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Abstract: - The paper discusses the behavior of beams with external nonlocal damping patches made from 
traditional and auxetic materials. Unlike ordinary local damping models, the nonlocal damping force is 
modeled as a weighted average of the velocity field over the spatial domain, determined by a kernel function 
based on distance measures. The performance with respect to eigenvalues is discussed in order to avoid 
resonance. The optimization is performed by determining the location of patches from maximizing 
eigenvalues or gap between them. 
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1   Introduction 
The ability of tailoring the best behavior of 
engineering structures at vibrations consists in a 
qualitative and quantitative understanding of the 
damping properties. One way to manipulate the 
eigenfrequencies of a structure is to vary its 
damping capacity. Currently, an optimal solution is 
obtained by maximizing eigenfrequencies or gaps 
between them, or by minimizing the possibility of 
internal resonance ordinary local damping models 
[1]-[5]  
     In these approaches, studying the damping with 
the nonlocal theory, will help us understand the 
mechanisms of damping through the long-range 
interactions among the particles. The stress at a 
location is determined by interatomic interactions in 
the neighbors around that location. The damping 
force is obtained as a weighted average of the 
velocity field over the spatial domain, by a kernel 
function based on distance measures. The 
deformations at one position produce forces and 
moments at other points in the structure [6],[7].  
     The interest in the subject has resulted in a large 
number of papers which describe nonlocal damping 
models based on viscoelasticity [8], on the harmonic 
waves motion in Voigt–Kevin and Maxwell media 
[9], or on composites with the internal damping 
torque [10], [11], and so on.  
     Lei, Friswell and Adhikari [12] have developed a 
nonlocal damping model including time and spatial 
hysteresis effects for Euler–Bernoulli beams and 
Kirchoff plates. The starting point of this theory is 
the damping force which depends at a given point on 

the past history of a velocity field over a certain 
domain, through a kernel function.  
     In this paper we apply the Lei, Friswell and 
Adhikari theory to analyze the dynamic 
characteristics of the Euler-Bernoulli beams with 
external damping patches made from traditional and 
auxetic materials. The shear and rotational forces are 
negligible for this model. The positions of the 
patches are determined from optimality criteria of 
maximizing eigenvalues or gap between them in 
order to avoid resonance. The eigenvalues and 
optimization problems are solved by the genetic 
algorithm [13], [14]. 
 
2   Problem Formulation 
The governing equation of motion for a 1D linear 
damped continuous dynamic system may be 
expressed as [12]  

0,Lu(x,t)=  ,x∈Ω  [0, ],t T∈           (1) 

where ( , )u x t is the displacement vector, x  is the 
spatial variable, t  is time, and L  is the nonlocal 
operator defined by 

2

2( , ) ( ) ( , ) ( , ),Lu x t x u x t M u x t
t t
∂ ∂

= ρ +
∂ ∂

 

where ( )xρ is the distributed mass density. The 
operator M  is defined as 

0

( , ) ( , , ) ( , )d d ,
t

M u x t C x t u
t tΩ

∂ ∂
= ξ − τ ξ τ τ ξ

∂ ∂∫ ∫ . 
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with ( , , )C x tξ − τ the kernel function for external 
damping which is only dependent on the 
displacement. Eq.(1) is subjected to the initial 
conditions 

0( ,0) ( ),u x u x=  0 0( , ) | ( ),tu x t v x
t =

∂
=

∂
     (2a) 

where 0 ( )u x  and 0 ( )v x  are the initial displacement 
and velocity. The boundary conditions are given by 

1( , ) ( , ) foru x t g x t=  1,x∈Γ  

2( , ) ( , ) foru x t g x t
x
∂

=
∂

 2 ,x∈Γ         (2b) 

where 1Γ  and 2Γ  are the boundary domains, and 
1( , )g x t and 2 ( , )g x t are known functions at the 

boundary. If the damping kernel functions are 
assumed to be separable in space and time, we can 
write ( , , )C x tξ − τ  in a general form 

( , , ) ( ) ( ) ( ).C x t H x c x g tξ − τ = − ξ − τ      (3) 

     The expression (3) represents the general form of 
nonlocal viscoelastic damping model. The function 

( )H x  denotes the presence of nonlocal damping. 
We have 0( )H x H= (constant) if x  is within the 
patch., and ( ) 0H x =  otherwise.  
     A particular case of (5) is the nonlocal viscous 
damping (or spatial hysteresis), where the kernel 
function is given by a delta function in time. In this 
case, the force depends only on the instantaneous 
value of the velocity or strain rate ( ) ( ),g t t− τ = δ − τ  
but depends on the spatial distribution of the 
velocities 

( , , ) ( ) ( ) ( ).C x t H x c x tξ − τ = − ξ δ − τ        (4) 

     In (4), velocities at different locations within a 
certain domain can affect the damping force at a 
given point. This spatial hysteresis that describes the 
damping mechanism for quasi-isotropic composite 
beams is similar to the damping model proposed in 
[15]-[17].  
     The spatial kernel function, ( )c x − ξ  is 

normalized to satisfy the condition ( )d 1,c x x
∞

−∞

=∫  and 

can be choose as an exponential decay or 
respectively, an error function 

( ) exp( | |),
2

c x xα
− ξ = −α − ξ  

2 21( ) exp ( ) .
22

c x xα ⎛ ⎞− ξ = − α − ξ⎜ ⎟π ⎝ ⎠
     (5a) 

