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Abstract : In this report, we describe a new method in obtaining a 3D shape of specular surface by using  five 
degrees of freedom (5-DOF) camera.  We use the principle that the normal vectors of the surface are extracted 
by aligning the camera axis and the surface normal vector. From the normal vector data, the shape of the surface 
is reconstructed. After the flat and the ball surface, the objects of the research are continued to convex and 
concave specular surface.  The convex object is an automobile glass window, where in this object we show that 
the back reflection of a parallel surface of a thin glass can be eliminated. In the concave object we have a 
limitation that the radius of object is not smaller than twice of the nearest distance from the camera to the 
surface. The result shows that the methodology improves the 3-D shape of object measurement with good 
accuracy. 
 
Key-Words: - shape reconstruction, pattern recognition, computer vision, image processing, five degrees of 
freedom camera, specular surface, normal vector, robotics.  

1  Introduction 
Specular surface has become interesting object since 
it is used widely especially in glass and metal 
industries. Besides that, many industrial materials 
are made of metal and have strong specularity and 
little diffuse reflection. Moreover, many practical 
tasks in robot vision and inspection require 
interpretation of images of specular or shiny 
surfaces.[1][2].  
     Several methods of obtaining the shape of a 
surface have been proposed such as multiple view, 
slit ray projection, moiré method, shape from 
shading and some of them are widely used in 
practical applications. An approach utilizes graded 
illumination fields to illuminate the surface has been 
proposed by Ikeuchi[1]. It uses the assumption that 
from a distant source and known object position, the 
angular relation between an observed reflected 
brightness and the position in the source field with 
that brightness could be used to derive surface 
orientation. This approach requires measurement of 
reflected brightness with sufficient accuracy to 
isolate a particular position in the source field. It 
uses the reflectance map and photometrics stereo. 
    Sanderson et. al. [2] proposed an approach of 
structured highlight to obtain the 3-D shape of 
specular surface. This approach uses multiple point  

light sources and images the resulting highlight 
pattern reflected from the surface. It uses a spherical 
array of fixed point sources to scan all possible 
position and direction of incident light rays relative 
to a fixed camera.  It is assumed that the point source 
are distant from the surface, that the surface is at a 
fixed reference height, and the extent of the surface 
from the origin is much smaller than the distance to 
the source. Such that the angle of incidence of 
illumination is determined only by the position of 
the source and does not depend on the relative 
position of illumination of the surface.  
    Babu et al. [3] uses a specular surface model to 
estimate orientation of an extended planar surface 
based on estimation of parameters in the shading 
model using contours of constant brightness in the 
image. This approach utilizes a parallel source and 
perspective camera model so that observed 
brightness of reflected illumination depends on 
surface position relative to the camera axis.  
     Schulz [4] showed some simulation of retrieving 
shape information from multiple images of a 
specular surface under natural lighting condition. 
The technique which is known as specular surface 
stereo consist of two parts, that are: a surface 
orientation procedure that computes the gradient at a 
point on the surface by minimizing the difference 
between observed and synthesized irradiance value, 
and a surface propagation procedure that retrieves 
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the shape of whole surface. The method is still in 
consideration since additional factors must be 
included in the image synthesis and illumination 
models if the method is applied to the real word.  
    This research conducting a new method of 
obtaining the shape of specular surface by extracting 
the surface normal vectors based on the reflection 
theorem and image processing. A 5-DOF camera is 
used to obtain the normal vector by scanning the 
alignment between the incident and reflected rays. A 
LED(Light Emitting Diode) is placed on the camera 
axis to give an incident ray to the surface. The 
camera axis is assumed intersects the center of 
image plane, hence, the alignment is reached when 
the reflected images coincide with the center of 
image plane. The location of the lens center and the 
direction of the camera axis on the aligning 
condition is recorded as the normal of the surface. 
From the normal vector data, the shape of the 
surface is reconstructed. This reconstruction gives a 
limitation in application that is used only to a 
smooth curve of object with no hole. 
    In the previous work we had verified the flat 
surface object and the convex surface object. The 
research is continued with examining a convex and a 
concave surface. At this time, the convex surface has 
a back surface reflection (like an automobile glass 
window) and has the limitation that the gradients at 
each corresponding points on both surfaces should 
be parallel. For a concave object, it also has a 
limitation that the radius of the surface is not smaller 
then twice of the nearest distance from the camera to 
the surface, where the camera still be able to receive 
the image in focus. 
 
