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Abstract: Using a 2D decision support system based on a recent analytical model, this paper is the first to demon-
strate that bridge specific characteristics require a detailed analysis to determine the collapse load. A parameterized
study of the limit load capacity is necessary to calculate the worst case positioning of any kind of load. Because of
the complexity of finite element modeling and the computation time requirements of 3D finite elements models for
a large number of load positions, it is regularly assumed that collapse positions are situated at the crown of the arc.
Empirical testing in this paper clearly demonstrates that this is not the case. The here developed approach allows
for a quick scan of any type of masonry arch bridge, thus providing the necessary information on the critical range
of load positions to be analyzed in more detail by a 3D modeling approach. Keywords

Key–Words: arches, collapse load, equilibrium,safety

1 Introduction

The analysis of load-bearing unreinforced masonry
structures such as arches, vaults and buttresses has be-
come the subject of renewed academic interest. The
growing interest in the preservation of historical build-
ings and structures gives researchers the incentive, fi-
nancially as well as socially, to develop methods of
analysis for these structures. Moreover, arch bridges,
which were designed in the days of horses and car-
riages are also required to function under the 21st cen-
tury loadings. Nowadays, these structures are subject
to heavy freight transport which they were originally
not constructed for. The latter remark justifies the
approach of studying the collapse behavior of these
historical structures as accurately as possible. An ex-

tensive literature review on the topic is provided by
Boothby [1].

The rigid block theory is the basic model for
understanding the fundamental behavior of masonry
arches [2, 3, 4]. This theory simplifies the masonry
arch structure as a collection of rigid blocks and
calculates its stability using the principle of virtual
work,which is an alternative way of expressing the
equations of motion and equilibrium. This principle
is often used in mechanics of structures and is also the
basis of FEM-models [5]. Eventually the rigid-block
methodology gives rise to an upper bound for the col-
lapse load for a given load position and thus offers a
first quick insight into the arch behavior. The collapse
load is an objective measure to determine the bearing
capacity of a structure.
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A more recent research technique uses finite ele-
ment analysis. The models range from 1-dimensional
[6, 7], over 2-dimensional [8, 9], up to fully 3-
dimensional models [10, 11] for understanding three-
dimensional effects. These 3D-models do require a
precise knowledge of parameters which are usually
not well-known in practice. Moreover, finite element
programs are often computationally expensive and re-
quire a high level of modelling expertise.

A major shortcoming of both the rudimental rigid
block method and the more accurate 3-dimensional
finite element analysis is their inability to carry out
detailed sensitivity analysis. Software based on these
models can only assess an arch bridge for specific load
conditions and parameter settings. Neither the influ-
ence of material properties, nor the influence of dif-
ferent loadings can be evaluated easily. Especially for
determining the bearing load on arch bridges, such a
parameter analysis might prove to be very important.

To alleviate these modelling shortcomings, this
paper embeds an analytical model for determining the
collapse load for a single loading position in a deci-
sion support tool. The resulting software is capable
of identifying the specific position (of the load) which
allows the smallest collapse load, thus governing the
safety of the arch.

To determine the bearing capacity of an arch
bridge, we first determine the collapse load for all pos-
sible load positions on the bridge using an analytical
model.

2 Equilibrium equations

The starting point for this analysis is the derivation of
the three equilibrium equations, i.e. horizontal, verti-
cal and moment equilibrium that must be satisfied in
every point of an arch bridge. They are written down
as continuous equations, as opposed to the discrete ap-
proach taken in a finite element analysis. The geome-
try of the arch is determined by the angle θ, the radius
r(θ) and the thickness b(θ) as shown in Fig 1.

Figure 1: Definition of the geometrical parameters of
an arch in function of θ

All these geometrical parameters are function of
the angle θ, capable of modelling any shape of arch
barrel.