     Here α  is a characteristic parameter of the 
damping material. For α→∞  it results 

( ) 0c x − ξ → . Another form of ( )c x − ξ  may be 
taken as the hat respectively, the triangular shapes 

0

1( ) forc x
l

− ξ =   0| | ,
2
lx − ξ ≤  and 0 otherwise, 

0 0

1 | |( ) 1 forxc x
l l
⎛ ⎞− ξ

− ξ = −⎜ ⎟
⎝ ⎠

 0| | ,x l− ξ ≤  

and 0 otherwise,                    (5b) 

where 0l  is the influence distance parameter. It 
results ( ) 0c x − ξ →  for 0| | .x l− ξ >  Another form 
for ( )c x − ξ  may be the Dirac delta function 

( )xδ − ξ , which reflects the reacting character of the 
damping force 

( ) ( ).c x x− ξ = δ − ξ                       (6) 

     In the case of a reacting damping force (6), there 
are two cases of ( , , )C x tξ − τ  from (3):  
     (i) viscoelastic damping (or time hysteresis) with 
the kernel depending on the past time histories 

( , , ) ( ) ( ) ( ).C x t H x x g tξ − τ = δ − ξ − τ      (7) 

     (ii) viscous damping with the force depending 
only on the instantaneous value of the velocity or 
strain rate 

( , , ) ( ) ( ) ( ).C x t H x x tξ − τ = δ − ξ δ − τ     (8) 

     The model (8) represents the well-known viscous 
damping model. For the kernel function concerned 
to time ( )g t − τ , we consider 

0( ) exp( ( ))g t g t− τ = μ −μ − τ ,       (9) 

with μ  the relaxation constant of the viscoelastic 
constant for external damping kernel and 0g a 
constant. 
 
3   Damped Beam 
Consider a beam of length L , in which a number pk  
of external nonlocal damping muffled patches of 
thickness ph  are attached at 1 1 1( , ),x x x+ Δ  

2 2 2( , ).....x x x+ Δ ( , ),k k kx x x+ Δ 2 1 1,x x x≥ + Δ  

1 1,i i ix x x− −≥ + Δ  2,..., ,i k=  as shown in Fig. 1.  

 
Fig. 1. The beam with nonlocal damping muffled 

patches. 
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     The design parameters are the number pk  of 
patches, coordinates jx , and lengths of patches jxΔ , 

1,2,..., ,pj k=  under the conditions 2 1 1,x x x≥ + Δ  

1 1,i i ix x x− −≥ + Δ  2,..., .pi k=  Since the number of 
parameters is high, the possible different reduction 
of the parameter number is versatile. In the forward 
problem these parameters are known. The equation 
of motion for the beam is 

2 2

2 2 2

( , ) ( , )( ) ( ) 0,w x t w x tEI x A x
x x t
⎛ ⎞∂ ∂ ∂

+ ρ + ϒ =⎜ ⎟∂ ∂ ∂⎝ ⎠
 (10) 

where ( )EI x is the bending stiffness ( E the Young’s 
modulus of elasticity and ( )I x the moment of 
inertia), ( )A xρ is the mass per unit length (ρ  the 
density and ( )A x  the cross section area), ( , )w x t  is 
the transverse displacement. The third term 
represents the nonlocal external damping defined 
over the spatial subdomains ( , )i i ix x x+ Δ , 

1,2,...,i k= , as 

1

( , )( , , ) d d .
i i

i

x x tk

i x

wC x t
t

+Δ

= −∞

∂ ξ τ
ϒ = ξ − τ τ ξ

∂∑ ∫ ∫     (11) 

     The damping kernel is defined by (3) with the 
particular case of the nonlocal viscous damping (or 
spatial hysteresis), with ( , , )C x tξ − τ  given by (4).  
     We choose for ( )c x − ξ the exponential decay 
and the error function given by (5a), hat form and 
the triangular shapes given by (5b) and the Dirac 
delta function ( )xδ − ξ , with both forms for 

( , , )C x tξ − τ  namely (7) and (8). The initial 
conditions (2a) are written as 

0( ,0) ( ),w x w x=  0 0( , ) | ( ).tw x t v x
t =

∂
=

∂
       (12) 

     The boundary conditions (2b) are written for a 
clamped beam 

( , ) 0,w x t =  ( , ) 0 forw x t
x

∂
=

∂
 0,x =  ,x L=   (13a) 

for a simple supported beam 

( , ) 0,w x t =  
2

2

( , ) 0 forw x t
x

∂
=

∂
 0,x =  ,x L=   (13b) 

and for a free end beam 
2

2

( , ) 0,w x t
x

∂
=

∂
 

 
2

2

( , )( ) 0 forw x tEI x
x x
⎡ ⎤∂ ∂

=⎢ ⎥∂ ∂⎣ ⎦
 0,x =  .x L=   (13c) 

     The eigenfrequency problem (10)-(13) is 
characterised by the integro-differential equation 
(10), which can be analytically solved by using the 
cnoidal method [18]-[22].  
     The general solutions of (10) must be found 
under the form of a sum of cnoidal functions 

2
j

1

( , ) cn ( | )
N

j
j

w x t A m
=

= η∑ , kx tη = −ω + ϕ ,   (14) 

where N  is the number of cnoidal functions 
(Jacobian elliptic functions) considered in the series 
depending on the accuracy required, jA  are 
unknown constants, k  is the wave number, the ω  is 
the frequency and the ϕ  is the phase. M  
     The Jacobian elliptic function cn( | ) cnmη = η  
can be defined with respect to the integral 