 
2   Principle 
 
 
2.1 Extracting the Normal vector. 
A specular surface always reflects the incident ray in 
the same angle. The normal vector at that point on a 
surface can be found if the incident and reflected 
angles are 0o or the incident ray align with the 
reflected ray. A simple camera model (see Fig. 1) 
has a camera axis with the center  of  image  and the 
lens center on the camera axis. Since the gradient of 
a specular surface at a point is not directly 
perpendicular to the incident ray, the camera must be 
panned, tilted and moved in three coordinate axes to 
satisfy the alignment. Figure 2 shows the formation 
of an image of a single point, denoted by  
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Fig.1. A simple camera model. 

 
 

A, which has the coordinates (X,Y,Z). The 
coordinates of  A  in  the  image  are  A’(xA, zA), 
where 
 

x f
A

X

Y
=     ;      z fA

Z

Y
=   ;                 (1).   

 
Y  is called the depth of A, which measured  from 
the lens to the object. The distance from the lens to 
the image plane is denoted by f, the focal length. In 
the image coordinate system, A’(xA, zA) becomes 
A’(u,v), after converting x and z by scale factor α to 
u and β to v  as follows  

 
u = Uo + xAα (pixels);  v = Vo - zAβ  ;               (2). 

 
where α, β  in pixel/mm. 

 
 

Fig. 2. Light source and Viewer

Light  source 

Specular 
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To get the normal vector, the image of point A must 
be moved to the center of image plane (Uo, Vo). As 
shown in Fig. 3, the camera must be panned and 
tilted as much as : 
 
θ = tan-1( (Uo - u)/F)  ;   φ = tan-1 ((Vo - v)/F) ; (3) 

 
where F = fα (pixels), θ is the pan angle, and φ is the 
tilt angle. 
We can express the normal line of a point on the 
specular surface as follows. 
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  Fig. 3. Pan and tilt Angle. 
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xc, yc, zc, are the coordinates of a point on the normal 
line and l, m, n are the direction number of the 
normal line. We can derive that   
 

l = m tan θ     (5) 
            n = m tan θ/cos φ 
 
 

2.2 Shape Reconstruction. 
Reconstruction of the shape begins with the 
assumption that the shape is smooth otherwise we 
can not determine the shape of object from the 
surface normal vectors. Since there are infinite 
number of surfaces have the same normal vectors,   
the shape of object can not directly be reconstructed 
from the extracted normal vectors. This problem is 
solved by knowing at least one point coordinates on 
the surface as a starting point to lead the re-
construction. Cubic polynomial function of a surface 
shape is used here and expressed as follows : 

 
y = α0 + α1x + α2x2 + α3x3 + α4z + α5 xz +  

 
       α6 x2z + α7 z2 + α8 xz2+ α9 z3                     (6) 

 
The partial derivatives of this surface function is 
related to the components of surface normals, that 
are : 
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Differentiation of  eq. (6) with respect to x and z 
are 
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Eq. (7), (8), and (9) give 
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By using eq. (10) and (11), a procedure of 
reconstruction can be made.   
 

Y = C

Y = f(x, z)

η(l, m, n)

starting point

 
Fig. 4.  Reconstruction of the shape. 

 
As shown in Fig. 4 (two-dimensional view), a plane 
which is perpendicular to the Y-axis and passing 
through the starting point, is made. The equation of 
the plane can be written as  

)()(),,( ooooo zz
z
yxx

x
yzyxfy −

∂
∂

+−
∂
∂

+=     (12) 

 
(xo, yo, zo) is the starting point,  
 

x
y

∂
∂   is the gradient of the function (6) in the x  

       direction, 

z
y

∂
∂   is the gradient of the function (6) in the z  

        direction. 
Since this plane is perpendicular to the Y-axis, the 
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plane equation becomes simple as, 
 
 Y = C                (13) 
 
where C is the y coordinate of the starting point. 
     The intersection points between the normal line 
and the plane and the gradient at each point can 
easily be obtained, while the coefficient direction of 
the normal line are available. These are the 
requirements of reconstructing the shape. 
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Fig. 5.  Reconstruction of the Shape. 