2.1 Equilibrium of an infinitesimal element
of arch

To derive the differential equilibrium equations the
equilibrium of an infinitesimal piece with unit width,
angular extent dθ, of the arch is considered, as in Fig
2.
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Figure 2: Equilibrium of an infinitesimal slice of arch

From Fig 2 the equilibrium of an infinitesimal
slice of arch implies the balance of the internal forces
and moments, i.e. the normal force N (> 0 for ten-
sion), the shear force D (> 0 for a clockwise rotation)
and the bending moment M (> 0 for compression in
the intrados), the weight of this segment of arch and
the external forces applied to it. The external forces
applied to the arch act on the extrados. As shown in
Fig 2, they are the forces Fr , acting in the radial direc-
tion, and Fθ , acting in the tangential direction. Hence,
the three equilibrium equations are :

−W (θ)cos(θ)−Ndθ − ∂D

∂θ
dθ +

∑
Fr = 0 (1)

W (θ)sin(θ)−Ddθ +
∂N

∂θ
dθ +

∑
Fθ = 0 (2)

∂M

∂θ
dθ + N

∂r

∂θ
dθ + Drdθ + Ma(W ) + Ma(F ) = 0

(3)
with Ma(W ) and Ma(F ) denoting the moments

of the weight and the external forces with respect to
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the point a (Fig 2). Below, expressions will be de-
rived for the terms involving the weight and the exter-
nal forces.

2.2 Weight of an infinitesimal slice of arch

In this section, the weight and the center of gravity
of this infinitesimal slice of arch are determined. As
shown in Fig 2 the total weight is given by the weight
of the large triangular segment of arch (base = r+b/2)
minus the weight of the small triangular segment of
arch (base = r-b/2), neglecting second order terms.

W (θ) =
1
2
γ[(r +

b

2
)2 − (r − b

2
)2] = γbrdθ (4)

rG(θ) = r(1 +
b2

12r2
) = r(1 +

η2

12
) (5)

with γ the specific weight [N/m3] of the material, rG

the radius of the centerline, B the width of the arch, b
the height of the arch barrel and η(θ) = b(θ)

r(θ) . As the
center of gravity does not coincide, in general, with
the point a there will be a moment associated with
this weight.

Ma(θ) = γr3 η3

12
sinθdθ (6)

2.3 External loads acting on an infinitesimal
slice of arch

To take into account the external loads acting on an in-
finitesimal slice of arch a distinction is drawn between
distributed loads and concentrated loads.

2.3.1 Distributed loads

For each infinitesimal slice of arch the distributed
loads acting on it are summarized by a radial force
pr and a tangential force pθ. As an example, the dis-
tributed load is derived for an infinitesimal piece of
the arch resulting from the infill carried by that slice
of arch.

The total vertical load, neglecting second order
terms, caused by the infill carried by the slice of the
arch shown in Fig 3 is given by

V (θ) = γ2[h−(r(θ)+
b(θ)
2

)cosθ](r(θ)+
b(θ)
2

)cosθdθ

(7)
with γ2 denoting the specific weight [N/m3] of the ho-
mogeneous material used for the infill and h the height

q
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dq/2
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r
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h

Figure 3: Distributed load resulting from infill carried
by arch

of the arch plus the superstructure. Splitting this load
in a radial and a tangential component yields

∑
Fr = −V (θ)cosθ

= −γ2[h− (r(θ) +
b(θ)
2

)cosθ]

(r(θ) +
b(θ)
2

)cos2θdθ

= prdθ (8)

∑
Fθ = −V (θ)sinθ

= −γ2[h− (r(θ) +
b(θ)
2

)cosθ]

(r(θ) +
b(θ)
2

)cosθsinθdθ

= pθdθ (9)

∑
Ma(F ) = pθ

b

2
dθ (10)

Next, a load is examined that is no longer dis-
tributed over the surface of the arch but acts in a sin-
gle, isolated, point as shown in Fig 4.

2.3.2 Concentrated load

A Dirac distribution is defined by

δ(θ − α) = 0, θ 6= α (11)

∫ +∞

−∞
δ(θ − α)dθ = 1 (12)
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Figure 4: Concentrated load

as a mathematical model for the concentrated load.
As can be seen from this definition the Dirac distri-
bution is zero everywhere except at θ = α where its
value is defined implicitly by the integral expression.
This formulation will allow the integration of both dis-
tributed and concentrated loads in a single mathemati-
cal framework. A concentrated load of intensity P that
applies at θ = α (see Fig 4) will then be denoted by
Pδ(θ − α).

