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Abstract: The purpose of this paper is to compare the prediction models constructed through neural network 
and grey theory, and to apply the prediction model established to study of correlation between linear motion 
guide rigidity under the stress of tension and compression. Strain data of tension and compression are 
simultaneously obtained by the computer that is linked with the Universal testing machine and translated into 

rigidity values through the formula of δkF = . Through this study we can understand the differences in 
prediction of rigidity between neural network and grey theory. Experiment results will serve as reference for 
manufacturers and users, with the hope that based on fewer measurement data testing time can be reduced and 
the outcome can be more accurately predicted. Based on fewer measurement data, the outcome can be more 
accurately predicted, and that with a nondestructive test can accurately predict the rigidity of the linear motion 
guide. The outcome indicates that the prediction model established through neural network is superior to the 
prediction model established through the grey theory, and that the neural network model can accurately predict 
the result.  
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1. Introduction 
The linear motion guide can be seen as a special 
bearing. It is not a regular rotation bearing, but a 
automatic processing equipment, CNC machine 
tools, automated robot and nano-micro-processing 
device pertinent to linear motion. Any automatic 
equipment related to linear motion needs this 
important part. It employs balls as the transmission 

platform between the rail and the block to engage in 
unlimited cycles of motions. The block is confined 
to the rail so the load platform can engage in 
high-speed, high-precision linear motions along the 
rail. Its major components include rail, block, end 
plate, ball and retainer (as shown in Fig.1). 
Normally the friction coefficient of rolling is only 
2% of that of sliding. The ratio between the strain 
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and the load is the rigidity value of the linear motion 

guide ( δkF = ). The rigidity value is one of the 
important factors that determine the quality of a 
linear motion guide. Rigidity test is one of the key 
elements that determine the quality of a linear 
motion guide. Accordingly, this research attempts to 
test the rigidity change of a linear motion guide 
under stress and engage in prediction study.  

Researches followed two methods for 
prediction modeling. The first is the grey modeling 
(GM). It has been expansively applied to 
demographic, industrial and economic predictions 
[1-9]. The second is neural network modeling, 
which is often employed in various predictions 
[10-16]. This paper employs both the grey 
prediction modeling and neural network modeling 
for prediction of the rigidity of linear motion guide. 
Outcomes of both models are compared. Results of 
rigidity prediction will serve as references for linear 
motion guide manufacturers and user. They can also 
serve as the basis for tests pertinent, with the hope 
that rigidity can be predicted based on fewer data 
and less time, so testing cost can be reduced and 
enhanced profitability.  

 
 

2. Methodology of grey forecasting 
The GM(1,1) is a time series forecasting model, 
encompassing a group of differential equations 
adapted for parameter variance, rather than a first 
order differential equation.  Difference equation 
has structures that vary with time rather than being 
general difference equation. Although it is not 
necessary to employ all the data from the original 
series to construct the GM(1,1), the potency of the 
series must be more than four. In addition, the data 
must be taken at equal intervals and in consecutive 
order without bypassing any data [17].  

The GM(1,1) model constructing process is 

described below. The first-order differential 
equation of GM(1,1) model is 

baX
dt

dX
=+ )1(

)1(

                       （1） 

where t denotes the independent variables in the 
system, a the developed coefficient, b the Grey 
controlled variable, and a and b denote the 
parameters requiring determination in the model. 
The variables, including x(1),x(2), ... and x(n), are 
used to construct the Grey forecasting model and 
accurately predict x(n+ 1),x(n + 2), ..., and x(n + k).   

Denote the original data sequence by 
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When a model is constructed, the Grey system 
must apply one-order accumulated generating 
operation (AGO) to the primitive sequence in order 
to provide the middle message of building a model 
and to supress the variation tendency. Herein, x(1) is 

defined as one-order AGO sequence. That is, sx ),0(
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From Eqs. (1) and (3), by the least-square 
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Furthermore, accumulated matrix B is 
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Meanwhile, the constant vector is nY
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Therefore, the solution of Eq.(1) can be 
obtained by using the least square method. That is, 

a
be

a
bxkx ak +⎥⎦
⎤

⎢⎣
⎡ −=+ −)1()1(ˆ )0()1(           (5) 

When , the acquired )1(ˆ)1(ˆ )0()1( xx =
sequence one-order inverse-accumulated generating 
operation (IAGO) is acquired and the sequence that 
must be reduced as Eq. (6) can be obtained. 

