree of
comfort, equipped with suspensions which don’t
lead to resonance for a large enough set of excitation
from the road. A solution in this direction is to equip
the automobile with suspensions with neo-Hookean
elements.

2.1 Formulation of the problem
We shall consider a quarter of an automobile
schematized as two masses that oscillate in the
vertical direction (Fig. 1).

The mass m, characterizes the wheel and the all
other elements jointed to it, and the mass m, marks

the quarter of the automobile.

ISSN: 1991-8747

157

ENH

ki k,

m,
2

Fig. 1. The model quarter of automotive.

The mass m, is linked to the road by the linear
spring of stiffness &, and the mass m, is linked to
the mass m, by the neo-Hookean element denoted

by ENH for which the elastic force reads

k

Fe:klz_z_éa (1)

where &, and k, are two strict positive constants,

and z
element.

is the elongation of the neo—Hookean

2.2 The equations of motion
Isolating the two masses m, and m, (fig. 2) and
writing for each one the Newton’s law, it results

k, .
>+ mg>

(Zz - Zl)

k
—2 =+ mg.
Zl)

(Zz -

mz, = —kz, + kl(ZZ - Zl) -

myz, = _kl(zz - Zl) +

2

Denoting now
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m, gl

Fig. 2. Isolation of the two masses.

& =258 =258 =25 & =2, (3)
the system (2) of the equations of motion can be
written as a system of four first order non-linear
differential equations, that is

S, (4a)
dg, _
pr =&, (4b)
1
dt _ml “9)
, (4c
k
X|:_k§1+kl(§2_§l)_m+mlg:|a
1
dr m, “d)
k
{— k&, - él)_m + ng}-
2 TG

2.3 The determination of the equilibrium
positions

The equilibrium positions are found at the
nullclines’ intersection of the system (4). Equating
with O the right-hand expressions of the equations
(4), results the system

& =0;8,=0;

— k€, +k1(§2—§1)—(<:]j—2§)2+m1g20;
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)

> +mg =0.

k
_kl , — & 2
SRy

Summing now the last two relations (5), one
obtains

kg, = (ml +m, )g > (6)
wherefrom
m, +m
& = : k : ™)
The last relation (5) offers
k1(é2_§1)3 _ng(éz_él)z -k, =0. (8)
Let us denote by f (&2) the function
f(éz):kl(éz _Eal)3 _ng(az _&1)2 — k. &)
The derivative of the function f is
f'(éz) = 3k1(§2 - &1)2 - 2m2g(§2 - E_:l)’ (10)
which, equated to 0, leads us to
(éz _‘21)[3151(@2 —él)—2ng]= 0. (1)
The roots of the derivative are
2
V=g eP) =28 pg (12)
3k,
For £)) we have
/D) =~k <o, (13)

according to the hypothesis k£, > 0, and for E,(zz) we
can write

3 2
a{35) -l
1 1 (14)
_8mig® 4mig’
CO27kE 9k? :
In addition, we also have
e >0; el >0. (15)

Graphically, the situation is presented in the
figure3.

)t

_ —4mig’
27k,

-k, <0.

minim

Fig. 3. The graphic of the function f (iz).

We deduce that the equation f(£,) = 0 has only

one root &, > é(zz).
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2.4 The stability of the equilibrium
Let us consider the system (4) of the moving
equations and let us rewrite it as

dg,

E=ﬁ(§1,§z,§3,i4); i=14, (16)
where
fi(gl’gb(ta}n(tﬂ): & f2(§17§2,§3’§4) =&,
JAGRIR-N
1 k
:m_l{_kal +k1(<t:2 _gl)_(&z——zil)ﬁmlg}
J’zs(‘gl’&azaE.a3aE.a4):L
L (17)
—k(& —E)+—2—+m g}.
{ 278 € -&)
Let us denote by
jk1=%;k:1,4;l:1,4. (18)
I
We have
Ju=057,=0;j5=1; j;,=0, (19)
Jn =05 Jpn =05 jy =03 jpy =1, (20)
1 2k
o= ——| =k -k - —2—|;
J31 m, { 1 (&2 _gm}

. 1 2k, . )
Jo = — —+k1} Ji =05 j3 =0, 21)
m {(‘iz _<t:1)3

1 2k

efe 2],

Yom, { 1 (& -&)

_ 1 2k, _

Jn=—|~— v ki js=0;

2om { (€ -&) } v

Jaa = 0. (22)

The characteristic equation

det([J] - o[I]) = 0, (23)
in which [J] is the Jacobi matrix,

)= Lk, (24)

and [I] is the fourth order unity matrix, offers us

- 0 1 O
0 - 0 1
S -0, (25)
Ja Jn —¢ 0
Jun Jo 0 —@
- 0 1 0 -9 1
—Qjyn —¢0 0 (+|j3 jp 0[(=0, (26)
Jo 0 =@ |jy Jo — O
o — (j42 + j31)(|)2 + JaiJa — JuJ = 0. (27)
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The discriminate of this bi-square equation is
. . \2 . .
A= (g + J ) = Usiiy = Juds) =

: 28)
= (j42 - 131) +4juJ3 >0,

because both j,, and j,, are strict positive
expressions.