2
0

d
1- sinm

ϕ θ
η =

θ
∫ ,  0 1m≤ ≤ , thus sn sinη = ϕ , 

cn cosη = ϕ , 2dn 1 sinmη = − ϕ . 
     For 0m = it is obtained sn sinη = η , cn cosη = η , 
dn 1η = , and for 1m = , sn tanhη = η , cn sechη = η , 
dn sechη = η . By denoting | j jmη = η  and 
introducing (14) into (10) we have 

2
2

j2 2
1

2
2

j2
1

( ) cn

( ) cn 0,

N

j
j

N

j
j

EI x A
x x

A x A
t

=

=

⎛ ⎞⎛ ⎞∂ ∂
η +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠⎝ ⎠

⎛ ⎞∂
ρ η + ϒ =⎜ ⎟∂ ⎝ ⎠

∑

∑
           (15) 

with 

2
j

1 1
( , , ) cn d d .

i i

i

x x tk N

j
i jx

C x t A
t

+Δ

= =−∞

⎛ ⎞∂
ϒ = ξ − τ ζ τ ξ⎜ ⎟∂ ⎝ ⎠
∑ ∑∫ ∫ , 

j j j jkζ = ξ −ω τ + ϕ .                 (16) 

     The advantage of the cnoidal method consists in 
the easier mode to choose   the constants jA , 

1,2,...,j N=  by imposing the boundary conditions 
(3.4) to be satisfied. The eigenvalues are finding by 
solving the eigenvalue problem (15), (16) with 
conditions (12), (13).  
     Let us suppose that the bar is circular with 

varying diameter ( )0 0( ) 2 2xd x d a d bx
L

⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

. 

For 0b =  the rod will have a uniform diameter 02d .      
The area of cross section is 

( )
2

2
0

( )( ) 2
4

d xA x A bxπ
= = − , with

2
0

0 4
dA π

= , and 
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the moment of inertia is ( )
4

4
0

( )( ) 2
64

d xI x I bxπ
= = −  

with
4
0

0 64
dI π

= . The eigenvalue problem is reduced 

to the equation 

2

1
( ) 0

N

j j j j
j

P Q R
=

+ ρω +ω + ϒ =∑ ,        (17) 

where , ,P Q R  are polynomials in cn, sn and dn, and 

1
2 ( , , )(cn sn dn )d d .

i i

i

x x tk

j j j j j
i x

A C x t
+Δ

= −∞

ϒ = ω ξ − τ η η η τ ξ∑ ∫ ∫
|j jm kη = η = ξ −ωτ + ϕ . 

By equating the terms with the same power in cn, sn 
and dn, a number of K equations are obtained from 
(17) 

1 1( , , , )j jA m kλ ϕ = ω , 

2 2( , , , )j jA m kλ ϕ = ω ……,           (18) 

( , , , )K j j KA m kλ ϕ = ω . 

The number of unknowns  

{ , , , , , 1,2..., }M j j pp A m k j k= ϕ ω = , 2 3pM k= + , 

is obviously greater than the number of 
equations K M< . A less restrictive approach for the 
solving of (16) is to form the residuals functions Kr  

( , , , )l j j l lA m k rλ ϕ −ω = , 1,2,...,l K= . 

     The problem becomes one of minimizing the 
combined residuals to calculate accurate values 
for Mp .To solve the eigenvalue problem, a nonlinear 
least-squares algorithm is proposed. 
 
 
4 The Inverse Approach 
In the formulation of the inverse problem, the bound 
optimization formulation of Bendsoe, Olhoff and 
Taylor [23] and Pedersen [2] is used. The unknown 
parameters are the coordinates jx  and the lengths of 
patches jxΔ , 1,2,..., ,pj k=  under the conditions 

2 1 1,x x x≥ + Δ  1 1,i i ix x x− −≥ + Δ  2,..., .pi k=   
     We suppose that the number pk  of patches is 
prescribed. The inverse problem consists in 
determination of jx , jxΔ , 1,2,..., ,pj k=  so that all 
eigenvalues to stay above a  given complex constant 

1 2iC C+ . The formulation of the optimization 
problem is 
Determine jx , jxΔ , 1,2,..., ,pj k=  from: 
maximize 1| |C , 2| |C  subject to : all 1Re | | | |Cω ≥ , 

2Im | | | |Cω ≥  
2

1
( ) 0

N

j j j j
j

P Q R
=

+ ρω + ω + ϒ =∑ ,             (19) 

with 

1
2 ( , , )(cn sn dn )d d .

i i

i

x x tk

j j j j j
i x

A C x t
+Δ

= −∞

ϒ = ω ξ − τ η η η τ ξ∑ ∫ ∫
|j jm kη = η = ξ −ωτ + ϕ . 

Here, , ,P Q R  are polynomials in cn, sn and dn.  