 
    As shown more detail in Fig. 5, the reconstruction 
is started by a plane data(coordinates and 
directions), where the plane data contains the 
intersection points between the measured normal 
vector and the plane surface. The difference angle 

( in X-Y plane) and  (in Z - Y plane) between 
the measured normals and the plane normals is 
minimized. It is done by inputting the value of x and 
z of  intersection points to the eq.(10) and (11). We 
will get the value of αi . This value then is used in 
eq.(6) and the starting point to get the first curve of  
Y′, where with coordinates x and z in the Y′ curve is 

. In other word, we get the Y ′ curve through . 

These Y ′ curve has the intersection points with the 
measured normals  at c . These points coordinates, 

the normals of the curve Y′ and the angle β  at 
these points can  be calculated. Then the next differ-
ences minimization  using the Y ′ curve and the 
measured normals can be done with the same 
procedure. This iteration is done until the target 
curve is found and the stop condition is achieved (Σ 

and Σ γ   < small number e). 
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      The differences between the measured normal 
direction (l,m,n) and the normal direction of the 
plane data is  
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Minimization :       
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Solution of  0=
α∂
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k

  ( k = 0,........,9) can be 

written as the following simultaneous equation. 
 
 AT A α = AT v           (17) 
 
where  
 
A= 

  

1 2 3 0 2 0 0
0 0 0 1 2 2 3

1 2 3 0 2 0 0
0 0 0 1 2 2 3

1 1
2

1 1 1 1
2

1 1
2

1 1 1 1
2

2 2

2 2

x x z x z z
x x z x z z

x x z x z z
x x z x z z

n n n n n n

n n n n n n

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

 v  = ,  α =      

u
v

u
v

n

n

1

1

.

.

.

.

.

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

α
α

α

1

2

9

.

.

.

.

.

.

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 
The equation means that approximate value of the 
coefficients are obtained in a sense of least mean 
square or regression [11].  
 
 

2.3 Reconstruction sequence. 
The intersection points are belong to several  
shapes of the surface, however, since a known 
point is included in the input data, the iteration 
will lead to an appropriate curve. However, the 
reconstruction is not done directly using all the 
normal vector since that way can not achieved 
an approximate shape of the surface. It is done 
in a piecewise reconstruction patch by patch. At 
every patch, to solve eq. (6),  5  points are  
need- 
 
 

 1st  patch of tracing 
 
 2nd patches of tracing 
 
 3rd  patches of tracing 
 
 4th patches of tracing 

 
 
Fig. 6. Reconstruction Sequences. 
ed, otherwise the column vector of A are not 
linearly independent. In our method, we use 9 
points included in 3 x 3 square matrix. All the 
normal vectors are traced patch by patch on the 
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surface carefully in a sequence as shown in 
Fig.6. 
 
 
3.4 Reconstruction error. 
 

In this reconstruction technique, some errors 
may occur because of two things that are, the 
difference in surface function, and the error of 
measured normal vectors. The first kind of error may 
occur because the surface function can not be 
approached precisely by a polynomial function. For 
example, a cylindrical surface can not be achieved 
precisely by a polynomial function although it can 
be changed into a polynomial function by Taylor 
series. Since we used the bicubic polynomial 
function, the higher order of the series will cause the 
error. However, this kind of error is not significant 
and always in the range of tolerance. Below a 
simulation of the first error is shown. 
      Say that there are two kinds of surface with the 
function as 
 

2axy =  ,        for every z,    
 

and   
 

 , or  222 rxy =+ 22 xry −=  for every z. 
 
 
Consider that, both of surface have a set of ideal 
normal vector (l, m, n) which is calculated as 
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The first surface can be reconstructed from the 
normal vector precisely with no error as shown in 
Fig. 7.a, while the second reconstructed surface has 
some error as shown in Fig. 7.b. 
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Fig. 7 First Reconstruction Error . 