On the other hand,
Jin <05 j3 <0 (29)
and
VA < ~( + Js1) (30)

Indeed, the relation (30), keeping into account
that YA >0 and - (j42 + j31)> 0, reads in the
equivalent form
A< (jy + j31)2~

It results successively

(31

(j42 + j31)2 - 4(]31]42 - j41j32) < (j42 + j31)2 , (32)
JaJn = JuJn >0, (33)
LN A ST
mym, (‘:2 - En)3
(34
X {— LS + kl} >0,
(€ -¢)
! 1{ 2k +kl}>0, (35)
mm, | (&, - &)

the last relation being obviously true from the above
discussion.
The roots of the bi-squared equation read

i + Ja £ \/Z
R B (36)
and one observes that
9} <0; ¢} <0, (37)

that is, the roots of the characteristic equation are
pure imaginary,

(Plzi\/_j42+j31+\/Z.

2
_ | JntJu tNA
Py, =1 )
2
_ et —NA
(P3_l 2 )

—i\/— Ja + J3 -JA
5 )

Therefore, the equilibrium is simply stable.

Let wus consider the equilibrium position
(8,,€,,0,0) and a deviation (u,,u,,u5,u,)
sufficiently small in its norm.

Py (38)
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Keeping into account that (§1,§2,0,0) is a

solution of the differential equations system (4), it
results the system in deviations

d
S (39)
d
=t (39b)
du 1
d_t3 = m_l[_ k(&) + )+ Ky
x(§2 —& +u, _”1)
ky } 1 (39¢)
(gz & +u, _”1)2 1 m
k
x {— Ky + ka8, - al)+m + mlg},
d 1
% :_[_ kl(?-lz —& +u, _”1)
t m,
+ ks -+ ng:| (39d)
(éz —& +u, _“1)
1 k
-—| -k )+ ———+m g}.
m, { o 1 (az _?-31)2 ’
We can make the approximation
1
(az —& +u, - “1)2 (40)
_ 1 B 2(u2 - ul)
(E:z _531)2 (‘taz - ‘tal)3 ,
such that the system (39) becomes
2k
k' =k +———2—
( 1 (‘:2 - il )3}
du _ 4
& e T
d 1 .
% = E[‘ ey + k" uy — ”1)];
d 1 .
D Ky ). A1)
e m,

The Jacobi matrix of the system (41) has the
expression

0 0 10
0 0 01
-k-kK K
B]=— 00, (42)
m m
k _ k 00
m, m,

the characteristic equation reading
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-0 0 1 0
0 -0 0 1
_k+k kK 0l=o0. @3)
m m
e
m, m,
-0 0 1
k*
-9 — -9 0
m,
k*
—Z— 0 -9
m,
, (44)
0 -0 1
+_k+k k= 0l=0,
m, m,
k* k*
— T =9
m, m,
(P4_(k_+k+kJ KRR o s
m, m m, m
The roots of the characteristic equation (45) are
k" k+k
(Plzz__;(p%:_ B (46)
m, m
wherefrom
K A |k + K
Q=0 ——5 P =0 |— 5 Q3 =1 ;
m, m, m
|k + kK
¢, = —i . 47)
m,

THEOREM 1. If k, > 0, then the system has
only one equilibrium position which is stable and
not asymptotically stable.

Proof: Since the roots (47) of the characteristic

equation (45) are pure imaginary, it follows that the
system (41) has the solution
u, = C, cos(plt) + G, cos(pzt);
u, = D, cos(plt) + D, cos(pzt), (48)
where C,, C,, D,, D, are constants of integration
which result from the initial conditions, and p,, p,
have the expressions

’k* fk+k*
Pr=— 5 P = .
my, m

The solutions (48) are bounded and it follows
that the equilibrium is stable but not asymptotically
stable.

(49)
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2.5 The small oscillations around the
position of stable equilibrium

Let us return to the system (4) and let us make the

approximation
1
(& —& +u, —u,) (50)
-~ 1 B 2(u2 - ul)
({32 - &1)2 (‘taz - ‘tal)3
obtained developing the function g(x) = iz about a
X

point x, and retaining only the first term of the

development.

The system (39) takes now the form
du, du,
a T T
%:L{_k_kl L}
e m & -&)

2%
+lk +——2—u, ¢;
{ (@—@Y}}

du, 1 { 2%, }
_— = kl + —3 Ml
d m, (&2 - ‘21)

(51
2k
ISR I
(az - ‘21)
Let us denote
al :_k_kl _2—1623’ bl :kl +2—kz3’
(532 - ‘tal) (‘t:z - &1)
a, =k +L3; b, = -k, —Lp (52)
(‘:2 - il) (‘:2 - il)
the system (51) reading
myi, = au, + b, ; myii, = a,u, + byu, . (53)

For the system (53) we shall look for solutions in
the form

u, = o cos(ot); u, = Beos(wz); a + P2 = 0. (54)
It follows

aw’m, = a0+ bp; — Bo’m, = a0 + b,B.  (55)
The system (55) has non-zero solution if its

determinant is equal to 0, that is

a, + m? b,
=0, (56)
a, b, + m,g®»*
wherefrom
(a1 + m]coz)(b2 + myo) —ab, =0. (57)
Let us denote by a the expression
a=k + Lp (58)
(az - ‘21)
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such that
a=—-a-k;b=a;a,=a;b,=-a. 59
The equation (57) reads now
(~a—k+mo)-a+mo?)-a?=0 (60)
or, equivalently,
mm,e* + (= am, — am, — km,)+ ak =0. (61)
It results
o). - a(ml + m2)+ km,
1,2
2mm,
(62)
N \/[a(ml +m,) —km, | + 4mm,a>
a 2m,m, .
2.6 Comparison with the linear case
The linear case is defined by
k,=0. (63)

