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Abstract: - Investigated in this study is the steady-state flow field of a long bubble penetrating into a region 
filled with a viscous fluid confined by two closely located parallel plates.  Instead of using the complicated 
procedure for iteratively computing the free surface and flow patterns, we simply use a theoretical profile of the 
bubble so that the influence of bubble shape on the flow field can be examined directly.  Due to the 
simplification, flow fields with higher Reynolds number are easier to be included and different flow 
phenomenon is found.  The numerical techniques employed are finite difference method (FDM) with 
successive over-relaxation (SOR).  The simulation results show coincidently with others the two typical flow 
patterns (complete bypass flow and recirculation flow).  The gradually moving of the stagnation point in the 
front of the bubble tip between two typical flow patterns is clearly presented and explainable.  Both of the 
position of the stagnation point parallel and perpendicular to the flow, *

spx  and *
spy , depends on Reynolds 

number, Re, and λ , the ratio of asymptotic bubble width to the distance between two parallel plates.  As λ  or 
Re increases, *

spy  increases too, but *
spx  decreases.  A quasi-linear relationship between λ  and *

spx  is found in a 
recirculation flow region.  Be ware that the stagnation point is very sensitive with λ  for Re>100.  As Re 
increases, the maximum value of stream function  increases, and the recirculation zone near the bubble tip 
becomes bigger too. 

*
maxψ
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1 Introduction 
Tsing long bubble to assist manufacture or medical 
processes is common in various industries, such as 
gas-assisted injection molding, bio-mechanic 
process and medical treatment process, etc. 
Particularly, the information about the expelled fluid 
flow in front of the bubble and the contour of the 
bubble front are of great interests in the simulating 
processes. Using the fundamental dynamic 
equations of the bubble by some theoretical or 
experimental deduced empirical equations can 
practically simplify simulation procedures. The flow 

patterns, and the migration of stagnation point and 
the influence of the inertia forces on the flow field 
are presented in this study.  

The impacts of the bubble size on the flow field 
draw a great interest of many researchers [2,9-10]. 
Mavridis et al. [11] studied the movement of the 
polymer melts front in both two-dimensional 
channels and tubes. They computed the inner flow 
fields of both the Newtonian and the non-Newtonian 
fluids and compared the difference of these melt 
front shapes. Fairbrother and Stubbs [1] first studied 
the penetration of a long bubble in a tube. The 
empirical formula between the fractional coverage 
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are obtained. Hsu et.al. [2] numerically 2 studied the 
Long Gas Bubble Front. Taylor [3] presented three 
fluid flow patterns, two kinds of re-circulating flows 
with a low capillary number, and a by-pass flow 
with high capillary number. Bretherton [4] 
developed a theoretical formula relating the 
fractional coverage and the pressure drop across the 
bubble. Goldsmith and Mason [5] visualized the 
flow pattern, the coating thickness and the shape of 
the bubble front. 

Cox [6-7] extended Taylor’s experiment and 
proposed a numerical solution of the momentum 
equation. Cox also developed an empirical equation 
of the bubble profile, verified the existence of the 
two flow patterns in the Poiseuille flow. In the Hele-
Shaw cell model, Pitts [8] reported a theoretical 
bubble shape equation for λ smaller than 0.77.  

However, the study of the effects of λ, using 
atheoretical bubble’s profile is absent. In present 
work, the flow patterns previously considered by 
Hsu et al [9-10] in front of a semi-infinite gas 
bubble were computed. The streamlines demonstrate 
how the flow field changes when λ is varied and 
evidently exist recirculating flow and the migration 
of stagnation point. 
 
2 Governing Equations 
This paper is closely followed Saffman and 
Geoffrey Taylor [2] and Hsu et al [9-10] 
assumptions, studies a bubble steadily with moving 
speed U expels the viscous fluid confined in two 
closely parallel plates as illustrated in Fig. 1, and the 
channel is open. The continuity equation is 
expressed as  

0yx uu
x y
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∂ ∂
 (1) 
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The stream function ( ,x yψ  of the flow is defined 
as 

,   x yu u
y x
ψ ψ∂
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∂
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and vorticity ω  is defined as 
2 2
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Substituting equation (3) and (4) into (2), the 

vorticity equation can be obtained as 
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By introducing the following dimensionless 
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where υ  is the kinematic viscosity and Re  is the 
Reynolds number respectively, equations (4) and (5) 
can be written as 
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An inverse bubble velocity U  is added in the 
flow to fix the bubble in the computation domain so 
that the boundary conditions are expressed as 
follows. 