)(ˆ)1(ˆ)1(ˆ )1()1()0( kxkxkx −+=+             (6) 
Given k= 1, 2, ... n, the sequence of reduction 

is obtained as follows (Eq. (7)): 

)1(ˆ,),2(ˆ),1(ˆ(ˆ )0()0()0()0( += kxxxx L         (7) 
where is the Grey elementary predicting )1(ˆ )0( +kx
value of.  )1( +kx

The forecasted error value and actual value are 
necessary. To demonstrate the efficiency of the 
proposed forecasting model, this article adopts the 
residual method. Herein, Eqs. (8) is used to compute 
the residual error of Grey forecasting. 

(

                                                     (8)              

 

 

3. Neural networks 
The neural networks have demonstrated great 

potential in the modeling of the input-output 
relationships of complicated systems [18], Consider 
that X={  is the input vector of the }mxxx ,,, 21 L

system, where m is the number of input variables. 
And Y={  is the corresponding output }nyyy ,,, 21 L

vector of the system where n is the number of output 
variables.  

The back-propagation network shown in Fig. 2 

is employed in this study. The neurons, of the input 
layer are used to receive the input vector X of the 
system and the neurons of the output layer are used 
to generate the corresponding output vector Y of the 
system. For each neuron Fig. 3, a summation 
function for all the weighted inputs is calculated as: 

∑= k
i
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where  is the summation function for all k
jnet

the inputs of the j-th neuron in the k-th layer, is k
jiw

the weight from the i-th neuron to the j-th neuron 

and is the output of the i-th neuron in the 1−k
io

(k-l)-th layer. 
As shown in Eq. (9), the neuron evaluates the 

inputs and determines the strength of each one 
through its weighting factor, the stronger is the 
influence of the connection. The result of the 
summation function can be treated as an input to an 
activation function from which the output of the 
neuron is determined. The output of the neuron is 
then transmitted along the weighted outgoing 
connections to serve as an input to subsequent 
neurons. In the present study, a hyperbolic tangent 

function with a bias  is used as an activation jb

function. The output of the j-th neuron  for the k
jo
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To modify the connection weights; properly, a 
supervised learning algorithm [19] involving two 
phases is employed. The first is the forward phase 
which occurs when an input vector X is presented 
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and propagated forward through the network to 
compute an output for each neuron. Hence, an error 

between the desired output and actual output jy

jo  of the neural network is computed. The 

summation of the square of the error E can be 
expressed as:  

2

1

)(
2
1

j

n

j
j oyE −= ∑

=

                     (11) 

The second is the backward phase which is an 
iterative error reduction performed in a backward 
direction. The gradient descent method, adding a 
momentum term [19], is used. The new incremental 

change of weight can be expressed as:  )1( +Δ nwk
ji

)()1( nw
w
Enw k

jik
ji

k
ji Δ+

∂
∂

−=+Δ αη          (12) 

Where η  is the learning rate, α  the momentum 

coefficient and n the index of iteration. 
Through this learning process, the network 

memorizes the relationships between input vector X 
and output vector Y of the system through the 
connection weights. Implementation steps are 
shown in Fig. 4. Through the test data obtained via 
the Universal testing machine in conjunction with 
the computer, we determine the data under tension 

and pressure as shown in Appendix. 
 
 

4. Setup of Experiment Equipment 
and Experiment Condition 
Here we will introduce the rigidity of the linear 

motion guide because in most of the cases 
appropriate preloads are added to enhance the 
rigidity of the linear motion guide. Preloading is an 
approach to remove back cracks and reduce the 
elastic deformation between the balls and the 
contact surface. The preload of a linear motion 

guide is adjusted through the size of the balls. 
Preloading via large balls creates something similar 
to the spring-like effect – knocking without 
vibrations. Generally speaking, preloading enhances 
rigidity by over 10 times. Too much preloading, 
however, will cause both the friction and the rising 
heat to increase the wear of the balls and it 
malfunction the preload effects. That tends to 
adversely affect positioning precision and durability. 
Table 1 shows comparison of different preloads. We 
choose linear motion guides under Z1 preload for 
the study. 