     If we want to maximize the difference between 
two consecutive eigenvalues, say iω  and  1i+ω , the 
problem can be formulated as  

Determine jx , jxΔ , 1,2,..., ,pj k=  from: 

maximize  4 3Re | |C C− , 4 3Im | |C C−  
subject to : 2Re | | Re | |i Cω ≥ , 1 3Re | | Re | |i C+ω ≥ , 

2Im | | Im | |i Cω ≥ , 1 3Im | | Im | |i C+ω ≥  

2

1

( ) 0
N

j j j j
j

P Q R
=

+ ρω + ω + ϒ =∑ ,           (20) 

with 

1
2 ( , , )(cn sn dn )d d .

i i

i

x x tk

j j j j j
i x

A C x t
+Δ

= −∞

ϒ = ω ξ − τ η η η τ ξ∑ ∫ ∫
|j jm kη = η = ξ −ωτ + ϕ . 

 
5 Beam with patches made from 

traditional materials 
Firstly, we consider that the patches are made from 
traditional viscoelastic and viscous materials. The 
first examples 1, 2 and 3 refer to the direct approach 
in which the coordinates jx  and the lengths of 
patches jxΔ , 1,2,..., ,pj k=  are known.  
     Example 1. Let us consider a simply supported 
aluminum beam of length L = 2 m, with constant 
diameter d =  0.005 m, the Young’s modulus 
E = 70GPa and the mass density ρ = 2700 3kg/m , 
with a single patch 1pk = , 1x = 0.2m and 

1xΔ = 0.2m, and thickness ph = 0.003m. Two cases 
are considered: the nonlocal viscoelastic damping 
(or time hysteresis) defined by (7) with 20μ =  or 
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( ) 20exp( 20 )g t t= − , and the nonlocal viscous 
damping defined by (8) with μ = ∞ or ( ) ( )g t t= δ ). 
For each case there are taken four models: (model1) 
the exponential decay (5a), (M2) the error function 
(5a), (M3) the hat (5b) and (M4) the triangular 
shapes (5b). We take 5α =  and  0 0.8l = . The 
number N of cnoidal functions is 4. For 4N >  the 
increase in accuracy of results of the genetic 
algorithm is not significant.   
    The three roots of the characteristic equations (17) 
are determined. These roots can have two distinct 
forms: (a) one root is real and the other two roots 
form a complex conjugate pair, or (b) all of the roots 
are real. The complex conjugate pair of roots in case 
(a) corresponds to an underdamped oscillator that 
usually arises when the small damping assumption is 
made, while the real root corresponds to a purely 
dissipative motion. Case (b) represents an 
overdamped system which cannot sustain any 
oscillatory motion.  
     Table 1 shows the lower estimates for the first 
five eigenvalues for the beam with nonlocal 
viscoelastic damping. Table 2 shows the lower 
estimates of the first five eigenvalues for the second 
case of nonlocal viscous damping. It is observed that 
in both cases, M2 has the largest damping ratios for 
the first five eigenvalues, while M4 has the smallest 
damping ratio. All damping models give for each 
mode, similar imaginary parts.  
 
Table 1. First five eigenvalues for a simply supported 
beam with one viscoelastic damping patch. 

M Mode 1 Mode 2 Mode 3 
1 4.74 ± 20.15i 0.26 ± 71.42i 0.045 ± 160.98i 
2 4.91 ± 20.22i 0.29 ± 71.66i 0.051 ± 160.53i 
3 4.75 ± 20.16i 0.23 ± 71.09i 0.038 ± 160.51i 
4 4.43 ± 20.39i 0.15 ± 71.10i 0.028 ± 160.04i 

 
M Mode 4 Mode 5 
1 0.017 ± 287.31i 0.0050 ± 451.67i 
2 0.019 ± 287.76i 0.0051 ± 451.71i 
3 0.013 ± 287.98i 0.0012 ± 451.70i 
4 0.008 ± 287.06i 0.0011 ± 451.74i 

 
Table 2. First five eigenvalues for a simply supported 
beam with one viscous damping patch. 

M Mode 1 Mode 2 Mode 3 
1 9.97 ± 16.99i 3.79 ± 72.44i 3.03 ± 152.66i 
2 10.52 ± 16.94i 4.28 ± 72.44i 3.32 ± 152.77i 
3 10.05 ± 16.84i 3.36 ± 72.48i 2.51 ± 152.76i 
4 9.12 ± 16.87i 2.28 ± 72.59i 1.89 ± 152.58i 

 
M Mode 4 Mode 5 
1 3.57 ± 283.21i 2.59 ± 449.03i 
2 4.04 ± 283.23i 2.64 ± 449.47i 
3 2.73 ± 283.21i 0.66 ± 449.74i 
4 1.76 ± 283.29i 0.60 ± 449.82i 

 

     Example 2. A simply supported aluminum beam 
is considered with length L = 2 m, with constant 
diameter d =  0.005m, the Young’s modulus E = 70 
GPa and mass density ρ = 2700 3kg/m , with two 
patches 2pk =  with 1x = 0.2m and 1xΔ = 0.2m, 

2x = 1.6m and 2xΔ = 0.2m and thickness 0.003m. 
We 5α =  and 0 0.8l = . The table 3 shows the lower 
estimates of the first five eigenvalues for the beam 
with nonlocal viscoelastic damping. 
     Table 4 shows the lower estimates of the first five 
eigenvalues for the beam for the nonlocal viscous 
damping. We see that the damping ratios for modes 
1 and 2 are greater than those of example 1 for all 
cases and models. The next modes show increased 
values of the damping ratios, while the imaginary 
parts are smaller than those of example 1. The model 
2 has the largest damping ratios for the first five 
eigenvalues, while model 4 has the smallest 
damping ratio. 
 
Table 3. First five eigenvalues for a simply supported 
beam with two  viscoelastic damping patch. 