No slip condition on the channel wall( AB ) 
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The Hagen-Poiseuille flow at the far upstream 
( BC ) 
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The symmetry conditions at the centerline  ( CD ) 
* *0;   0ψ ω= =  (10) 

At the interface between the two fluids ( DE ).  
In general, for a given bubble profile, the net 

force acting on the interface should be zero due to 
the balance between the surface tension on the 
interface and stresses on both sides of the interface. 
By using the theoretical bubble profile equation 
proposed by Pitts [8], the present study imposes two 
conditions suggested by Cox[6]: no diffusion across 
the interface (Eq. 11), and zero tangential stress on 
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the interface between gas and the fluid (Eq. 12).  
Therefore, two conditions at the interface can be 
deduced as 

* *sin cos 0y xu uθ θ+ =  (11) 
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By combining equations (11) and (12), the 
equation of vorticity on the interface can be 
obtained as 
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Thus, the conditions on the interface are 
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The flow in the region is rectilinear at the far  
downstream ( EA ) 
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2.1 Numerical Procedure  
The finite-difference method (FDM) with 
successive over-relaxation (SOR) is employed in the 
present study.  The finite difference formulas are 
obtained from equation (6) as  
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where ,  denote indices at i j x -direction and -
direction, 

y
xΔ  and yΔ  are even grid sizes at x -

direction and y -direction, and dy  is the uneven 
grid size along the interface ( ), 
respectively.  The uneven grid dy is introduced in 
order to fit the curvilinear interface as shown in 
Figure 2. Two different grids, one is curvilinear 
conformal to the interface and the other is rectilinear 
parallel to the solid boundaries, are adopted in the 
numerical computational scheme.  The finite 
difference equation with SOR is solved by using 
Gauss-Seidal iteration method.  Rearrange equation 
(16), the Gauss-Seidal iteration form with SOR is 
obtained as 
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α  and  denote the over-relaxation factor and 
iterative time, respectively.  Discrete and rearrange 
the stream-vorticity equation (7), the Gauss-Seidal 
iteration form with SOR is obtained as 
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Starting with an initial guess of values of 
vorticity and stream function (all set at zero values 
in the computation domain) and introducing 
boundary conditions, the value of *ω  is computed 
from equation (17) at each grid point, and then 
substituting the *ω  value into equation (18) to 
obtain new *ψ  value.  The iteration process is 
repeated to calculate the values of *ω  and *ψ  until 
the relative residual reaches the convergent criterion.  
The criterion is defined as 

* *

*

k+1 k
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k
i,j

 10
ψ ψ

ψ

−
≤  (19) 

The vorticity on the channel wall is derived from 
the wall values of stream function, *

, si jψ  in backward 
form by using the Taylor expansion. The expansion 
becomes 
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where the index  denotes the y-position of the 
channel wall. 

sj

Substituting the known value  on the 
boundary and rearranging equation (20), the 
boundary value of the vorticity can be obtained as 

*
, 1

si jψ = −
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3 The numerical results 
Many previous studies verified two typically flow 
patterns [5,7]. Especially, Hsu [9,10] displayed the 
third pattern which suggested by Taylor [3]. Present 
study discusses the impacts of the values of λ and 
Reynolds number Re on the position of stagnation 
point and the maximum *ψ  value on the flow field. 

The influences of the upstream boundary 
condition on the fluid flows are discussed below.  It 
is known from Cox [7] that the upstream 
distribution of   can be expressed as 

( ) ( )

3* *
*
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1
3 3
2 1 1

y y
y

λ
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λ λ
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By setting  in equation (22), the relative equation of   
and   can be obtained as 

2*

2
3 y

λ =
−

  (23)  

From equations (22) and (23), one can find that 
the location of   varies as a function of   and .  If one 
set that the position of   locates on , it results in .  
The   increases from   to 1 as   increases from zero 
to unit, i.e., the recirculating flow pattern will be 
observed if the value of   is higher than .  Thus the 
critical situation   will signify the two typical flow 
patterns proposed by Taylor [3], Cox [7]. 