In this case, the contributions from a concentrated
vertical load to the three equilibrium equations be-
come respectively :

∑
Fr = −Pδ(θ − α)cosθdθ (13)

∑
Fθ = Pδ(θ − α)sinθdθ (14)

∑
Ma(F ) = Pδ(θ − α)|r(α)sinα− r(θ)sinθ|dθ

(15)

3 Solving the equilibrium equations

Audenaert et al. [12] show how the equilibrium equa-
tions can be transformed to a set of ordinary differen-
tial equations (16), (17) and (18) to calculate normal
forces N(θ), shear forces V (θ) and bending moments
M(θ).

−V ′−N − γr2ηcosθ + pr−
∑

i

Piδ(θ−αi)cosθ

+
∑

j

Hjδ(θ − αj)sinθ = 0 (16)

N ′ − V + γr2ηsinθ + pθ +
∑

i

Piδ(θ − αi)sinθ

+
∑

j

Hδ(θ − αj)cosθ = 0 (17)

M ′ + Nr′ + V r + γr3 η3

12
sinθ + pθ

b

2
+

∑

i

Piδ(θ − αi)|r(αi)sinαi − r(θ)sinθ|

+
∑

j

Hjδ(θ − αj)|r(αj)cosαj − r(θ)cosθ| = 0

(18)

In equations (16), (17) and (18) a prime denotes
the derivative with respect to θ; pr = the radial dis-
tributed force; pθ = the tangential distributed force;
αi = the position of the vertical point load Pi; αj =
the position of the horizontal point load Hj ; γ = the

specific weight of the arch and η =
b

r
.

The general solution of the set of differential
equations derived above includes three constants, i.e.
k1, k2 and k3. Hence, to find the unique solution for
the internal forces and the bending moment in the arch
bridge we require additional constraints. The bound-
ary conditions introduced below are constraints on the
horizontal, vertical and angular deflections of the fix-
ation points of the arch bridge.

The so-called Bresse equations [13], yield expres-
sions for these deflections, based on the following as-
sumptions:

• symmetric cross section

• load applied in the symmetry plane (deformed
centerline remains in the symmetry plane)

• linear elastic material

Note that the second condition is trivially satisfied as
we consider a 2D model and the third condition de-
scribes the material behavior in between the hinges.
As the arch bridges and external load conditions stud-
ied here satisfy the first and the last condition the
equations of Bresse express the deflections in every
point of the arch bridge, in terms of the values for
these deflections in one of the boundary points. In
particular, Bresse’s equations yield the deflections in
the right fixed support, given their values in the left
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fixed support :

ϕ2 = ϕ1 +
1
E

∫ θ2

θ1

M

I

√
r2 + (

∂r

∂θ
)2dθ (19)

u2 = u1 + (y2 − y1)ϕ1 +
1
E

∫ θ2

θ1

N

A

∂x

∂θ
dθ

+
1
E

∫ θ2

θ1

(y2 − y)
M

I

√
r2 + (

∂r

∂θ
)2dθ(20)

v2 = v1 − (x2 − x1)ϕ1 +
1
E

∫ θ2

θ1

N

A

∂y

∂θ
dθ

− 1
E

∫ θ2

θ1

(x2 − x)
M

I

√
r2 + (

∂r

∂θ
)2dθ(21)

