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Abstract: The purpose of this paper is to compare the prediction models constructed through neural network
and grey theory, and to apply the prediction model established to study of correlation between linear motion
guide rigidity under the stress of tension and compression. Strain data of tension and compression are
simultaneously obtained by the computer that is linked with the Universal testing machine and translated into
rigidity values through the formula of F=ko . Through this study we can understand the differences in
prediction of rigidity between neural network and grey theory. Experiment results will serve as reference for
manufacturers and users, with the hope that based on fewer measurement data testing time can be reduced and
the outcome can be more accurately predicted. Based on fewer measurement data, the outcome can be more
accurately predicted, and that with a nondestructive test can accurately predict the rigidity of the linear motion
guide. The outcome indicates that the prediction model established through neural network is superior to the
prediction model established through the grey theory, and that the neural network model can accurately predict
the result.
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1. Introduction platform between the rail and the block to engage in
The linear motion guide can be seen as a special unlimited cycles of motions. The block is confined
bearing. It is not a regular rotation bearing, but a to the rail so the load platform can engage in
automatic processing equipment, CNC machine high-speed, high-precision linear motions along the
tools, automated robot and nano-micro-processing rail. Its major components include rail, block, end
device pertinent to linear motion. Any automatic plate, ball and retainer (as shown in Fig.1).
equipment related to linear motion needs this Normally the friction coefficient of rolling is only
important part. It employs balls as the transmission 2% of that of sliding. The ratio between the strain
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and the load is the rigidity value of the linear motion
guide (F=Kko). The rigidity value is one of the
important factors that determine the quality of a
linear motion guide. Rigidity test is one of the key
elements that determine the quality of a linear
motion guide. Accordingly, this research attempts to
test the rigidity change of a linear motion guide
under stress and engage in prediction study.
Researches followed two methods for
prediction modeling. The first is the grey modeling
(GM). 1t

demographic, industrial and economic predictions

has been expansively applied to
[1-9]. The second is neural network modeling,
which is often employed in various predictions
[10-16].

prediction modeling and neural network modeling

This paper employs both the grey
for prediction of the rigidity of linear motion guide.
Outcomes of both models are compared. Results of
rigidity prediction will serve as references for linear
motion guide manufacturers and user. They can also
serve as the basis for tests pertinent, with the hope
that rigidity can be predicted based on fewer data
and less time, so testing cost can be reduced and
enhanced profitability.

2. Methodology of grey forecasting

The GM(1,1) is a time series forecasting model,
encompassing a group of differential equations
adapted for parameter variance, rather than a first
order differential equation. Difference equation
has structures that vary with time rather than being
general difference equation. Although it is not
necessary to employ all the data from the original
series to construct the GM(1,1), the potency of the
series must be more than four. In addition, the data
must be taken at equal intervals and in consecutive
order without bypassing any data [17].

The GM(1,1) model constructing process is
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described below. The first-order differential

equation of GM(1,1) model is

dXx ()
dt

where t denotes the independent variables in the

+aX®W=p

(1)

system, a the developed coefficient, b the Grey
controlled variable, and a and b denote the
parameters requiring determination in the model.
The variables, including x(1),x(2), ... and x(n), are
used to construct the Grey forecasting model and
accurately predict x(n+ 1),x(n + 2), ..., and x(n + k).
Denote the original data sequence by
X® = XO1),x?2),xO @), xO ()} (2)
When a model is constructed, the Grey system
must apply one-order accumulated generating
operation (AGO) to the primitive sequence in order
to provide the middle message of building a model
and to supress the variation tendency. Herein, x(1) is

defined as x”'s one-order AGO sequence. That is,
i

x9 (i) =>_x(j)
)

XD = @ (1),x9(2),x9 @), xP(n)]  (3)
From Egs. (1) and (3), by the least-square
method, coefficient & becomes

A a
a=(B"B)'B"Y, { }
b
(4)
Furthermore, accumulated matrix B is

—702) 1]

— 7@ (3) 1
. . , where

—z(l)(n) 1

2z (k) =0.5x" (k) + 0.5x® (k - 1)
Meanwhile, the constant vector Y, is
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O @)

©
vno| X .(3)

_X(O) (n)_

Therefore, the solution of Eq.(1) can be
obtained by using the least square method. That is,

b

XV (k +1) = [x‘o) ) —g}ea" - (5)

When X1 =x9(Q) the

sequence one-order inverse-accumulated generating

acquired

operation (IAGO) is acquired and the sequence that

must be reduced as Eqg. (6) can be obtained.