The numerical results presented here verify the 
flow fields mentioned in the previous studies.  
Phenomena in the creeping flow ( ) and the 
effects of the inertia force ( ) to the flows are 
discussed.  The effects of 

Re 0=
0Re >

λ  and  to the position 
of the stagnation point and the value of the 
maximum 

Re

*ψ  are also presented. 

 

3.1 The inertial effects 
We assume the profile of the bubble still obey the 
result proposed by Pitts [8]. 

Figure 3 illustrates three kind of flow patterns 
with five different λ  values.   The complete bypass 
flow is shown in Fig. 3(a) and 3(b).  The flow 
pattern suggested by Taylor [3] is shown in Fig. 3(c), 
and the recirculation flow is presented in Fig. 3(d) 
and 3(e).  All streamlines in the figures are drawn 
from  to with an increment of 0.1. * 1ψ = − *

maxψ

In Figure 3(a) and 3(b), the streamlines are quite 
uniform and parallel in the rear region 
within *3 x 1.8− ≤ ≤ − .  It shows that the flow velocity 
in the region is nearly equal.  Also, the contour of 
the bubble is nearly parallel to the channel wall in 
far downstream, as proposed by Cox [6] and Pitts 
[8].  Comparing Fig. 3(a) and 3(b), the results show 
that the flow region in the front of the bubble tip, 
which is affected by the bubble, decreases as λ  
value increases. 

The third flow pattern, which is the flow with the 
stagnation point located in the front of the bubble on 
the centerline, is shown in Fig. 3(c).  It is very 
interesting to notice that a recirculation region is 
formed when λ  value is just a little higher than 2/3.  
The recirculation region lays between the centerline 
and the streamline, * 0ψ = , including the stagnation 
point.  In addition, the third flow pattern seems to be 
a transition state between the complete bypass flow 
pattern and recirculation flow pattern, because this 
flow phenomenon only can be observed when λ  
value is just a little higher than 2/3.  More details 
will be discussed in Figure 12. 

    Figures 3(d) and 3(e) are the typical 
recirculation flow pattern verified by many previous 
studies such as Cox [7].  The *

maxψ  value in the 
recirculation region in both Fig. 3(d) and 3(e) is 
greater than zero.  There is a stagnation streamline 
( 0* =ψ ) starts from the front of the bubble and 
outreaches into the fluid with a distance away from 
the centerline.  Between the centerline and the 
stagnation streamline, the fluid flows reversely 
away from the bubble.  The downstream bypass 
path of the main flow becomes narrower and the 
size of the recirculation zone grows larger while the 
λ  value increases.  It is worth noting that the 
stagnation point moves downstream along the 
bubble profile and the streamlines show notable 
changes in both main flow region and recirculation 
region while the λ  value increases. 

Figure 3 present the distribution of streamline 
with different λ under zero Reynolds number value 
in complete bypass flow (λ<2/3) region, the 
transient region and recirculation flow (λ ≥2/3) 
region, respectively. the stagnation point locates on 
the centerline between the upstream and the bubble 
tip when λ is just above the critical value 2/3. 

Figure 4 shows the corresponding velocity 
distributions of Figure 3.  It is found that the fluid in 
the region with *1 ψ 0− ≤ ≤  flows downstream in the 
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same direction toward the bypass path at the rear 
part of the bubble.  The reverse flow is in the region 
with .  The value of * 0ψ > λ  dominates the present 
of the complete bypass flow or recirculation flows.  
As shown in Fig. 4(a) and 4(b), the velocity in the 
front of bubble tip decreases while λ  increases up 
to 2/3.  The recirculation flow is present with λ >2/3.  
The maximum recirculation velocity and the 
recirculation zone increase while λ  increases from 
2/3 to 1, and reach their maximum values when λ =1.  
The stagnation point moves along the centerline, as 
shown in Fig. 4(c), and it moves downstream along 
the bubble profile, as observed in Fig. 4(d) and 4(e), 
while λ  increases.  In other words, the stagnation 
point moves downstream along the centerline and 
the bubble profile while the cross-sectional area of 
the bubble increases.  Also, while the cross-
sectional area of the bubble increases, it is difficult 
for the viscous fluid at the center region to move 
downstream.  Finally, the fluid reaches a stagnant 
state and then starts to move upstream.  As 
mentioned, the maximum recirculation velocity 
increases while λ  increases.  However, the effect of 
λ  to the velocity distribution in the range with 

 is minor. The velocity distributions near 
the stagnation point in Fig. 4(c), 4(d) and 4(e) are 
enlarged to show in Fig. 5(a), 5(b) and 5(c) for 
further insight. 