M Mode 1 Mode 2 Mode 3 
1 4.82 ± 14.57i 0.32 ± 63.51i 0.046 ± 143.56i 
2 4.90 ± 14.99i 0.39 ± 63.60i 0.053 ± 143.63i 
3 4.91 ± 14.60i 0.33 ± 63.32i 0.039 ± 143.90i 
4 4.65 ± 13.86i 0.27 ± 63.19i 0.029 ± 143.42i 

 
M Mode 4 Mode 5 
1 0.018 ± 280.38i 0.0052 ± 413.33 
2 0.019 ± 280.42i 0.0054 ± 413.37 
3 0.015 ± 280.33i 0.0013 ± 413.11 
4 0.009 ± 280.25i 0.0012 ± 413.30 

 
Table 4. First five eigenvalues for a simply supported 
beam with one viscous damping patch. 

M Mode 1 Mode 2 Mode 3 
1 10.07 ± 15.09i 3.99 ± 70.54i 3.05 ± 142.46i 
2 10.76 ± 15.22i 4.77 ± 70.55i 3.39 ± 142.45i 
3 10.35 ± 15.13i 3.66 ± 70.68i 2.57 ± 142.77i 
4 9.40 ± 15.53i 2.58 ± 70.68i 1.91 ± 142.78i 

 
M Mode 4 Mode 5 
1 3.58 ± 270.06i 2.60 ± 423.03i 
2 4.07 ± 270.00i 2.65 ± 423.22i 
3 2.75 ± 270.12i 0.67 ± 423.31i 
4 1.77 ± 270.04i 0.65 ± 423.30i 

 
     Example 3. A cantilever aluminum beam is 
considered with length L = 2 m, with variable 
diameter 0d =  0.005 m and a = 1, the Young’s 
modulus E =  70 GPa and the mass density ρ= 2700 

3kg/m , with a single patch 1k = with 1x =  0.2m and 

1xΔ = 0.2m, and thickness 0.003m. The table 5 
shows the lower estimates of the first five 
eigenvalues for the cantilever beam with variable 

WSEAS TRANSACTIONS on 
APPLIED and THEORETICAL MECHANICS Veturia Chiroiu

ISSN: 1991-8747 238 Issue 6, Volume 3, June 2008



diameter and a nonlocal viscoelastic damping patch. 
The table 6 shows the lower estimates of the first 
five eigenvalues for the cantilever beam with 
variable diameter and a nonlocal viscous damping 
patch. As compared to results of the example 1, all 
damping ratios have increased for both cases. The 
imaginary parts also have increased. It is observed 
that the model 2 has the largest damping ratios for 
the first five eigenvalues, while model 4 has the 
smallest damping ratio. 
 
Table 5. First five eigenvalues for a cantilever beam with 
variable diameter and viscoelastic damping patch. 

M Mode 1 Mode 2 Mode 3 
1 4.95 ± 25.15i 0.27 ± 75.44i 0.047 ± 168.17i 
2 5.02 ± 25.35i 0.31 ± 75.63i 0.053 ± 168.33i 
3 4.95 ± 25.52i 0.25 ± 75.32i 0.040 ± 168.23i 
4 4.65 ± 24.77i 0.16 ± 75.10i 0.031 ± 168.39i 

 

M Mode 4 Mode 5 
1 0.018 ± 298.44i 0.0051 ± 466.29i 
2 0.019 ± 298.84i 0.0053 ± 466.37i 
3 0.014 ± 298.58i 0.0013 ± 466.47i 
4 0.009 ± 298.33i 0.0012 ± 466.51i 

 
Table 6. First five eigenvalues for a cantilever beam with 
variable diameter and viscous damping patch. 

M Mode 1 Mode 2 Mode 3 
1 10.42 ± 17.64i 3.81 ± 74.60i 3.18 ± 166.96i 
2 10.97 ± 17.69i 4.30 ± 74.54i 3.47 ± 167.17i 
3 10.51 ± 17.59i 3.38 ± 74.64i 2.66 ± 167.39i 
4 9.56 ± 18.18i 2.31 ± 74.75i 2.04 ± 167.08i 

 
M Mode 4 Mode 5 
1 3.72 ± 298.71i 2.66 ± 467.03i 
2 4.19 ± 299.01i 2.72 ± 467.00i 
3 2.88 ± 299.02i 0.74 ± 467.24i 
4 1.92 ± 298.79i 0.50 ± 467.12i 

 
     The next step consists in examples 4 and 5 in 
which the coordinates jx  and the lengths of patches 

jxΔ , 1,2,..., ,pj k=  are unknown. 
     Example 4. Let us consider the example 1, with a 
single patch 1pk = , of unknown 1x [m], the given 
length 1xΔ = 0.2m, and thickness ph = 0.003m.  Both 
cases of nonlocal viscoelastic damping ( 20μ = ), 
and of nonlocal viscous damping (μ = ∞ ) are 
treated. For each case there is taken the model 1 with 

5α =  and 0 0.8l = . The number N of cnoidal 
functions is 4. The inverse problem (19) with  

                  1 2iC C+ = − 0.005 ± 451.67i , 

for the case 1, and  

                   1 2iC C+ = − 2.59 ± 449.03i , 

for the second case is solved by using a genetic 
algorithm.   
     The run-time parameters of genetic algorithm are: 
population size 120, number of generations 60, 
overall crossover probability 0.9, mutation 
probability 0.03. The number of iteration for the first 
case is 496, and for the second case 388. The table 7 
gives the estimates for 1x  and the first five 
eigenvalues of the beam in the first case of nonlocal 
viscoelastic damping. The table 8 gives the estimates 
for 1x  and the first five eigenvalues in the second 
case of nonlocal viscous damping. In both cases, it is 
maintained the same patch length 1xΔ . Modes 3-5 
have two estimates for 1x , symmetrically with 
respect to the ends of beam. By comparing to the 
similar of the example 1, the damping ratios of all 
modes are significantly increased. Imaginary parts 
are greater than those of example 1. In addition, all 
eigenvalues stay above a given complex 
constant 1 2iC C+ . 