with

ϕ = rotation of the elastic line

u = horizontal deflection

v = vertical deflection

A = area of the cross-section

I = rotational inertia of the cross-section

E = modulus of elasticity

x = horizontal position coordinate

y = vertical position coordinate

and the subscripts 1 and 2 denoting the left and the
right support of the arch bridge respectively, see Fig
1. The sign conventions for the horizontal and ver-
tical deflections u and v are taken to be the same as
for the x-axis and y-axis, the rotation ϕ is taken to
be positive for clockwise rotations. Both axes are de-
fined as shown in Fig 1. If the deflections in both sup-
ports, i.e. (u1, v1, ϕ1) and (u2, v2, ϕ2), are specified
these equations can be used to derive unique values
for k1, k2 and k3. This can be understood by noting
that all three functions N(θ), V (θ) and M(θ), as de-
rived above, are linear functions of the unknown con-
stants k1, k2 and k3. Furthermore, all operators ap-
plied to N(θ) and M(θ) in Bresse’s equations are lin-
ear as well. Hence, inserting the expressions derived
for N(θ) and M(θ), in Bresse’s equations will yield
a linear set of equations in terms of the unknown con-
stants k1, k2 and k3. By putting all known terms on
the left side of the equations, i.e. Ei and the terms
containing ki on the right side, this can be rewritten
using matrix notation as :

E = Ak (22)

with E = [E1 E2 E3]τ , A = [aij ] and k =
[k1 k2 k3]τ .

Whenever matrix A is non-singular this matrix
equation can be solved to find the unique set of con-
stants k1, k2 and k3. Therefore, this method allows to
find the unique solution of the equilibrium equations
for a linear elastic arch.

(a) (b)

(c)

Figure 5: Collapse modes

The sign conventions for the horizontal and ver-
tical deflections u and v are taken to be the same as
for the x-axis and y-axis, the rotation ϕ is taken to
be positive for clockwise rotations. Both axes are de-
fined in Fig. 1. If the deflections at both supports are
specified, these equations can be used to calculate the
internal forces N(θ), V (θ) and M(θ).

To calculate the stability of an arch, a failure cri-
terium is added to the model.

According to [2], an arch bridge can collapse as a
result of three possible collapse mechanisms : a shear
mechanism (Fig 5(a)), a hinge-mechanism (Fig 5(b))
and a combined shear-hinge mechanism (Fig 5(c)).

Figure 6: Collapse of the Bridgemill
arch bridge. (Source: http: //archive.
niees.ac.uk/talks/dem/nenad−bicanic.ppt)

Experiments by Hendry et al. [14] and by others
show that, due to most arches being well-buttressed,
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the hinge-mechanism (Fig.6) can be considered as by
far the most likely collapse mechanism for arches.
Therefore this paper focusses on this mechanism.

The formation of hinges and the complementary
propagation of cracks needs we assume that the first
crack will appear at the position for which a defined
tensile strength σt is reached. When the compressive
strength σd is reached, the material behaves perfectly
plastic finally resulting in a hinge. How these mate-
rial properties are included into the analytical model
is thoroughly explained in [15]. The solution of the
differential equations can be found in [12].

Initially, the arch does not contain any hinges.
The smallest value of the load that gives rise, to a rel-
ative normal force and a relative moment that satisfy
equation (25) is the value Pmax1 corresponding with
the first hinge. The angle θ = θmax1 corresponding
with this value Pmax1 gives the location of this first
hinge.

In the presence of one plastic hinge the arch turns
into a structure statically indeterminate to the second
degree. Afterwards, an arbitrary rotation can occur in
this hinge with a constant bending moment, while the
material can be considered elastic in other cross sec-
tions. The equations of equilibrium remain the same
for an increasing load, but the boundary conditions are
adjusted to represent the changed conditions.

This procedure will be repeated until the arch
turns into an four hinge mechanism. At that moment
the collapse load is known as well as the position of
the 4 hinges.

3.1 Elastic-plastic material properties

It is clear that to get good correspondence between
theory and experiment we will have to extend the
model presented here to take into account the mate-
rial properties. In particular, since arch bridges are
mostly concrete, masonry or stone constructions, the
presence of cracks will have to be taken into account.

Masonry is a very complex composed material.
As shown by Cecchi [16], [17]and Milani [?], homog-
enization procedures exist to allow assessment of ma-
sonry as an homogenous material.

The following assumptions are made with respect
to the behavior of the material:

• on reaching the tensile strength σt a crack occurs;

• on reaching the compressive strength σd the ma-
terial behaves perfectly plastic;

• for σd < σ < σt the material behaves linearly
elastically.