*1 ψ− ≤ ≤ 0

Fig. 5(a), 5(b) and 5(c) show that the positions of 
stagnation point with λ =0.67, 0.70 and 0.77 are 
located at (0.75811, 0), (-0.02668, 0.15268) and (-
0.16555, 0.38062), respectively.  The velocity near 
the stagnation point, as shown in Fig. 5(a), 
decreases to zero when  coordinate varies from 
larger  to .  The figure also shows a tiny 
recirculation flow region, which is not clearly 
presented in Fig. 3(c) and 4(c).  The reason for not 
showing the tiny recirculation zone is that, for Fig 
3(c), the value of  is less than 0.1, which makes 
a difficulty to plot streamlines and, for Fig. 4(c), 
only a zero velocity is shown.  The velocity between 
the bubble tip and stagnation point near the 
centerline also presents in Fig. 5(a).  The flow 
velocities move nearly parallel to the centerline only 
in a thin  range not over 0.05, while the fluid 
move abruptly upward along the bubble.   Because 
the position of the stagnation point is located on the 
bubble profile with

*y
*y * 0y =

*
maxψ

*y

λ >2/3, there is no fluid velocity 
parallel to the centerline in Fig. 5(b) and 5(c).  In 
Fig. 5(b), the fluid in the front of the bubble tip 

shows a stagnant state, which is not clearly observed 
in Fig. 3(d) and 4(d).  Fig. 5(c) shows that the fluid 
in the range, , moves abruptly toward the 
centerline in the region near the bubble.  In 
conclusion, the fluid in the front of the stagnation 
point shows the transition phenomena when

* 0.4y ≤

λ  
increases.  The stagnation point moves downstream 
along the centerline to the bubble tip, and then 
moves further downstream along the bubble profile.  
In the recirculation region, the fluid moves 
gradually toward the centerline, turns around and 
then flows upstream. 

In order to reduce the loading on calculation, 
many previous studies such as Cox [6], added an 
inverse bubble velocity, , in the flow to set the 
bubble fixed in the calculation domain.  Cox[7] used 
same concept to measure the velocity profile in 
order to verify the coincidence of experiments with 
the theoretical and numerical simulations.  The 
present study also adopts the same concept to 
simplify the computations.  In addition, the bubble 
is assumed to extend downstream to infinity 
( ).  One can set a zero velocity at the far 
downstream section, i.e., the viscous fluid either 
adheres to the channel wall or moves upstream away 
from the bubble.  As a result, if a constant bubble 
velocity U is added back, which means to subtract 
the velocity presents in Fig. 4(a-e) with the bubble 
velocity, the fluid only moves upstream.  The 
concept was also used in Mavridis et al. [11] to 
investigate the fountain flow phenomenon in the air-
assisted polymer injection process.  Figures 6(a-e) 
show the results of adding U  to the velocity 
distributions presented in figures 4(a-e), respectively.  
These figures show that the velocity distribution in 
the front of the bubble tip, , is less affected by 
the bubble, the velocity distribution are the same in 
various cross section along 

U−

*x → −∞

* 0x >

x -coordinate under 
same λ  value.  The velocity variations are evident 
in the region of * 0x < .  This also indicates that the 
expelling effect of the bubble to the viscous fluid 
flow fields is only a local effect.  Furthermore, the 
velocity distributions in the region from the bubble 
tip ( * 0x = ) to downstream section ( ) can be 
divided into two patterns.  One is in the region 
surrounded by the downstream section, bubble 
profile and channel wall, in which shows a nearly 
stagnant flow, and the other is near the bubble tip 
where shows a bubble driven flow.  The stagnant 
range decreases while 

* 3x = −

λ  increases. 
Figures 7 and 8 present the distribution of 
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streamline with different Reynolds numbers under 
constant λ value in complete bypass flow (λ<2/3) 
region and recirculation flow (λ ≥2/3) region, 
respectively. In Figure 7, the increasing of Reynolds 
number doesn’t have notable effect on the flow field 
in complete bypass flow region. In Figures 8, as 
Reynolds number increases, the maximum *ψ  value 
increases, and the recirculation zone near the bubble 
tip become bigger, too. The range of the 
recirculation flow region increase as the Reynolds 
number further increases, this shows Reynolds 
number has notable effect on the recirculation flow 
and the maximum *ψ  value. 