Table 7. Case 1: the location of viscoelastic damping 
patch (model 1) and the first five eigenvalues for a simply 
supported beam. 

 Mode 1 Mode 2 Mode 3 
 5.87 ± 744.55i 4.96 ± 1493.49i 3.24 ± 1873.57i 

1x  1 1 0.46   and  1.34 

 
 Mode 4 Mode 5 

 2.77 ± 2637.39i 0.52 ± 3553.46i 

1x  0.31 and  1.49 0.22 and  1.58 

 
Table 8. Case 2: the location of viscous damping patch (model 
1) and the first five eigenvalues for a simply supported beam 

 Mode 1 Mode 2 Mode 3 
1 11.22 ± 715.1i 6.29 ± 1272.47i 5.01 ± 1622.66i 

1x  1 1 0.19 and 1.61 

 
 Mode 4 Mode 5 
1 4.37 ± 2290.11i 3.99 ± 3353.33i 

1x  0.33 and 1.47 0.12 and  1.68 

 
     Example 5. Let us consider the example 2, with 
two patches 2pk = , of unknown 1x [m], 2x [m] the 
given length 1xΔ = 2xΔ = 0.2m, and thickness 

ph = 0.003m.  Both cases of nonlocal viscoelastic 
damping ( 20μ = ), and of nonlocal viscous damping 
(μ = ∞ ) are treated. For each case there is taken the 
model 1 with 5α =  and 0 0.8l = . The number N of 
cnoidal functions is 4. The inverse problem (19) 
with  

              1 2iC C+ = − 0.005 ± 413.37i , 

WSEAS TRANSACTIONS on 
APPLIED and THEORETICAL MECHANICS Veturia Chiroiu

ISSN: 1991-8747 239 Issue 6, Volume 3, June 2008



for the case 1, and  

               1 2iC C+ = − 2.44 ± 423.30i,  

for the second case is solved by using a genetic 
algorithm. The run-time parameters of genetic 
algorithm are the same as before. The number of 
iteration for the first case is 503, and for the second 
case 481. The table 9 gives the estimates for 1x  and 

2x , and the first five eigenvalues of the beam in the 
first case of nonlocal viscoelastic damping. The 
table 10 gives the estimates for 1x  and 2x , and the 
first five eigenvalues in the second case of nonlocal 
viscous damping. Modes 3-5 have two estimates for 

1x  and 2x , symmetrically with respect to the ends of 
beam. By comparing to the similar of the example 2, 
the damping ratios of all modes are significantly 
increased. Imaginary parts are greater than those of 
example 1. In addition, all eigenvalues stay above a 
given complex constant 1 2iC C+ . 
Table 7. Case 1: the location of the viscoelastic damping 
patch (model 1) and the first five eigenvalues for a simply 
supported beam. 

 Mode 1 Mode 2 Mode 3 
 5.22 ± 699.32i 4.93 ± 1292.42i 3.87 ± 2073.57i 

1x  0.11 nd  1.69 0.18 and  1.62 0.47   and  1.33 

2x  0.21 and  1.59 0.25 and  1.55 0.55   and  1.25 

 
 

 Mode 4 Mode 5 
 2.59 ± 2537.50i 2.52 ± 3053.60i 

1x  0.30 and  1.5 0.22 and  1.58 

2x  0.57 and  1.23 0.42 and  1.38 

 
Table 8. Case 2: the location of viscous damping patch (model 
1) and the first five eigenvalues for a simply supported beam 

 Mode 1 Mode 2 Mode 3 
1 11.22 ± 599.3i 6.29 ± 1472.47i 5.01 ± 2222.6

6i 

1x  0.13 and  1.67 0.31 and  1.49 0.15 and 1.65 

2x  0.20 and  1.6 0.46 and  1.34 0.29 and 1.51 

 
 

 Mode 4 Mode 5 
1 4.37 ± 2590.11i 3.99 ± 3386.33i 

1x  0.33 and 1.47 0.12 and  1.68 

2x  0.43 and 1.37 0.32 and  1.48 

 
6   Beam with auxetic paches 
Secondly, we consider that the patches are made 
from auxetic materials. Materials with a negative 
Poisson ratio ν are auxetic materials. The term 
auxetic is coming from the Greek word auxetos, 
meaning that which may be increase. Instead of 
getting thinner like an elongated elastic band, the 