In this situation, the parameter a takes its
minimum value, which is
a=k. (64)
Let us consider the expression (62), which gives

the eigenpulsations and let ®7 be the value

corresponding to the sign — and ®3 the value
corresponding to the sign +.
If a increases, then ®3 will increase, such that
we can always write
®, > (032 )1 ’
where the index / signifies linear.
On the other hand, the increasing of a implies
both the increasing of the expression a(m1 + mz)

(65)

and the expression under the radical, the increasing
of the expression a(m, + m, ) being greater than that
of the expression under the radical. It therefore
results

o > (o)), (66)

Finally, we found that the use of the neo—
Hookean element leads to the displacement of the
fundamental pulsation in an increasing sense.

In addition, the increasings of the two
fundamental pulsations ®, and ®, are not equal, in
the sense that ®, increases more than ,. This
thing is mathematically written by the relation
®, = > (0,), = (@), (67)

In this way, the safety domain where the

resonance doesn’t appear increases and it goes to
superior value comparing to those in the linear case.
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2.7 Numerical application
Let us consider a numerical case defined by

k =4-10° [N/m]; k, = 5-10* [N/m];

k, = S[Nmz]; m, = 25[kg]; m, = 350[kg];

g = 9.8065[m/s?]. (68)

The static elongations (the equilibrium position)

are given by

g, = 0.00919[m]; &, = 0.0923[m].
0 009E
00096 | '
00094 i |
00092
0 009
0 003E
00036

(69)

Ik
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=
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a n2s 035
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Fig. 4. The graphics of variation for different
characteristic variables; a) &, = il(t) for
0<t<1s];b) & =&,(t) for 0 <z <1s]; c)
& = &(r) for 0 <1 <1[s]: d) &, = &,(¢) for
0<z<Ifs].

d)
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The initial values are
g0 = 0.009[m]; &9 = 0.09[m]; &% = o[m/s];

&9 = 0[mss], (70)
and the parameter a from the expression (58) is
a = 67419.68[N/m]. (71)

In figure 4 were drawn the graphics of variation
for different characteristic variables obtained by
numerical simulation.

One can obviously see the quasi-periodic
character of the presented variations.

The formula (62) offers us the eigenpulsations in
the non-linear case

o, =12.83[s]; ®, =136.84[s1]. (72)
In the linear case one obtains the values
(), = 11.26[s]; o, =13422s1].  (73)

The breadth of  the non-dangerous
eigenpulsations is in the non-linear case

Ao = 0, — o, = 124.01[s], (74)
and in the linear case
(Ao), = (0,), - (o), = 122.96[s"1]. (75)

The results are in good agreement with the above
theoretical considerations.

2.8 The stability of the motion
Let us consider that &,, i = 1,4 is a solution of the

system (4) of the moving equations and let
(4,,u,,u;,u,) be a deviation sufficiently small in its

norm.
The system in deviations has the expression
dy _ oA
de A Y
du 1
d_t3 = m_l[_ ke, + kl(”Z _“1)
_ bk 2}
€ —& +u, —u,) (&, -€)
du, 1
—=—\-ku, —u
df m, [ 1( 2 1)
ky ky

(76)
_@2—a+u2—m>+@z—éf}

Let us denote by g(u,,u,,u;,u,) the functions in
the right-hand terms of the expressions (76) and by
Jju the partial derivatives

_ %8 .

Ju = ck=1L4;1=14. (77)
ou,
We have
Ju=0;j,=0;j5=1; j, =0, (78)
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Jou =05 jpn =05 jp3 =05 jou =1, (79)
. 1 2k
]312__k_k1_ 2 3}
m (€, — & +uy — 1)
1 2k, _
Jp=— |k + s Ji3 =0
m | (&2_‘21“‘”2_”1)3}
Ja =0, (80)
S 2k, }
Ja=—|k + ;
my | (‘t:z_él"'”z_”l)3
o] 2k, } .
Jo=—|"k - s Jaiz =05
m, | (&2“21"'”2_”1)3
Jas = 0. (81)
We denote by a the expression
a=k + 2%k (82)
(& —& +u, —uy)
such that we can write
. -k-a . a . a
Js1 = s = s Ju = T
1 m m,
. -a
Jan = —— (83)
2
The characteristic equation
det([J] - o[I]) = 0, (84)
where [J] is the Jacobi matrix,
1= Diukets, (85)
and [I] is the fourth order unity matrix, takes the
form
() 0O 1 0
0 -¢o 0
a+k
- — -¢ 0]=0, (86)
m m
a Ay,
m, m,
-¢o 0 1 0 -0 1
T B I N B 7).
m m m
a a a
-— 0 -9 — T 0
m, m, m,
(p4+(i+a+kj(p2+ ak =0. (88)
m, m mn,

The discriminate of this equation is
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dak

mym,

A

2
B atk|
_ - j
N 2a(a + k)
mn,
2 2 —
a +(a+k) Jr2a(a k)+4ak

2
my

2
[a a—k}
=|—+
m, my

The roots of the characteristic equation (88) read

(a
—+
my
a? _'_(a+k)2

2
my

3 dak

mym,

(89)

2
mym, my
dak

>

my

0.