The velocity distributions of Figure 8 in both 
moving frame of reference and fixed frame of 
reference are shown in Figure 9 and Figure 10, 
respectively. 

The velocity distributions in Figure 9 are similar 
to those of creeping flow shown in Fig. 4(e).  In 
Figure 10, fast fluid particles in the central region of 
the fluid flow will induce the fluid near the channel 
wall to move toward the central core and upstream 
region.  This tendency increases while the Reynolds 
number increases.  In conclusion, the variation of 
the Reynolds number does not have notable effect in 
the complete bypass flow.  But in the recirculation 
flow, the fluid near the bubble tip is expelled to 
move toward the core region while the Reynolds 
number increases. 
 

3.2 The relations between λ and the 
location of stagnation point, maximum ψ 
value 
Based upon Pitts [8] which reported that the 
experimental results and theoretical profiles agree 
well under the condition λ ≤ 0.77 , thus the present 
results all calculated until the λ reaches the 
maximum value 0.8 to avoid deviation from the 
experimental results. 

Figure 11 depicts maximum streamline value as a 
function of λ for various Re values. The value of 

 in Figure 11 is larger than zero and it means 
the recirculation flow occurred. If  is less than 
zero, the bypass flow shown. It is found that  
converges to the same λ values (λ ≤ 0.685) for all Re 
values, then it deviates obviously as increasing λ 
value. The higher λ value and the higher Re values 
results in the higher  value. In the case of  λ 
increasing, the flow rate at far downstream gets 
decreasing, so the losing mass flow rate in the far 
downstream should be supplied from the far 

upstream. Furthermore,  is monotonous 
increasing while the Reynolds number increasing at 
the same λ value and the  gets closer to each 
other at higher Reynolds number ( 200≤Re≤300 ) 
and deviates for lower Re . 

*
maxψ

*
maxψ

*
maxψ

*
maxψ

*
maxψ

*
maxψ

Figure 12(a) shows the location of stagnation 
point on x -direction versus the λ, and Figure 12(a) 
presents the stagnation point corresponding to 
bubble tip locates on the centerline ( x* > 0 ). In 
Figure 12(a) the stagnation point moves from x* = 3 
toward the bubble tip area along the centerline for 
all Re as the increment deviates from λ = 2/3. In 
other words, the increment of  λ stimulate the 
movement of stagnation point from x* = 3 to x* = 0 
is not over 0.02 ( 2/3<λ < 0.6839 ) in creeping flow 
region, and in relative high Reynolds number region 
( Re >100 ) the stagnation point is very sensitive to 
any increment of  λ , a small increment of  λ will 
cause stagnation point to move toward the bubble 
tip area. The situation of stagnation point moves in 
the range 0≤ x* ≤3 is a transient state between 
complete bypass flow and recirculation flow. It is 
found that the *

spx ≈ 0.00502 at λ = 0.6838. 
The relation between *

spx  and λ with various   
in the typical recirculation flow region (λ ≥2/3 ) is 
shown in Figure 10(b).  The value of 

Re

*
spx  decreases 

when or Re increases.  In addition, the value of *
spx  

decreases almost linearly while   λ  increases with 
fixed. The stagnation point moves further 
downstream away from the bubble tip (i.e., *

spx  is 
more negative) while the Reynolds number 
increases with fixed λ .  A quasi-linear relation 
between *

spx  and λ  is found in the recirculation flow 
region. 

The relation between the y -coordinate (i.e., *
spy ) 

of the stagnation point and λ  is shown in Figure 13.  
The solid line represents the -position of the 

streamline 

y
0* =ψ  on the far upstream section with 

variousλ .  All the other lines represent the relation 
between *

spy  and λ with various Reynolds number.  