The tensile strength of masonry is accepted to
have little influence and to be negligible compared to
the compressive strength [?], hence we set σt = 0. In
the examples shown below we choose a typical value
for the compressive strength, i.e. σd = −8Mpa.

Only a limited number of stress distributions can
occur under these assumptions : a linear-elastic distri-
bution, an elasto-fragile distribution, an elasto-plastic
distribution, an elasto-plasto-fragile distribution and a
plasto-fragile distribution.

Fig 7 shows the evolution of the stress distribution
when a cross-section of the arch bridge is subjected to
an increasing pressure load, with

xf = height of the crack,

xp = height of the plastic section

Figure 7: Evolution of the distribution of stress as the
pressure load is increased from (a) to (d).

Next, we introduce normalized versions of N(θ)
and M(θ), i.e. the relative normal force nd(θ) and the
relative moment md(θ).

nd(θ) =
N(θ)
−σdb(θ)

(23)

md(θ) =
M(θ)

−σdb2(θ)
(24)

Each of the possible stress distributions will mark
out a zone in the (nd,md) -plane, which contains
combinations of the relative normal force (= nd) and
the relative moment (= md) in which that specific
distribution is possible, as shown in Fig 8.

The border of the elasto-plasto-fragile area corre-
sponds to a plasto-fragile distribution, corresponding
to the stress distribution shown in Fig 7(d), and re-
flects those combinations that correspond to the stress
distribution of a plastic hinge.

The equation that describes this envelope in the
compression region is obtained by eliminating xf and
xp from the expressions for nd and md that apply to
the situation shown in Fig 7(d) :

|md| =
−n2

d − nd

2
(25)
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Figure 8: Envelope of the distribution of stress

4 2D decision support system

Current research predicts arch bridge behavior under
a given load. However, such studies do not offer infor-
mation about the bearing capacity of an arch bridge.
The analytical model from Section 2 allows for an effi-
cient sensitivity analysis on loading positions to deter-
mine the corresponding collapse load. The minimum
of these collapse loads determines the ultimate allow-
able load for a given bridge geometry. In this section
we will examine whether the critical load position dif-
fers for bridges with different geometry.

Bridges have primarily been built to resist ver-
tical loads. Thus, in the case of a vertical concen-
trated load, the safety assessment of the bridge should
be performed for all possible load positions α. The
position giving rise to the smallest value for the col-
lapse load determines the bearing capacity of the arch.
Figure 9 visualizes this bearing capacity procedure.
Hence, we perform a search of the load position and
compute the collapse load. The advantage of this ap-
proach is that it quickly gives the ultimate overview of
the arch bridge’s behavior.

To illustrate the necessity and workings of the
quick scan methodology, consider the following set
of semi circular masonry arch bridge features. All
bridges are assumed to have the same material prop-
erties, infill, and radius of the outer curve of the arch
(extrados re) (see Figure 10).

The bridges with unit width only differ in their
radius of the inner curve of the arch, the so-called in-
trados ri. The height of the infill h is 2 meters and
the specific weight of the infill γ2 is 21600 N/m3

corresponding to a traditional sandbased infill. The
masonry barrel is assumed to have a specific weight
of 21000 N/m3, an elasticity coefficient of 5 GPa,
compressive strength of -8 MPa and tensile strength
of zero reflecting the masonry’s inability to resist ten-

a

Figure 9: Algorithm to determine the bearing cappac-
ity of the arch in function of the load position.

r
i
(q)

Figure 10: Algorithm to determine the variation in
critical load position in function of the arch geome-
try.

sile. The radius of the intrados ri varies between 1.4
and 1.7 meters implying a variation in barrel thickness
in the range of [0.5-0.2] given the fixed radius of the
extrados re = 1.9m. The position of the point load P
varies from −1 = −57.30◦ to 1 = 57.30◦.