KOk +1) = XD (k +1) - XY (k) (6)
Given k=1, 2, ... n, the sequence of reduction

is obtained as follows (Eq. (7)):

O = (xOm),x92),---, Xk +1) (7

where X (k +1) is the Grey elementary predicting

value of. x(k +1)

The forecasted error value and actual value are
necessary. To demonstrate the efficiency of the
proposed forecasting model, this article adopts the
residual method. Herein, Egs. (8) is used to compute
the residual error of Grey forecasting.

_xOK) - %9 (k)
X (k)

e(k) x100% ®)

3. Neural networks

The neural networks have demonstrated great
potential in the modeling of the input-output
relationships of complicated systems [18], Consider
that X= {xl,xz,---,xm} is the input vector of the
system, where m is the number of input variables.
And Y= {yl, Youree, yn} is the corresponding output
vector of the system where n is the number of output
variables.

The back-propagation network shown in Fig. 2
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is employed in this study. The neurons, of the input
layer are used to receive the input vector X of the
system and the neurons of the output layer are used
to generate the corresponding output vector Y of the
system. For each neuron Fig. 3, a summation
function for all the weighted inputs is calculated as:

k k A k=
netf => wiof™ 9)
j
where net;( is the summation function for all

the inputs of the j-th neuron in the k-th layer, Wjﬁ is
the weight from the i-th neuron to the j-th neuron
and 0/ 'is the output of the i-th neuron in the

(k-1)-th layer.

As shown in Eq. (9), the neuron evaluates the
inputs and determines the strength of each one
through its weighting factor, the stronger is the
influence of the connection. The result of the
summation function can be treated as an input to an
activation function from which the output of the
neuron is determined. The output of the neuron is
then transmitted along the weighted outgoing
connections to serve as an input to subsequent
neurons. In the present study, a hyperbolic tangent

function with a bias bj is used as an activation

function. The output of the j-th neuron 0? for the

k-th layer can be expressed as:

(net§+b;) e—(net'j‘+bj)

K Ky
Oj B f(netj ) B (net*+b;) n ~(netf+b;)

€ €

(10)

To modify the connection weights; properly, a
supervised learning algorithm [19] involving two
phases is employed. The first is the forward phase
which occurs when an input vector X is presented
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and propagated forward through the network to
compute an output for each neuron. Hence, an error

between the desired output Yy, and actual output

0; of the neural network is computed. The

summation of the square of the error E can be
expressed as:

1 n
E =_Z(yj _Oj)z
24

The second is the backward phase which is an

(11)

iterative error reduction performed in a backward
direction. The gradient descent method, adding a

momentum term [19], is used. The new incremental

change of weight AW; (n+1) can be expressed as:

oE
AW (n+1) = -1 .
ji

Where 7 is the learning rate, « the momentum

+aAws (n) (12)

coefficient and n the index of iteration.

Through this learning process, the network
memorizes the relationships between input vector X
and output vector Y of the system through the
connection weights. Implementation steps are
shown in Fig. 4. Through the test data obtained via
the Universal testing machine in conjunction with
the computer, we determine the data under tension

and pressure as shown in Appendix.

4. Setup of Experiment Equipment

and Experiment Condition

Here we will introduce the rigidity of the linear
motion guide because in most of the cases
appropriate preloads are added to enhance the
rigidity of the linear motion guide. Preloading is an
approach to remove back cracks and reduce the
elastic deformation between the balls and the

contact surface. The preload of a linear motion
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guide is adjusted through the size of the balls.
Preloading via large balls creates something similar
to the spring-like effect — knocking without
vibrations. Generally speaking, preloading enhances
rigidity by over 10 times. Too much preloading,
however, will cause both the friction and the rising
heat to increase the wear of the balls and it
malfunction the preload effects. That tends to
adversely affect positioning precision and durability.
Table 1 shows comparison of different preloads. We
choose linear motion guides under Z1 preload for
the study.