0z =5 ||+
’ 2 m, m
3 (90)
a a+k dak
ol —+ -
m, m mym,

and one can easy see that they are pure imaginary,

¢ =1x
2
i+a+k \/(a+a+kJ _ 4dk (91a)
m, m m, m m,m,
2 b
©, = —ix
2
a a+k+\/£a+a+kj _ A4ak (91b)
m, m, m, m, mym,
2 b
¢y =1ix
2
a  a+k i+a+k _ 4ak (91c)
n, m n, n mn,
2 b
¢, =-ix
2
a+a+k_\/(a+a+kJ _ A4ak (91d)
n, m n, m nmym,
2

Result the solutions of the system (81) in the
form
u, = C cos(plt) + C, cos(pzt);
u, = D, cos(plt) + D, cos(pzt),
in which C,, C,, D, D,
integration which are obtained from the initial
conditions, and p,, p, read as

92)
are constants of
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b =
2
a a+k+ a a+k B dak
m, m m, m mym,
2 b
Py =
2
a+a+k_\/(a+a+kj _ A4ak (93)
m, m m, m mym,
2

THEOREM 2. In the case k, > 0 the motion is

always stable and not asymptotically stable.
Proof: 1t is obvious from the above discussions.

2.9 Numerical application

As numerical application let us consider the case

defined by the relations (68), the initial conditions

being

g0 = 0.012[m]; &9 = 0.022[m]; &9 = O[m/s];

&9 = 0[mvs],

and the deviations

—0.001[m]; u? = —0.001[m]; «? = 0.01[m/s];

u? = 0.00001[m/s]. (95)
In the figure 5 we presented the representative

diagrams for the unperturbed motion; in the figure 6

for the perturbed motion, and in figure 7 the

deviations of the perturbed motion with respect to
the unperturbed motion.

(94)

0 _
U

2.10 Discussion
Until now we considered the case k, > 0. The Case
k, = 0 is not an interesting one because we arrive
to the linear case.

Let us now consider k£, < 0.

One obtains the same value for &, given by the
formula (7) and the same roots of the derivative
f'(&,) given by the expressions (12).

For £} we find

V)= >0, (96)
and for £ we have
dmig?
)= -5 k. 97)
1
if £(e?))> 0, that is
dmig?
k, < ——2—, 98)
? 27k?
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then we are in the situation drawn in the figure 8, the
equation f (E,z) = 0 having only one root &, < (:(21).

1.5
a 0s il gl 1
3
= 0 A0 AL A T
o u] 0.25 0.5 0.7s5 1
t [s] 2)
4 hl M ||
-
E Lol
:":I CRR 'I'|I||I|' "
:i FTEVRERRRTT
u} 0.25 0.5 0.75h 1
t [=] b)
GO0
T 200 Y |
E ]
% 300 T
- o 0.25 0.5 o.rs 1
t [s] 0
200
" O
E o Lot
SO bl 1 S
= AL AL LRI
-200
u] 0.25 0.5 075 1
t [=] d)

Fig. 5. The representative diagrams for the
unperturbed motion; a) & = &(¢) for 0 <z < 1s];

b) &, = &,(t) for 0 <z <1[s];c) & = &,(¢) for
0<r<1s];d g, =g,(¢)for 0 <z < 1[s].

if £(E?) <0, that is
_4myg’
27k
then we are in the situation presented in the figure 9,
the equation f (Z;z) = 0 having now three real roots

situated in the intervals (— oo,E;(zl)), (g(;),g(;)),

99)

2
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(2. + )
3
z
E'1 |.||| ||.|I1I||.||||I| !
'l.-l o J
=
-1 4 I|||||I I LA I I
-2
u} 025 0.5 075 1
t
[=] 2)
=]
4
. T
o 0
o 2 M w
® 4 R
-G
u} 0.25 0.5 0.75 1
t [=] b)
1200
- ga0 4 L1 g1
E 4.
nl
‘= -G00 o — :
-1200
u] 0.25 0.5 0.75 1
t [=] )
1000
- MM UL i L
R R il FFIM \“f
=+
|
= -500 l Il
-{aaa
a 0.25 0.5 075 1
t [=] d)

Fig. 6. The representative diagrams for the perturbed
motion; a) & = & (¢) for 0 <7 < 1[s];b) &, = &,(¢)
for 0 <t <1s];c) & = &,(¢) for 0 <z <1[s]; d)

g, = &,(t) for 0 <t <1[s].

No matter in what situation we are, the
components of the Jacobi matrix have the same
expressions given by the formulas (19), (21) and
(22), and the characteristic equation reads in the
same form (27).

Let us consider for the beginning the situation
described in the figure 8. In this case &, — &, <0,

k, < 0 and it results
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Fig. 7. The deviations of the perturbed motion with
respect to the unperturbed motion; a) Ag, = Ag, (Z)

for 0 <t < l[s]; b) AE, = AZ;z(t) for 0 <t < l[s];
¢) A&, = A&,(¢) for 0 < ¢ < 1[s]; d) AL, = AE, ()
for 0 < ¢ < 1fs].

Ja31 <05 j3 > 05 j,, <05 jy, <O, (100)

The discriminate of the characteristic equation is
given by the formula (28) and it is also positive, the
expression (30) remaining true.

In addition, the roots of the characteristic
equation are pure imaginary, the equilibrium being
simply stable.