For this paper’s linear motion guide rigidity 
test, we design a jig (see Fig. 5) in conjunction with 
SHIMADZU UH100A universal testing machine. 
Due to the design of the jig, we can obtain the 
tensile and strain of the linear motion guide under 
tension. Under compression, the linear motion guide 
can be placed directly on the universal testing 
machine for testing. Through the stress and strain 
test and we can then obtain the rigidity. This 
experiment employs BRH25A linear motion guide 
manufactured by ABBA Linear Technology 
Company. Rigidity of 1,000kg-5,000kg is taken for 
modeling data. Rigidity is predicted to be between 
5,500kg and 8,000kg. See Table 2. 

Grey prediction models under compression and 
tension are shown below. 

a. Steps for grey prediction modeling under 
tension are shown as:  

1) Model’s primitive sequence 

{ })9(,),3(),2(),1( )0()0()0()0()0( xxxxx ⋅⋅⋅=  
={ }9.4752,,6.4318,1.4054,1.3620 L  

2) AGO 

{ })9(,),3(),2(),1( )1()1()1()1()1( xxxxx ⋅⋅⋅=  
{ }6.39966,,8.11992,2.7674,1.3620 L=  

3) Determine B and Yn through least square 
method 
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b. Steps for grey prediction modeling under 
compression are shown below: 

1) Model’s primitive sequence 

{ })9(,),3(),2(),1( )0()0()0()0()0( xxxxx ⋅⋅⋅=  
={  }4.16304,,5.11981,10766,3.9221 L

2) AGO 
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{ 9.120395,,9.31968,3.19987,3.9221 L= } 

3) Determine B and Yn through least square method 
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5. Experiment Outcomes 

The first column Table 2 shows actual rigidity 
due to the applied load from 1,000kg to 8,000kg 
obtained from the test. This paper employs 
1,000kg-5,000kg as data for grey forecasting model 
and uses it for prediction of rigidity of 
5,500kg-8,000kg. The predicted results obtained by 
the grey forecasting model are shown in Table 2 and 
Fig. 6. The mean absolute percentage errors (MAPE) 
of the grey forecasting model and neural network 
from 1000kg to 5000kg are 2.15％  and 0.47% 
respectively under compression, and 1.85％  and 

0.34% respectively under tension. And the MAPEs 
of the grey forecasting model and neural network 
from 5500kg to 8000kgare 13.29％  and 0.22% 
respectively under compression, and 12.25％ and 

1.48% respectively under tension. Predictions above 
indicate that no matter it is under compression or 
tension, the errors of grey forecasting modeling are 
greater than that of the neural network in terms of 
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Appendix: modeling sequence or forecasting sequence. Further, 
the errors of the neural network are very 
insignificant. 

 
 

 

6. Conclusions 
This paper employs both the grey forecasting 

model and neural network prediction model of the 
rigidity of linear motion guides. This study applies 
the neural network model to dual-input-dual-output 
situation. The GM(1,1) model is a model with a 
group of differential equations adapted for variance 
of parameters, and it is a powerful forecasting model, 
especially when the number of observations is not 
large. The neural network can be used to predict any 
loads between 5000kg and 8000kg, while the grey 
forecasting can only be employed to predict rigidity 
values between 5000kg and 8000kg at increments of 
500kg. And the average error of neural network 
predictions is around 1%. So it says much about the 
fact that neural network prediction model is 
effective for prediction of rigidity of linear motion 
guides. The prediction of grey theory on rigidity of 
linear motion guides is not as accurate as that of 
neural network prediction modeling. In summary, 
neural network prediction model is suitable for 
prediction of rigidity of linear motion guides. It 
accuracy is superior to that of grey theory modeling  

 

GM (1,1). The result is highly satisfactory 
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Fig.1 Structure of Linear Motion Guide. 

 
Fig.2 Configuration of the Back-propagation Network  
for the Modeling of the Linear Motion Guide Rigidity  
Test. 

  
Fig.3 Artificial Neuron with an Activation Function. 

 
Fig.4 Neural Network Implementation Steps 

 

 
 

Fig.5 Jig for Testing 
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     (a) 

 
     (b) 
Fig.6 Real Values and Model Values for Linear 
Motion Guide Rigidity from 1000kg to 8000kg.a) 
Under Tension; b) Under Compression 

 
Table 1 Preload 

 

 
Table 2 Model Values and Forecast Errors(unit: 
K=kg/mm). a) Under Tension; b) Under 
Compression. 

a. Model values and forecast errors (under tension) 

 

b. Model values and forecast errors  
(under compression) 
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