    The second kind of error occurs because of the 
error of normal vector. However, the normal vector 
error does not cause the propagation error. 
Superposition of normal vector error makes the error 
of reconstruction stable around some value. It can be 
shown by the following simulation. 
      The simple surface function of  y = ax2 for every 
z is again used to get easy understanding. As 
presented before, reconstruction of this surface from 
its normal vector has no error. Here three kinds of 
normal vector sets are presented. The first set as 
shown in Fig. 8(a) contains error of +0.01o for the 
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Fig. 8  (a) 0.01o (exagerated) error to the left and  
           right of the normal vector at the left and 
            right of the startingpoint, and (b) its recons- 
           truction error. 
 
 
normal vectors at the left of starting point and -0.01o 
for the normal vector at the right of starting point. 
This is the test of error if the orientation is coming 
from the left and right from starting point when the 
path of camera coming from the left and right of 
starting point.  
   The second set as shown in Fig. 9(a) contains err-
or of –0.01o for the normal vectors at the left of the 
starting point and +0.01o for the normal vectors at 
the right of the starting point. This is the opposite 
test of error of the above orientation. 
   The third set as shown in Fig. 10 (a) contains error 
of +0.01o and –0.01o respectively for the left and the 
right normal vector from the starting point. This test 
is the combination of both orientations of normal 
vectors. 
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Ideal normal vectorMisaligned normal  vector
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Fig. 9 (a) 0.01o (exagerated) error to the right and  
          left of the normal vector at the left and 
           right of the starting point, and (b) its recons- 
         truction error. 
 
 
    From these three sets of normal vector, their surf-
ace is reconstructed and their error is calculated by 
differentiating them to the ideal surface. The error is 
obtained as shown in Fig. 8(b), 9(b), and 10(b). This 
figures show that if every normal   vector has the sa-
me orientation of error, the reconstruction error will 
be large.  However, as  shown in  Fig. 10(b),   if the  
orientation is opposite at two neighborhood normal 
vectors, the error is stable around some value.  This 
is one example of normal vector data where the 
summation of error is zero. As the matter of fact, if 
the reconstruction is performed to a set of 
statistically random error normal vector, with the 
summation is zero, the error of reconstruction is 
stable around some value. It concludes that the 
propagation error does not occur in this method of 
reconstruction
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Fig. 10  +0.01o (exagerated) and - 0.01o error res- 
             pectively for  normal vector at the left 

 and right of the starting point,  and its re- 
 construction error. 

 
 
3   Experiment 

 
 

3.1 Preparation. 
In order to obtain surface normal vectors, we use 
five degrees of freedom mobiling camera system. 
The camera is equipped with a LED which is 
attached on the camera axis and acts as the light 
source. Five degrees of freedom camera system is 
shown in Fig. 11. This system consists of a mobile 
camera, a movement control equipment, an image 
processor and a personal computer. The camera is 
attached on two rotary tables which are mounted on 
one of three linear stages in such a way that the 
camera can be moved along X,Y, and Z axes and  
also can be panned and tilted by computer control. 
The ray from the LED is reflected by the specular 
surface and caught by the camera. The image of the 

reflected ray is analyzed by an image processor and 
a computer. 

 
 

3.1.1  Parallelization of  Y Axis and the Camera  
          Axis. 
When the system is started, we don’t know whether 
the camera axis is parallel or not to the Y axis since 
the zero value of the rotary table is not set to a 
certain coordinate. A procedure using a plane with a  
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Fig. 11. Five Degrees of Freedom Camera System. 
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Fig. 12. Parallelization of the Y and the Camera Axis. 

 
 
spot mark is performed to make the Y  and camera 
axis parallel by moving the camera along the camera 
axis. (Fig. 12). 
 
 
3.1.2 Camera Scanning Path 
As shown in Fig. 13, camera is moved in x and z 
axis from the starting point, however it must be 
panned and tilted  if the object has a  curved  
surface. The distance between camera  and  object 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Khairi Yusuf, Prasetyo Edi, 
Amir Radzi Abdul Ghani

ISSN: 1991-8747 81 Issue 2, Volume 4, April 2009



 

 Starting point

Z

X

 
 

Fig. 13. Camera scanning Path in X-Z Plane. 
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Fig. 14. Camera scanning Path in  Y-Z Plane. 
 
 
will change and the camera will not catch the 
reflected image if the path in Y-Z plane is  not 
arranged. Therefore, after first movement, the 
distance of the camera to the object is calculated and 
the calculated distance is used for the next 
movement (see Fig. 14). 
 