The system in deviations has again the form (41),
the roots of the characteristic equation being pure
imaginary and given by the formulas (47).
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A
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! e .
/ ’ = EY &,
Fig. 8. The case f(Z;(ZZ)) >0.
g4
maxim
|
| ®
| e /.
/ o v DS
minim
Fig. 9. The case f(Z;(ZZ)) <0.
THEOREM 3. In the case k, <0,
353
) _4m_2g2, the equilibrium is always stable and

1

not asymptotically stable.

Proof: 1t is identical to that of the theorem 1.

We shall go now to the case described in the
dm3g?
27k

Obviously, if &, e (- ,&l)), the discussion
doesn’t change being the same as in the previous
case.

figure 9, thatis k, <0, k, > —

THEOREM 4. In the case ky, <0,
dm3g?
k, > -——22_ the equilibrium osition
£, € (— o0, Fj(zl)) is always stable and not
asymptotically stable.

Proof: 1t is identical to that of the theorem 1.
Let us now consider the situations for which

& e (V.6 or &, € [+ ).
In this case, the inequality

\/Z = |j42 + j31|

(101)
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is equivalent, according to formula (35), with
2k,

—=—+k >0, (102)
( 27 ‘21 )3
or, equivalently,
3
@<_EE%%QL, (103)

Let be the equilibrium position &, € (§(22>,oo).
From the expression (12) one deduces
() 2myg
-& > - —2
& =& >&5 —§ 3k
Keeping into account the formula (104) and the
fact that k£, < 0, the relation (102) leads us to

(104)

2k 2k
—23 + k> —23 + k,
(532 - &1) 2m,g
3k, (105)
27k} 27k}
=’wf§+h=k{H-7ﬁ%J-
4ms g 4m; g
: 4m3g? .
But, since k, > — , the relation (105)
27k}
offers us
2k
—23 + k,
(€. -¢&)

27k 4m3g? (106

> k| 1— =0
1( 4mig? 27k} J
Therefore we proved that for &, > £?), the

relation (102) is always true.
On the other hand, the condition

Jun +J31 <0 (107)

leads us to

[LL){_L,I@_LO. (108
moomy ) (&, - &) m

One observes that if the formula (102) is true,
then the formula (108) is also true. Therefore, we
have to verify only the condition (102).

THEOREM 5. In the case
_4Amig?

27k
always stable and not asymptotically stable.

Proof: 1t is obvious from the above discussion.

Let us consider now the root &, € (i(z]), E,(zz)).

ky <0,

k, > the equilibrium position &, > ﬁ(zz) is

THEOREM 6. In the case k,<0,
dmig? N ..
> — s the equilibrium osition
2 27k2 q p

&, € (i(z]), E,(zz)) is always unstable.
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Proof: From the second formula (5) we deduce
k

W:kl(gz —&)-mg, (109)

2~ %1

wherefrom

T 2"2 7t k= 3k - §2m_2§ . (110)
2 7 91 2 1

But &, € (ﬁ(zl), ﬁ(zz)) and from the expression (13)
we have
2myg

-§ < 111
&~ & 3k, (111)
The relation (110) offers now
SR A VR (112)
€ - &) 2my8
3k,

It results that the equilibrium is unstable and the
theorem is proved.

3 Neo—Hookean Suspension for a
Half of an Automobile

3.1 Mathematical model

We shall now present the study of the motion for
four degrees of freedom system that models a half of
an automobile. The model is presented in figure 10.
This model consists of the masses m;, and m,,
which mark the wheels of the automobile, masses
linked to the ground by linear elastic springs of
stiffness &, and k,, respectively. By wheels is
attached the chassis marked by the bar AB of mass
M . The linking of the chassis is made by the non-
lincar neo—Hookean elastic elements by elastic
stiffness d,, e, respectively d,, e,. The elastic

force that appears in such element is given by
e.
F=dz ——

2,
Zi

(113)

where =12, z

marks the elongation of the
respective element, and d, > 0, ¢, >0, i = 1,_2
The four degrees of freedom of the system were
selected as follows: ¢, g, the elongations of the
linear springs, g, the displacement in the vertical
direction of the gravity centre G of the chassis and
q, the rotation of the chassis with respect to the

horizontal.
We assume that there are known the dimensions
L, and L, that define the position of the gravity

centre G of the chassis with respect to the two
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wheels and J the moment of the inertia with respect
to a horizontal axis that passes through its gravity
centre.

L, L
dlael dz’ez
GO
Al _ ?
SN L e
'f_::::: ________
i Q)
9 y i :mlg i_ : | 0
k, .
oo :

Fig. 10. The mathematical model.

3.2 The equations of motion
The kinetic energy of the system has the expression

1 ) 1 . 1. . 1 .
T =—=mg? +—mq3 +—Mq3; +5Jq§. (114)

2 2 2
The forces, which appear in the system, derive

from a potential, hence the potential energy reads

1 1
V= Equf - mgq, + Ekzqg

1
—m,gq, +5d1(L1‘]4 —-q, t ‘13)2
(115)

e
Ligs =g, + 45
+ &
95 — Lyq, — g,
g being the gravitational acceleration.

d
+ 72(% ~Lyq, —q,)

+
- Mgq, ,

We successively calculate

oT oT . oT )
- —— =myq,; — = Mgs;
aq, 0q, aq;

oT )

~. = JQ4,

04,

dfor
dt \ 04,

dfor
dt \ 0q,4

= mq;

(116)