auxetic material grows fatter, expanding laterally 
when stretched. An auxetic system is composed 
from different materials with different properties 
with a new mechanical architecture based on 
tailored properties. For example, the auxetic carbon-
fibre reinforced composites or microporous 
polymers are auxetic systems with various 
enhancements in the strength and damping 
properties [26]-[28]. 
     All the major classes of anisotropic materials 
(polymers, composites, metals, ceramics, 
honeycomb structures, reticulated metal foams, re-
entrant structures, certain rocks and minerals, living 
bone tissue) can exist in auxetic forms [29]. Plasma 
crystals are actually observed to have a negative 
Poisson's ratio, also. Scientists have known about 
auxetic materials for over a hundred years, though 
without giving them much a special attention, and 
treating them as an accident or a curiosity. In an 
isotropic material the range of Poisson's ratio is from 
−1.0 to + 0.5, based on thermodynamic 
considerations of strain energy in the theory of 
elasticity. Love [30] presents an example of cubic 
single crystal pyrite as having a Poisson's ratio of 
− 0.14, and he suggests the effect may result from a 
twinned crystal.  
     Typically mechanical properties (for example 
indentation resistance and shear modulus) are 
inversely proportional to 2(1 )−ν  or (1 )+ ν . The 
negative limit of ν  for isotropic materials is 1− , and 

2(1 )−ν  or (1 )+ ν  tend to zero, leading to 
enhancements in the material properties for auxetic 
over non-auxetic materials [31]-[33]. The idea is to 
transform a non-auxetic material into auxetic forms 
as foams or cellular materials, or to employ 
techniques to architecture new materials. Two 
structures made up of auxetic hexagons and spheres 
are displayed in fig.2.  

      

                 
Fig.2. Three structures made up of auxetic hexagons  and 
spheres. 
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     The classical mechanics fails when it is extended 
to  auxetic materials, because these anisotropic 
materials imply the chiral effects and non-affine 
deformations [29]. That means, the properties are 
described by a fifth rank modulus tensor, which 
changes under an inversion. The source of chirality 
consists in the existence of a large number of van der 
Waals contacts and much fewer covalent linkages, 
which make possible the polymer chain to easily 
deform to fill any newly created free spaces.   

     Phenomena associated with chiral elasticity are 
likely to be of greater interest in materials with 
auxetic behavior with larger scale structural features. 
The chirality effects relying upon relatively large 
scale contribute to the auxetic materials to conform 
better around corners, and have better pull out 
resistance and give enhanced impact strength.  

     The examples 5 and 6 refer to the direct approach 
in which the coordinates jx  and the lengths of 
auxetic patches jxΔ , 1,2,..., ,pj k=  are known.  

Example 5. Let us consider a simply supported 
aluminum beam of length L = 2 m, with constant 
diameter d =  0.005 m, the Young’s modulus 
E = 70GPa and the mass density ρ = 2700 3kg/m , 
with a single auxetic patch, 1pk =  with negative 

Poisson’s ratio 0.35ν = − , 1.5β =  and 1x = 0.2m 
and 1xΔ = 0.2m, and thickness ph = 0.003m. The 
number N of cnoidal functions is 4. For 4N >  the 
increase in accuracy of results of the genetic 
algorithm is not significant. The lower estimates for 
the first five eigenvalues for the beam are presented 
in table 9. By comparing to the similar results of 
example 1, in which the patch is made from a 
viscoelastic material with positive Poisson’s ratio 

0.35ν = , the damping ratios of all modes are 
increased.  

Table 9. First five eigenvalues for a simply supported 
beam with one auxetic patch. 

M Mode 1 Mode 2 Mode 3 
1 4.94 ± 20.34i 0.32 ± 73.56i 0.051 ± 161.53i 
2 4.98 ± 20.14i 0.39 ± 73.78i 0.057 ± 161.51i 
3 4.45 ± 20.10i 0.23 ± 73.69i 0.044 ± 161.43i 
4 4.37 ± 20.03i 0.15 ± 73.44i 0.031 ± 161.24i 

 
M Mode 4 Mode 5 
1 0.021 ± 289.76i 0.0051 ± 455.71i 
2 0.039 ± 289.36i 0.0054 ± 455.34i 
3 0.023 ± 289.28i 0.0042 ± 455.27i 
4 0.018 ± 289.11i 0.0041 ± 455.14i 

 

     It is observed that M2 keeps its property to have 

the largest damping ratios for the first five 
eigenvalues, while M4 has the smallest damping 
ratio. All damping models give for each mode, 
similar imaginary parts.  
 
     Example 7. A simply supported aluminum beam 
is considered with length L = 2 m, with constant 
diameter d =  0.005m, the Young’s modulus E = 70 
GPa and mass density ρ = 2700 3kg/m , with two 
auxetic patches, 2pk =  with negative Poisson’s 

ratio 0.35ν = − , 1.5β =  with 1x = 0.2m and 

1xΔ = 0.2m, 2x = 1.6m and 2xΔ = 0.2m and thickness 
0.003m. We 5α =  and 0 0.8l = . The table 10 shows 
the lower estimates of the first five eigenvalues for 
the beam with nonlocal viscoelastic damping. We 
see that the damping ratios for all modes are greater 
than those of example 6. The model 2 has the largest 
damping ratios for the first five eigenvalues, while 
model 4 has the smallest damping ratio. 
 
Table 10. First five eigenvalues for a simply supported 
beam with two auxetic patches. 