 
 

3.1.3 Obtaining the Starting Point 
As shown in Fig. 15, the starting point  is obtained 
by putting a spot on the object and measured the 
distance between the lens center and the spot mark 
by triangulation. 
 
 
3.1.4 Measuring the Convex Object with back  
         surface reflection, and the Concave Ob- 
         ject. 
The convex object of the next step has the 
characteristics of back surface reflection. In this 
case, the aligning of the reflected and incident ray 

 

 X 

Z Y

x

y θ 

 
 

 
Fig. 15. Measurement of fixed point by 

triangulation. 
 
 
will eliminate the effect of back reflection. As the 
matter of fact the back surface reflected ray also 
align with the incident ray. However, the gradients 
at the corresponding points on both surface should 
be parallel, otherwise we will have two kinds of the 
same intensity image. We can not distinguish and 
eliminate between the back surface image and the 
front surface image. Therefore, parallelism of the 
gradients at the corresponding points of both surface 
is the prerequisite (See Fig. 16). 
     The concave object of the next step is a concave 
mirror. The image of the light source should be a 
virtual image in the surface. If the radius is smaller 
than twice of the nearest distance ( that can be 
achieved by the camera with focus image) from the 
camera to the surface, the image will occur as real 
image and it needs more consideration in calculation 
and techniques. Therefore, at this stage we have the 
limitation that the radius should not be smaller than 
twice of the nearest distance from the camera to the 
surface (Fig 17). 
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Fig. 16. The limitation of the thin glass 
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 Fig. 17 The limitation of the concave object. 

 
3.2 Experimental Result 
We present here some of the experimental result that 
are a ball shape surface as the result of the previous 
work, an automobile glass window, and a radial 
concave mirror. The ball shape surface is a steel ball 
bearing surface with known radius. The radius of the 
ball is 75.000 mm. From this surface, 100 (10 x 10) 
data were scanned. Measurement were executed 10 
times and the result are averaged. The average radius 
of the ball which was attained is 74.934 mm.  The 
average error of the radius was 0.066 mm. 
Reconstructed shape of the ball is shown in Fig. 18. 
     The automobile glass window shows the ability 
of the system to measure a transparent thin(3.5 mm) 
and large size object. The distribution of error was 
obtained by a comparison with the contact 
measurement data using a matching program. We 
got a big maximum error, that  was 167 μm. This 
error may be distributed by the different set up 
between the contact measurement and this method.  
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  Fig. 18. Reconstructed Ball Shape Surface. 
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  Fig. 19. Reconstruction of the Shape of the  
               Automobile Glass Window and its  
               Error Distribution. 
 
 
The surface has a cylindrical form and has an elastic 
deformation. It’s weight may deform the shape in 
the contact measurement since it was measured 
horizontally while this deformation did  not  occur  
when  measured  by our method vertically. Re-
construction of the shape of this object and its  
distribution of error is shown in Fig 19. 
      A concave mirror was used to check the ability of 
the method to measure the concave object. The object 
radius known as 1000 mm was used to check the 
result by comparing it to the reconstructed radius. We 
found that the maximum error was 5 μm. The 
reconstructed shape of this object is shown in Fig. 20. 
(a) in the contour line and the distribution of error is 
shown in Fig. 20. (b). 
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Fig. 20. Reconstruction of the shape of the concave 
mirror and error distribution. 

 
 
4   Conclusion 
The new method of obtaining a 3D shape of specular 
surface by using  five degrees of freedom (5-DOF) 
camera has been developed. This method uses 
normal vector to reconstruct the shape of the surface 
leading by a starting point of the surface. The 
normal vector is obtained by scanning the location 
and direction of the point on the surface by making 
the coincident condition of the incident ray on and 
reflected ray from the surface. 
     Present result have a good accuracy which are 
shown by a ball shape surface (66 μm) , automobile 
glass window (167 μm), and concave mirror (5 μm).  
More research and development is needed to achieve 
the better result especially for a large surface as 
automobile glass window. Both hardware and 
software equipment have their own source of error, 
however, the hardware development need other 
precision technology to make precise machine. 
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