(117)
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or or or _ . o _

—=0;,—=0;, — =0; 0, (118)
aq, 0q, oq, oq,
oV
a = kg, —mg _dl(qu4 -4 "'93)
: (119a)
€
+ 7
(Ligs — a1 +45)
oV
J =kyq, —myg _dz(% —Lyq, _%)
2 (119b)
€
+ 7>
(‘]3 - Lyq, — ‘Iz)
ov
Py dl(L1q4 —-q, + ‘]3)
0q;
e
- : >t dz(‘]s - Lyq, _‘12) (119¢)
(qu4 —-q, + ‘13)
€,
— 5 _Mg,
(‘13 - Lyq, _‘]2)
oV

8_ = lel(qu4 -q t %)
4

Lie
(Ligy — a1+ ¢5)
- dez(% - Lyq, - ‘12)
Lye,
(‘13 —Lyq, _‘12)2 ’
such that the Lagrange equations read
mg, + kiq, —mg — dl(L1q4 —q, + ‘13)

+

e
+ ! =0,

(Ll‘]4 —-q, t ‘]3)2
myq, + kyq, —m,g _dz(% —Lyq, _%)

e
+ : =0,

(93 — Lqs — ;)
Mg, + dl(L1q4 —-q, t ‘]3)
€

b

(119d)

(120a)

, (120b)

- +d,(gy — Lgy — ;) (120c)

(Ligs —q, +q5)

€, _
- Z_Mg_oa

(a5 = Lrgs — a5)
Jg, + Ld, (L1‘14 —-q, t ‘]3)
Le,
(qu4 —-q, t ‘]3)2
- dez(% - Lyq, - %)

+ Ly - =0.
(g5 = Lrgs — q5)

Let us denote
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& =a58 =45 & =q535 8 =445 & = 43
& =958 =433 & =4, (121)
obtaining a system of eight first order non-linear
differential equations
dg, ¢,

de, g, _

& :§SQE:§6232§7;F_§3;
& ZL[_ k&, +mlg+d1(L1E.!4 - & +E-3)
dr m,
_ € } ’
(e & +&) |
Lo o U b, +myg+ dy(es - Lot - &)
dr m,

(&3 _L2<t:4 _532)2 ’

dg, _L _ _ €
A M{ hlLE -8 +§3)+(L1<:4—<:1+a3)2

i *Mg}’

_6[2(533_L2<t:4_<t:2)"'(a —Leg "¢
3 LyGy — S
de, 1

dr = 7[_ lel(Ll(t:4 -& + &3)

Le,
+ 2
(L1<t:4 —& + &) (122)
+ L2d2(<t:3 - L,g, - <t:2)

_ Lye, }
(83— L&y &) |

3.3 The equilibrium positions
These are obtained at the intersection of the
nullclines, resulting the system

§5:05§6:0;§7:0;§8:0a (123)
— k& +mg+d(LE, —& +E;)
e (124a)

_ -0,
(L&, —& +&)
— k&, +myg + dz(‘is - L&, - F:z)
e, (124b)

) (&3 _L2§4 _F:z)2 o

_dl(Ll‘tazt_E.al"“:)"' oL 2
(LE -8 +E)
- d2(§3 - L&, - az) (124c¢)
+ % +Mg =0,

(‘tas - L2<i4 - E32)2

Issue 4, Volume 4, October 2009



WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS

Le
~Ld,\(LE, - & +&5)+ — 2
UL -8 +E)

+ Lyd, (&5 — L, — &)
L
_ 262 _=0
(&~ Lo&s — &)
Adding the first three relations (124), one obtains
the equation
— k& — k& + (my +my + M)g =0. (125)
Multiplying the first relation (124) by L,, the
second relation (124) by — L, and summing the
results at the last expression (124), we deduce
~ L& + Lk, + (Lim — Lymy)g =0, (126)
The relations (125) and (126) form a linear
system of two equations with two unknowns (&,

and &,)
k& + k&, = (ml +m, +M)g;
Lk — L&, = (Lim, — Lym,)g,
the solution of this system being
(ml + m, +M)g k,
(lel —Lym, )g - Lk,
ky k,
Lk, — Lyk,
~omy(Ly + L)+ LM
(Ll +L, )k1

| k, (ml +m, +M)g|
Lk, (lel - L,m, )g

| ko k,

(124d)

(127)

& =
(128a)

b

&, =

(128b)
lel - szz

Comy(Ly + Ly)+ LM

B (L + Ly )k

We multiply now the third equation (124) by
— L, and we add it to the last equation (124)

g.

obtaining
(L + L, )d, (&5 - L&, - €,)
I U =) R VA (129)
({53 - L8, - &2)2
or, equivalently,
L
(‘23 - L)§, - 5,,2)3 —
(L, +L,)d, (130)
e
ng(EJ3 - L&, - ‘:2)2 _d_2 =0.
2

We multiply the third equation (124) by L, and
we add it to the last equation (124) resulting
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- (Ll + 1L, )dl (‘23 + L&, - & )3
oy e =0 w
3 154 = <1
or, equivalently,
L
& +L& ~&) ~
(Ll +1L, )dl (132)

e
XMg(E,G + L&, _En)z _d_lz()_
1

Let us consider for the beginning the equation
(130) and let us denote
L
z=8 - L —& o= ———~— Mg;
oo (Ll + 1L, )dl

)

B=—";a>0;p>0, (133)
d,

resulting the relation

22 —az? -B=0. (134)

In the sequence of the coefficients for the
equation (134) there exists only one variation of sign
and applying the Descartes theorem, it results that
the equation (134) has only one positive real root.
Making the change of variable z > —z, one obtains
the equation
Z+az2+B=0 (135)
for which there exists no variation of sign in the
sequence of the coefficients. Applying again the
Descartes theorem, it results that the equation (135)
has no positive real root and therefore the equation
(134) has no negative real root. In the end, we
obtained that the equation (134) has only one real
root, thus the equation (130) has one real root, too.
Let us denote this root by z,.