For this paper’s linear motion guide rigidity
test, we design a jig (see Fig. 5) in conjunction with
SHIMADZU UH100A universal testing machine.
Due to the design of the jig, we can obtain the
tensile and strain of the linear motion guide under
tension. Under compression, the linear motion guide
can be placed directly on the universal testing
machine for testing. Through the stress and strain
test and we can then obtain the rigidity. This
experiment employs BRH25A linear motion guide
manufactured by ABBA Linear Technology
Company. Rigidity of 1,000kg-5,000kg is taken for
modeling data. Rigidity is predicted to be between
5,500kg and 8,000kg. See Table 2.

Grey prediction models under compression and
tension are shown below.

a. Steps for grey prediction modeling under
tension are shown as:

1) Model’s primitive sequence
x© — {X(O) @, x?(2), x(3),---, x© (9)}

={3620.1,4054.1,4318.6,---,4752.9}

2) AGO

x® — {X(l) D, x9(2),x2(3),- -, x? (9)}
={3620.1,7674.2,11992.8,---,39966.6}

3) Determine B and Yn through least square

method
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4054.1 -5647.2 1
1 4318.6 -98335 1
4752.9 —-37590.2 1

a=(B"B)*B"Y,

_|a| |—0.019925
“|b| |4118.7
4) List the response equation
A @ b b
X (k+1) = [x‘o) ) ——}e‘ak +—
a a
A

5) Solve x (k) for 1-IAGO

NO N A

x (k+)=x (k+)-x (k)

=(- ea)[x“’) @) —E}eak
a
= {4054.1,4318.6,4480.3,---,5484.5}

6) Error Examination

O -% K

e(k) T x100%

= {-4.41,0.01,1.68,---—23.2}

b. Steps for grey prediction modeling under

compression are shown below:

1) Model’s primitive sequence

x© — {x(o) @), x?(2), x?(3), -, x© (9)}
={9221.310766,119815,--- 16304.4}

2) AGO

x® — {x(l) @, x9(2),x?(3),-- - x? (9)}

={9221.319987.3,31968.9,--- 120395.9}

3) Determine B and Yn through least square method

10766 -14604.3 1
11981.5 —-25978.1 1

Yn = . ’ = .
16304.4 -112243.8 1

a=(B"B)*B"Y,
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_lal —0.0544
“|b| |10591.2
4) List the response equation

@
x (k+1) = {x(o’ ) —E}e‘ak +9
a a

NC)

5) Solve x (k) for 1-IAGO

~(0) A0 N

x (k+D)=x (k+D)-x (K)

=(1- ea)[x‘o) @- g}eak

= {11400.1,12037.512710.4,---,23121.9}
6) Error Examination

A(0)
xOK)—x (k)
e(k) = T

x100%

= {-5.89,-0.47,2.39,--,-22.92}

5. Experiment Outcomes

The first column Table 2 shows actual rigidity
due to the applied load from 1,000kg to 8,000kg
obtained from the test. This paper employs
1,000kg-5,000kg as data for grey forecasting model
and uses it for rigidity of
5,500kg-8,000kg. The predicted results obtained by