In Fig.11 the collapse load is shown in function of
all position of the load, α, and in function of the radius
of the intrados, ri. The results support common wis-
dom that ticker arch barrels can resist higher collapse
loads.

ri[m] Pcollapse[kN ] α[rad] α[◦]
1.4 56.51 0.25 14.32
1.5 30.80 0.2 11.46
1.6 14.94 0.15 8.59
1.7 5.22 0.1 5.73

Table 1: Collapse loads and most dangerous load po-
sitions for different arch geometries

In Table 1 the numerical results for the load po-
sition giving rise to the smallest collapse load end the
corresponding collapse load are listed for some arch
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Figure 11: Collapse load in function of α and ri

geometries.
Also the higher the barrel of the arch, the more the

weakest point of the arch (i.e., the location α corre-
sponding with the smallest collapse load) differs from
the crown of the arch.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.5

1
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3.5
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Figure 12: Collapse load in function of α for the
smallest arch, ri = 1.7

For the biggest and the smallest arch the collapse
load in function of the load position are shown respec-
tively in Fig.12 and Fig.13.

In Table 2 the overall collapse load is compared
to the the collapse load corresponding to the crown of
the arch (α = 0).

P [kN ] α[rad] %− ε
0 0.1 0.15 0.2 0.25

1.4 73.44 56.51 29.96
ri[m] 1.5 35.38 30.80 14.87

1.6 16.08 14.94 7.63
1.7 5.67 5.22 8.62

Table 2: Influence of α on the collapse load for differ-
ent arch geometries.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
x 10

5

Figure 13: Collapse load in function of α for the thick-
est arch, ri = 1.4

For each arch geometry only these two values are
listed in the table. Also the corresponding %-error
is calculated. Especially for a thick arch geometry
(ri = 1.4) the overall collapse load for a load posi-
tioned at α = 0.25 differs significantly, approximately
30%, from the collapse load obtained for α = 0. For
smaller arch barrels the error-percentage diminishes,
but remains larger than 8%. These results indicate that
for every bridge one should conduct a sensitivity anal-
ysis based on an investigation of the weakest position
of the arch.

The latter findings are in accordance with the
findings of Brencich et al. [19] demonstrating that
α = 0 is not the weakest point of the bridge. As
Brencich used a FEM-program for this calculations
he was only able to evaluate a limited number of load
positions. The computation time requirements of his
FEM approach therefore excludes an extensive sen-
sitivity analysis required for assessing the safety of
arch bridges. Our method is capable of doing a fast
and very accurate parameter analysis in function of
the load position.

5 Conclusions

Determining a “safe load carrying capacity” of arch
bridges continues to challenge civil servants and re-
searchers. The proposed method of strength assess-
ment described in this paper advances the state-of-
the-art in two-dimensional modeling of masonry arch
bridges. Our two-dimensional assessment algorithm
serves as a conservative, computationally efficient ap-
proach to tackle safety of such masonry arch bridges.

Previous models from the literature assess arches
under a given specific load condition. Because of the
complexity of finite element modeling and the compu-
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tation time requirements of 3D finite elements models
for a large number of load positions, it is regularly as-
sumed that collapse positions are situated at the crown
of the arc.

An analytical approach to the collapse analysis of
single-span arch bridges is presented above. This pro-
cedure makes possible a fast and reasonably accurate
determination of the assessment of an arch under a
wide range of load-conditions. Both the locations of
the hinges and the collapse load of an arch bridge can
be determined. The analytic approach makes it possi-
ble to perform parameter studies, e.g. determine the
weakest point of an arch bridge

Our methodology investigates the safety of arches
under different conditions using sensitivity analy-
sis.Computational testing shows that the weakest
point of an arch is different for every geometry, which
means that no assumptions about this matter can be
made beforehand. The critical position differs from
the crown of the arch and should therefore be deter-
mined for every single arch geometry. A small vari-
ation in geometry or material properties is shown to
have a significant influence on the bearing capacity of
the arch.

To obtain an even better match between the theo-
retical results and the behavior of the real bridge more
detailed modeling of the bridge is required, e.g. taking
into account sliding phenomena as well as the pres-
ence of infill and spandrel walls. Also, being a 2-
dimensional model, it cannot fully take into account
the non-zero width of the bridge.

The approach developed in this paper allows for
a quick scan of any type of masonry bridge, thus pro-
viding the necessary information on the critical range
of load positions to be analyzed in more detail by a
3D modeling approach [20].
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