M Mode 1 Mode 2 Mode 3 
1 5.12 ± 24.32i 0.44 ± 75.55i 0.056 ± 163.34i 
2 5.19 ± 24.79i 0.47 ± 75.56i 0.059 ± 163.13i 
3 5.31 ± 24.66i 0.43 ± 75.02i 0.053 ± 163.25i 
4 5.05 ± 24.66i 0.41 ± 75.23i 0.050 ± 163.72i 

 
M Mode 4 Mode 5 
1 0.023 ± 292.33i 0.0055 ± 453.83 
2 0.025 ± 292.40i 0.0059 ± 453.47 
3 0.021 ± 292.38i 0.0053 ± 453.15 
4 0.019 ± 292.23i 0.0051 ± 453.38 

 
     The examples 7 and 8 refer to the inverse 
approach in which the coordinates jx  and the 
lengths of auxetic patches jxΔ , 1,2,..., ,pj k=  are 
unknown.  

     Example 7. Let us consider the example 5, with a 
single auxetic patch 1pk = , of unknown 1x [m], the 
given length 1xΔ = 0.2m, and thickness ph = 0.003m. 
The inverse problem (19) with  

               1 2iC C+ = − 0.0050 ± 466.67i , 

is solved by using a genetic algorithm.  The number 
of iteration is 487. The estimates for 1x  and the first 
five eigenvalues are displayed in table 11. By 
comparing to the similar of the example 5, the 
damping ratios of all modes are significantly 
increased. Imaginary parts are greater than those of 
example 5, all eigenvalues staying above a given 
complex constant 1 2iC C+ . 
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Table 11. The location of the auxetic patch  and the first 
five eigenvalues for a simply supported beam. 

 Mode 1 Mode 2 Mode 3 
 5.87 ± 749.15i 4.96 ± 1496.29i 3.24 ± 1873.24i 

1x  1 1 0.43   and  1.57 

 
 Mode 4 Mode 5 
 2.77 ± 2639.31i 0.52 ± 3558.55i 

1x  0.38 and  1.62 0.27 and  1.73 

  

     Example 8. Consider the example 7, with a single 
auxetic patch 1pk = , of unknown 1x [m], the given 
length 1xΔ = 0.2m, and thickness ph = 0.003m. The 
inverse problem (19) with 

             1 2iC C+ = − 0.0050 ± 466.67i , 

is solved by using a genetic algorithm.   The number 
of iteration is 509. The estimates for pathes locations 
and the first five eigenvalues are displayed in table 
11. The patches location values are very closed with 
those obtained in example 5 (see table 8, case 2). By 
comparing to the similar of the example 7, the 
damping ratios of all modes are significantly 
increased. All eigenvalues staying above a given 
complex constant 1 2iC C+ . 

Table 11. The location of the auxetic patches and the first 
five eigenvalues for a simply supported beam. 

 Mode 1 Mode 2 Mode 3 
1 12.32 ± 609.36i 6.89 ± 1488.42i 5.71 ± 2243.60i 

1x  0.13 and  1.67 0.31 and  1.49 0.14 and 1.66 

2x  0.20 and  1.6 0.46 and  1.34 0.29 and 1.51 

 
 Mode 4 Mode 5 
1 4.87 ± 2597.42i 4.19 ± 3377.33i 

1x  0.34 and 1.46 0.12 and  1.68 

2x  0.43 and 1.37 0.32 and  1.48 

 

7   Conclusions 
In this paper, the bending of Euler-Bernoulli beams 
with external nonlocal damping patches is studied. 
The nonlocal damping force is modeled as a 
weighted average of the velocity field over the 
spatial domain, determined by a kernel function 
based on distance measures.  
    A simply supported aluminum beam with a single 
nonlocal damping patch is analyzed for the nonlocal 
viscoelastic damping (or time hysteresis) defined by 
(7) with 20μ =  or ( ) 20exp( 20 )g t t= − , and for the 
nonlocal viscous damping defined by (8) with 
μ = ∞ or ( ) ( )g t t= δ ). There are taken four models: 

(M1) the exponential decay (5a), (M2) the error 
function (5a), (M3) the hat (5b) and (M4) the 
triangular shapes (5b);  
     The lower estimates for the first five eigenvalues 
are given. In all cases, M2 has the largest damping 
ratios for the first five eigenvalues, while M4 has the 
smallest damping ratio. The performance with 
respect to eigenvalues is discussed next in order to 
avoid resonance.  
     The optimization is performed by determining 
the location of patches from maximizing 
eigenvalues or gap between them. The formulation 
of the optimization problem (19) of maximizing 
eigenvalues is implemented on the example of a 
simply supported aluminum beam with a single and 
two patches of unknown locations.  
     The unknown locations are determined and also 
the first five eigenvalues for the beam in the first 
case of viscoelastic damping and in the second case 
of  viscous damping. In both cases,the same patch 
length is mainteined. Two estimates for the patch 
location are obtained, symmetrically with respect to 
the ends of beam. By comparing to the similar non-
optimized examples, the damping ratios of all modes 
are significantly increased. In addition, all 
eigenvalues stay above a given complex constant. 
     The paper also presents some remarks regarding 
the behavior of beams with external auxetic patches.  
The optimization is performed by determining the 
location of auxetic patches from maximizing 
eigenvalues. 
     The study of bars with auxetic patches is twofold: 
it promises to make more understandable the 
damping properties of auxetic patches. On the other 
hand, it provides the fundaments for construction of 
new materials with tailored properties, with 
improved control of damping properties, opening the 
door to new applications. Negative Poisson's ratio 
materials easily undergo volume changes but resist 
shape changes and may thus be viewed as the 
opposite of rubbery materials, or antirubbers. 
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