the grey forecasting model are shown in Table 2 and

prediction of

Fig. 6. The mean absolute percentage errors (MAPE)
of the grey forecasting model and neural network
from 1000kg to 5000kg are 2.159% and 0.47%
respectively under compression, and 1.85% and
0.34% respectively under tension. And the MAPEs
of the grey forecasting model and neural network
from 5500kg to 8000kgare 13.299; and 0.22%
respectively under compression, and 12.25% and
1.48% respectively under tension. Predictions above
indicate that no matter it is under compression or
tension, the errors of grey forecasting modeling are
greater than that of the neural network in terms of
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modeling sequence or forecasting sequence. Further, Appendix:
the errors of the neural network are very No | mpression | Temsion | compression tension
B (k=23 (k=) E{kzmm) E{ksmm)
insignificant. 1 1000 1000 92213 35201
2 1014 1008 22182 362549
3 1098 1040 25140 36620
4 1116 1076 95207 37103
5 1156 1112 27244 37315
b 1178 1148 281467 371763
H 7 1198 1184 2g1e7 3Bl94
6. Conclusions o S R T008 FETE;
- - g 1262 1258 101774 38765
This paper employs both the grey forecasting 0 1295 1288 e S50
.. 11 1306 324 10203.1 32172
model and neural network prediction model of the T TEH T 103508 L
. ey . . . . . 3 1374 1324 104001 32§59
rigidity of linear motion guides. This study applies I 1304 1432 105738 40000
) 15 1418 1458 105821 40330
the neural network model to dual-input-dual-output 18 1340 1500 105832 40541
17 1488 1536 107681 404835
situation. The GM(1,1) model is a model with a 18 1508 1568 107714 40833
. . i i 14 1532 1608 108429 410240
group of differential equations adapted for variance 20 1554 1640 10943 7 41206
21 1600 1676 111111 11485
of parameters, and it is a powerful forecasting model, 2 o2 s s
especially when the number of observations is not = o T 20
H 26 1744 1854 114737 425649
large. The neural network can be used to predict any T R T ST
- 28 1792 1228 114872 42824
loads between 5000kg and 8000kg, while the grey T 50 Ta58 s Y
. R . e 30 1866 2004 11662.5 431240
forecasting can only be employed to predict rigidity 3 1288 2040 = 13404
. 32 1214 2076 118148 43431
values between 5000kg and 8000kg at increments of 35 1964 2112 119756 3636
34 1288 2148 114752 43837
500kg. And the average error of neural network 3 | oos 2184 119851 43855
predictions is around 1%. So it says much about the
fact that neural network prediction model is R - S _
Ha -.\'J:I]'_]J:'-E::‘}:I]l. T—l‘l:l;ﬁl]l -.Igﬂ'_]l]-fa::ﬂn KT-'L‘:.:‘}:I]J.
. . T . - {kz) {kz) {kgmm) (kzmm)
effective for prediction of rigidity of linear motion T T R oo e
guides. The prediction of grey theory on rigidity of T e e
- - . - 34 1144 21324 237 4435
linear motion guides is not as accurate as that of o 5{-.:, 2380 i;ii ;
.- . 41 2222 2392 124832 24441
neural network prediction modeling. In summary, o 2221 EYLT] 12ama FYTEE)
.. . . 43 2174 2444 126333 244538
neural network prediction model is suitable for 2500 126454 228035
.. T . . . 43 21532 12793 5 24f04
prediction of rigidity of linear motion guides. It 25 2368 125063 43033
. . . 47 2604 129462 43032
accuracy is superior to that of grey theory modeling 3 2640 120258 43205
44 2480 2676 12068 8 45354
GM (1,1). The result is highly satisfactory 50| 2316 2708 131042 43284
51 2544 2748 131134 43427
52 2570 2780 132474 45574
53 2626 2816 13262.6 45714
34 2652 2852 45705
55 2680 2BEB 43841
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3p | compression | Tension comprEssian tension [ compression | Temsion compression tension
) (k=) E({kz'mm) E({kzgmm) Ma Flea Flea - \ i \
— - - = ! = (k=) (k=) E({kg'mm} E({kg'mm}
S 1388 2608 141 | 5708 5844 16082 1 47433
2 2218 12102 674 142 | 5740 5578 170853 47464
13 3172 14103 3 46701 145 | 5774 5004 170 E 47460

4 14224 1 880 135 | 5808 5264 17082 4 47409
13 14202 468340 143 3842 5006 1437

17182 4 2743

1446 5874 5024 171754

47 5908 6056 171744

5940 5116 172674

5074 G124 172659

]
2
0 5008 6172
1

£l 3 6040 6200
82 3 6072 62610

133 6108 6288

154 6142 6320

155 6174 5348

156 6208 5404

13 6240 6432

158 6276 5460

k) 159 6310 5488
%0 160 G344 G344
91 161 6376 6572
92 162 5408 5604
a3 163 jaas 6628
24 144 5478 G688
a5 424 163 6312 67148
245 4280 144 5546 6744
a7 4312 147 6578 6776
a3 4348 148 6612 6828 1772
B 4380 144 G4 5860 178655

170 G680 §EEE 178610

171 6712 6912 178311

172 6746 5968 17941 5

103 4504 173 6780 6294 179363

104 4331 174 6812 1024 179243

103 4564 175 6844 1052 180158

Ha compression | Temsion -:cfﬂ:pra;;ian *a compression | Temsion COmpEssion tension
(k=) (k=) E (kz'mm}) ' (k=) {kz) E{kgmm) E({ksmm)