The value of *
spy  increases while  or Re λ  

increases, but the gradient of curves decreases while 
λ  increases.  Comparing *

spy  to the y -coordinate 

(  ) of *y * 0ψ =  on the far upstream section, the 
difference between them decreases while λ  
decreases.  Also, the difference between *

spy  and  *y
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of  decreases while  increases with 
fixed

* 0ψ = Re
λ . 

 
4 Conclusion 
The study not only verifies the flow pattern 
proposed by previous studies but also detailed 
investigates the third flow pattern between the 
complete bypass flow and recirculation flow. It 
shows that the third flow pattern only observed in a 
small range ( 2/3< λ < 0.6839 ) and low Reynolds 
number. 

In a moving frame of reference, it is found that 
the velocity near the front of bubble tip decreases 
while the λ increases until the λ reaches the 2/3, and 
as the λ is larger than 2/3 the velocity increases 
(toward the upstream). The stagnation point divides 
the fluid flow in two directions: flow toward the 
upstream or downstream. When the Reynolds 
number increases, the velocity near the bubble tip 
increases and the affection in the region is similar to 
the case of high λ in creeping flow. 

In a fixed frame of reference, it is found that the 
velocity is only affected in a small region in front of 
bubble tip. The velocity in the region from bubble 
tip ( x* = 0 ) to the downstream ( x* = −3) can be 
divided into two regions, one is the velocity shows 
nearly stagnant in the downstream and the other is 
the velocity shows the obviously driven by the 
bubble near the bubble tip. The stagnant range 
decreases as the λ increases, and it also verifies the 
real physical phenomenon of zero velocity at the far 
downstream. As the Reynolds number increases, the 
fluids near the bubble tip expelled to move toward 
the centerline and the velocities increase in 
recirculation flow region. But the increasing of 
Reynolds number does not have notable effect on 
the flow field in complete bypass flow region. 
Increasing of Reynolds number, the affection of 
inertial forces, the range of the recirculation flow 
region increases for the same λ value and the range 
of λ in the transient flow becomes smaller, but no 
notable affections were found in the complete 
bypass flow. When the λ or Re increases, the  
and 

*
maxψ

*
spy  get increasing and the *

spx  gets decreasing. 

Nomenclature: 

H  The half distance between the two parallel 
plates 

U  The constant velocity of the bubble  

n  The normal unit vector on the bubble interface 

t  The tangential unit vector on the bubble 
interface 

x  The axial direction in coordinate system 

y  The radial direction in coordinate system 

Greek letters 

α   The over-relaxation factor 

θ   The angle between the normal of the interface 
and the axial direction 

λ   The ratio of asymptotic bubble width to half 
distance of the two parallel plates 

ψ   Stream function 

ω   Vorticity 

Dimensionless parameters 

Re  Reynolds number 

*  Dimensionless form 

Subscript 

i   The number of grid in axial direction 

j  The number of grid in radial direction 

s   Solid wall 

sp   Stagnation point 
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Figure 1. Diagram of the gas bubble steadily 
expelled viscous fluid and the coordinate 

system 
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Figure 2. Diagram of the uneven grid near the 
interface 

 

 

 

 

 

 
Figure 3. Distributions of streamline with different λ  
and Re 0=  
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Fig. 4 Distributions of velocity in the moving 
frame of reference with different λ  and Re 0=  
 

 
Fig. 5 Distributions of velocity near the stagnation point 
in the moving frame of reference with different λ  and 

 Re 0=
 

 

Fig. 6 Distributions of velocity in the fixed 
frame of reference with different λ  and Re 0=  
 

 

 

 

 
Figure 7.  Distribution of dimensionless streamlines for 
various Reynolds numbers in complete bypass flow 
region 
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Figure 8.  Distribution of dimensionless streamlines for 
various Reynolds numbers in recirculation flow region 
 

 

 

 

 

 

Figure 9. Distribution of velocity of the 
recirculation flow in the moving frame of 

reference with different  Re
 

 

 

 

 

 

Figure 10. Distribution of velocity of the 
recirculation flow in the fixed frame of 

reference with different  Re
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Figure 11. λ versus the maximum value with *
maxψ
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 Figure 12. λ versus the location of stagnation 
point on x -direction with various Re 
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 Figure 13. λ versus the location of stagnation 
point on y -direction with various Re 
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