Proceeding in an analogous way, one deduces
that the equation (132) has one real root and we
denote this root by z, .

It results the system

€ — L&y — & =25 &+ Ligy — & = 2, (136)
for which the solution is
7 +& - L,
g, = Z+ & L
1-1L,
(137a)
1 L
_ Ll(zl + E:z)"‘ Lz(zz + F::l)
L +L, ’
respectively
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Iz; +¢&,
Iz, +§,
1-L,
1L
_ (2, +&)—(z + <t:2)
L +L,
We obtained that there exists only one

equilibrium position defined by the relations (128)
and (137).

4 =

(137b)

3.4 Stability of the equilibrium
Let us denote by f; the expressions in the right-
hand side of the relations (122) and let be

Ju :%; k=18;[1=1,8.

(138)
g,
We have
Ju=0;5j2=0;j;3=05j,=0; jis =1;
Jis =05 Ji; =05 jig =0, (139)
Jo =05 Jp =05 jos =05 joy =05 jo5 =03
Jas =15 Jor =05 Jjog =0, (140)
Ji =05 j5 =05 j33 =05 j3 =05 j35 =03
Jse =05 3 =15 j3x =0, (141)
Jun =05 jiu =05 j;3=0; ju, =05 j;s=0;
Jas =05 Ju =05 jgg =1, (142)
: k4, 2e, .
Jsp = —— = — = s Js =03
mm m (L1§4 -§+& )3
o = d, N 2¢ ]
537 5
m ml(L1§4 -& + ‘t:3)3
. d,\L, 2e,L, . .
Jsa = + 3 Jss =05 Jsg =03
m (L1§4 - Z}l + EJ3)3
Js7 =05 jsg =0, (143)
, , k, d, 2e,
Jao =05 jo =———-——- ;
m, m, m, (?-33 - L,§, - &, )3
. d, 2e,
Jes = — F
m, mz(‘is - L&, - &, )3
. d,L, 2e,L, .
Jea =~ - 5 Jes =03
m, m2(§3 - L,§, - ¢, )3
Jes =05 Jg =03 jes =0, (144)
= d, N 2e, ]
7T T, >
M M(Lg, - +&,)
. 2e
Jp ==+ 2

M M(E.B - L2§4 - §2)3 ;
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. d, 2e,
Jz = _ﬁ - 3
M(L1§4 - + §3)
d, 2e, )
M M(as - L2§4 - az)3
. dL, 2L,
.]74 == M - 3
M(L1§4 - + gs)
d,L 2e, L
o IO €L, -
M M(Z:G _L2§4 _gz)
J1s =05 26 =05 Jz7 =05 jig = 0,
Ld, 2Le
+ 3 5
J o J(LE, - + )
_ L,d, _ 2Lse, .
S JE - Lg - &)
_Ld, 2Le,
J J(L1§4 -& + Z33)3 .
L,d 2L ’
y 2% 262 -
J J(§3 _L2§4 _az)
Lid, 2L2e,
JooJLE -g +E)
L3d, 2L5e, '
J J(§3 _L2<t:4 _§2)3
Jse =05 Jg; =05 jgg =0,
The characteristic equation
det(J —AI) =0,
where J 1is the Jacobi matrix
J = [/.kl]k,zzfgv

(145)

Js1 =

Jso =

Jg3 =

Jsa =
Jss =03

(146)
(147)
(148)

and I is the eight-order unity matrix, reads
-2~ 0 0 0 1 O 0
0 -~ 0 0 0 1
0 0 -2 0 0 O
0 0 0 -2 0 O
Jsi 0 sz Jsa =M 0
0 Jo Jea Jea 0 =2
Ju Jn Js o Ju 00 =R
Js1 Js2 Jss Jsa 00 0 -2
Multiplying the columns five, six, seven and
eight by A and summing the obtained results to the

columns one, two, three and four, respectively, one
deduces the equation

=0. (149

S O O = O O
S O O = O O
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0 0 0 0 1 000
0 0 0 0 0100
0 0 0 0 0 010
0 0 0 0 0 0 01
Jsi =M 0 Js3 Jsa —XA0 0 0
0 j62 -3 j63 j(,4 0-20 0
Jn Jn Jn—M Ju 0 0-20
Jsi Jso Jos Jsa —A* 0 0 0 -—A

=0.
(150)
Developing the determinant after the lines one,
two, three and four, it results

Jsi =W 0 Jss
0 Jjo-X¥ Je
Jn Jn Jn =W
Jsi Js2 Jss
or, equivalently,

Jsa

Je4

J7a
Jsa — A2

=0  (151)

Jo =W
j72 j73 - ?\‘2
j82 j83
0 J 62 5

tislin  Jn

j81 j82

0 Jer — A2

— Jsa|lJm Jn J73 -2 =0.
j81 j82 j83

The relation (151) is a bi-square equation of the
fourth order in the unknown A*. It also offers the
condition for the equilibrium position to be stable or

unstable because it imposes a relation of
connectivity in the space of the parameters %, £,,

Joa
J74
j84 -

Je
(s =22

Joa
J7a
j84 -\

(152)

J6s

d,d,, e ande,.