104 1454 4504 156783 174 G882 7108 180157 25640

107 4432 1574902 177 G914 7134 180052 46641

108

157917

6250

180290

465810

108 £378 4626 157862 178 8982 7182 18088 1 46380
T 15520 4 180 7018 7144 1E087 6 46406

138912 181 7050 7172 181701 46406

16005 & 182 7086 7184 181622 46412

139932 183 7320 181633 46388

161007 154 1825090 £630.7

160933

160993

162040

182384

183419

183132

s | a5 155

——— wlEEE 189

16208 7 47486 50

163032 47319 o1

164065 47463 R

164050 47405 5

16401 3 475 Tot

ELELER = 185

163000 4 55

16607 6 4 197 —ax

156052 4 i =

106009 - 109 TE4

i:ia = 200 7824 18603.9
T - 201 7840 185962
T 202 7380 18681 7
165057 203 7374 15668 9
16798 8 204 7013 187512
T 203 7051 187476
168970 204 7948 187383
16891 6 207 Tak4 187354
lae 0 208 7078 7096 188160
1520 200 £000 2009 188105
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Fig.6 Real Values and Model Values for Linear
Motion Guide Rigidity from 1000kg to 8000kg.a)

Under Tension; b) Under Compression

Table 1 Preload

Grade Symbol Preload force
Clearance ZF 0

Mo Preload 0 0

Light Preload Z1 0.02C
Widdle Preload z2 0.05C
Heavy Preload Z3 0.07C

% Bastc static load rating
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Table 2 Model Values and Forecast Errors(unit:

Y. F. Hsiao, Y. S. Tarng, K. Y. Kung

K=kg/mm). a) Under Tension; b) Under

Compression.

a. Model values and forecast errors (under tension)

Load Redl value GICL, 1) Heural network
kg (F) Rigidity (kgfmm) (kg/mn)
CKRER) | piodelvatue | error Mladel value Srror
kgfmm (%) (%)
1000 3620.1 - - 36345 04
1300 40541 40541 -4.41 4047 .1 0.17
2000 43186 43186 ool 43369 -0.42
2500 44203 44203 168 45312 -091
3000 4a09.1 46091 251 45303 -0.44
3300 46219 46519 209 4691.1 -0.2
4000 47184 47184 089 47324 -009
4500 475312 47512 083 47364 -0.11
o000 47529 47529 -239 4740 027
MAFE 135 038
(1000-5000)
3500 47531 4064331 -445 47375 033
000 474268 3064239 -A78 47312 024
6300 47082 5166157 -0.73 47323 -0.3
Jo0o 44702 3270127 -12.83 47117 -089
7500 da14.5 5376189 -16.51 4500 9 -125
2000 4451.9 3424386 -23.20 4827 -528
MLAE 1225 148
(5500-3000)

MAFE = lﬁ;[h‘t‘” () - ¥ |/ 2 ]
Mia

b. Model values and forecast errors

(under compression)

Load Feal value GM(11 Neural network

kg (F) Rigidity (kg/ma) (kg/mm)

CESEB) | Model value | error Model vatue etror
kegfmen (%) (%)
] 02213 — — 03223 -11
1500 10766.0 114001 -580 107363 0.2s
2000 119815 12037.5 -047 119179 0.53
2500 130208 12710.4 239 128959 0.9
3000 137615 13421 248 137225 028
3500 14462 8 141714 202 14444 4 013
4000 151433 149636 119 150938 033
4500 157343 158002 042 156902 028
000 16304.4 166835 -232 16244.6 037
MalE, 215 047
(1000-5000)
500 16800.3 17616.3 -85 16763 02z
a00o0 17264.7 12601.1 1ra 172484 01
6500 17697.0 196411 -10.92 17702.8 -0.03
7000 180879 207391 -14.65 181267 -022
7500 13462.2 218986 -18.61 185214 0352
8000 188105 231229 -12.92 18888.4 -0.41
Mefz 1329 022
(3500-8000)

|1tarE = li[kt“? (- 2= | 1 ]
Mg
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