3.5 Application
Let us consider the practical case for which

k, =k, =4-10°[N/m]; d, =d, = 5-10*[N/m];
e =e, = 5[Nm?]; L, = L, = 2[m]; M = 900[kg];

m, = m, = 25[kg]; g = 10[m/s?]. (153)
The relations (128) offer

g, = qe" = 0.0011875[m];

&, = ¢ = 0.0011875[m]. (154)

The equation (130) becomes
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z3 #-900-1022 -

4.5-10° sq0r 0 Y
wherefrom
23 —0.09z2 = 0.0001 = 0 (156)
with the solution
z = z¢ = 0.1[m]. (157)
In an analogous way we find
z¢h = 0.1[m]. (158)
The expressions (137) offer
&y = q¢" =0.1011875[m], (159)
g, = 0.1011879m]. (160)
The partial derivatives read
Js; = —18400; js, = 0; js; = 2400,
Jsa = 4800, (161)
Jo1 =05 jo, = —18400; j; = 2400,
Jes = —4800, (162)
Jn = 66.667; j,, = 66.667; j,, =—133.333;
Jju =0, (163)
Jg1 =100 jg, = =100 jg3 = 0;
Jea = —400. (164)
Results the characteristic equation
— 18400 — A2 0 2400 4800
0 — 18400 — A2 2400 — 4800
66.667 66.667 —133.333 —)? 0
100 —-100 -\ — 400 — A2
=0,
(165)
wherefrom
A3+ 37333.333)5 + 356959994. 71 + (166)
+1.5872 - 1022 +1.36533 - 10" = 0.
We denote
M= (167)
and one obtains the four-order equation
n* +37333.333n° + 356959994.7n% +
(168)

+1.5872- 10" +1.36533- 10" = 0.

The solving of this equation is made by the
Lobacevski—Graeffe method for which for the
equation
agx* + ax* + ayx* + a;x +a, =0 (169)
the passing from the step p to the step p +1 takes

place with the formulas
U ] _{[alua)]z = 2 )al?) };
agpﬂ) _ [agp)]z _ 2a1(p)a§p) n 2a(()p)a£p);

2 _{[agm]z _ Zagmagp)}; a7 = [} . (170)
We shall create the next table.
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Table 1. The solving of equation (168) by the
Lobacevski—Graeffe method.

Step a, a, a,
0 1 37333.333 356959997.7
1 1 —679857763.5 1.156 - 107
2 1 —2310-107 1.33-10%
3 1 —2.668 -10% 1.78 - 108
Step a, a,
0 1.5872 -10"" 1.36533-10"
1 —1.54-102 1.864-10%
2 —-1.95-10%  3.47-10%
3 —3.73-10%  1.21-10'5

Let be the function #: R — R,

h(n) = n* +37333.333n° + 356959994.7n> w71)
+1.5872-10"n +1.36533 - 10'3
for which
h'(n) = 4n® +112000M2 + 713919989 .41 17
+1.5872-10'" ,
R"(n) = 1212 + 2240000 + 7139199894 . (173)
The equation /() = 0 has the roots
0 — 224000
L2 = A4
24 (174)
| 224000% — 412713919989 4
- 24 9
wherefrom
n, = —4078.07; 1, = —14588.6. (175)
In addition,
B(n,)=-1.161-102 < 0;
B(n,)=1.161-10" > 0, (176)

such that the equation h’(n) = 0 has three distinct

real roots. We also have

h(-230) ~ —4.42 102 < 0;
h(=1)~1.36-10% > 0;

(- 18000) ~ —3.8-10'2 < 0;
(= 5000) ~ 4.1-10"5 > 0

and therefore the equation /(1) =

177)
0 has four distinct

negative real roots.
From the table 1 we get

al J[2.66-10% 1034

- ;1(7 ~ —20096, (178a)
0
a?) _ [178-10%

16812, (178b
V" a® V2.66-107 (178b)
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(3) 88
a, ¢[3:73-10
~ -346.8, (178c
"o = Vi7s-10% (178c)
(3) 105
S g L2107 1582, (1784)
3 3.73-10%
Result the roots of the characteristic equation
A = 141.76i ; A, =~ —141.76i ; L, ~ 130.05i;
Ay = —130.05i; Ay = 18.62i; A, = —18.62i;
A, = 10.76i; Ay =~ —10.76i (179)

and all of them are pure imaginary, the equilibrium
being simply stable.

4 Conclusions

In this work we presented two different models
using rubber type components modeled as non-
linear neo—Hookean elements. The first model is a
quarter of an automobile model, and the second is
the model of a half of automobile. For both models
we obtained the differential equations of motion and
we studied the equilibrium positions and their
stability. For the first model we also studied the
stability of the motion. A comparison between the
linear and the non-linear case is also performed for
both models. We proved that the utilization of the
neo—Hookean element leads to the increasing zone
where the resonance doesn’t appears. For this
reason, the neo—Hookean elements can be a valid
substitute for the classical linear elements. In our
future work we shall develop the models presented,
using also linear and non-linear damping elements.
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