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Abstract: - The non-linear elastic behaviour of geomaterials has traditionally been modeled using stress-
dependent elastic models. The approach used by many researchers is not rigorous where the “elastic” models 
can create energy and can predict permanent deformation under certain circumstances. Other researchers have 
used rigorous hyperelastic models where energy is conserved by the elastic portion of the model, but these 
models have stress-dependent stiffness which can slow computation and lead to iterative solutions in finite-
element or other strain-based computation techniques. To overcome these problems a rigorous elastic model is 
investigated which predicts similar behaviour to hyperelastic models, but has the advantage of being elastic 
strain based which allows more direct solution in strain-based finite-element or other computational codes.  
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1 Introduction 
The resilient response of geomaterials has received 
much attention over the years. Initial models were 
linear elastic, but these presented a poor 
representation of granular material response. In the 
late 1960s and early 1970s bulk stress dependent, 
non-linear elastic models were proposed [1]. These 
early models (and many later models) were based 
on observations of laboratory test results and can 
create energy and, possibly more importantly, 
permanent strains on certain stress paths. Because 
of the large number of load applications in repeated 
load applications (e.g. earthquake engineering), 
permanent strains predicted by and elastic model 
are considered unacceptable. 
 
To overcome these limitations, a number of 
hyperelastic models were developed [2,3]. These 
models do not predict permanent strains and always 
conserve energy, but do not always provide 
realistic predictions of response as they can predict 
a negative bulk modulus or increasing shear 
modulus with increasing shear stress, trends that 
are not noted during laboratory testing. One reason 
for the mismatch in theory and observed response 
is the hyperelastic models ignore hysteretic energy 
dissipation during loading. 
 
Most current non-linear elastic models are stress-
based models (stiffness is defined as a function of 
stress state), which simplifies parameter 
determination during stress controlled laboratory 

tests, but can significantly increase computational 
time and create convergence problems when 
analysing field loading conditions. Models based 
on simple laboratory tests are often unable to 
represent behaviour under field loading conditions. 
 
This paper discusses the requirements for a non-
linear elastic model, and investigates a new strain-
based model for geomaterials. 
 
 
2 Problem Formulation 
An example of a non-rigorous elastic model is 
shown for a model where the stiffness is stress 
dependent [1]. This and other similar formulations 
are probably the most popular for modelling 
geomaterials and the model formulation is 
characterised by a non-linear secant Young’s 
modulus (E=ERp’n) and a constant Poisson’s ratio 
(ν). To determine the effect of complex stress paths 
on model predictions, it is easiest to rewrite the 
model in terms of shear modulus (G) and bulk 
modulus (K), thereby enabling the shear and 
volumetric behaviour to be independently 
considered: 
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where ER and n are material constants, p’ is the 
mean effective stress, s is shear stress (difference in 
vertical and horizontal stress under triaxial 
conditions), εp

e is the elastic volumetric strain, and 
εs

e is the elastic shear strain (difference between 
axial and radial strain for triaxial conditions). If the 
model in Equations (1) and (2) is taken on the 
stress path in Fig. 1, the model predicts permanent 
elastic shear strains as detailed in Table 1, 
indicating it is not a rigorous elastic model. 
 
Table 1: “Elastic” shear strains predicted by 
Equation (2). 
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As shown in Table 1, the model predicts permanent 
elastic shear strains along the stress path 
considered, indicating it is not a true elastic model. 
Although not demonstrated in this paper, the model 

can also create or dissipate energy on the stress 
path, thereby violating the laws of 
thermodynamics.   
 
There are, however, numerous rigorous non-linear 
elastic models which can overcome this limitation 
but which have other problems with 
implementation because they are stress-based. 
 
Implementation of non-linear elastic models 
subjected to field loading conditions is most likely 
to be performed using the finite element method 
Finite element theory is complex, and the 
discussion presented here is not intended to be 
comprehensive, but rather highlights the aspects of 
the theory that are important for modelling non-
linear elastic material models. A more complete 
discussion on the finite element method can be 
found in numerous texts on the subject, e.g. [4]. It 
should be noted that throughout this paper small-
strain behaviour is assumed which is appropriate 
for this field. 
 
The finite element method is “equivalent to the 
minimisation of the total potential energy of the 
system in terms of a prescribed displacement field” 
[4]. The manner in which this is usually achieved is 
through the application of displacements (strains), 
along with an attempt to minimise the total 
potential energy of the system. For this to occur, 
the energy from external forces and displacements 
must be equal to the internal strain energy, 
calculated from stresses and strains.  
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Fig. 1: Stress path of non-zero area. 
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The relation between the stresses and strains in a 
material is calculated using a constitutive relation, 
and the form of this model governs the strain 
energy of the finite element problem. The basic 
steps followed by a finite element program are 
slightly different for linear and non-linear elastic 
materials, but they can be simplified as shown in 
Fig. 2. The procedure is iterated through timesteps 
to ensure compatibility and convergence. As 
shown, the procedure is strain-based where a strain 
is inputted to the constitutive relation to calculate a 
stress. 
 
For linear elastic material models there is a direct 
approach for computation as there is a linear 
constitutive relation between strain and stress (Fig. 
3), but for non-linear elastic material models the 
computation is more complex. This is particularly 

true when the non-linear elastic constitutive model 
is stress-based, i.e. when the relationship between 
elastic strains and stresses is a function of stress 
state.  This is particularly important for non-
rigorous non-linear elastic models (e.g. Equations 
(1) and (2))  where there is a non-unique solution to 
the problem and therefore solution instability (Fig. 
4).  
 
If the constitutive relation is a function of stress 
state, an iterative solution is required where the 
calculation of stresses is dependent on the stress 
level. If the constitutive relation is strain-based or 
constant (as in linear elastic materials), the 
computation will be significantly quicker as the 
iterative solution is not required to calculate 
stresses from strains. 
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Fig. 2: Summary of the finite element method 
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Fig. 3: Implementation of the finite element method for linear elastic models 
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Fig. 4: Implementation of the finite element method for non-rigorous non-linear elastic models 
 
 
3 Strain-based non-linear elastic 
models for geomaterials 
In order to eliminate the iterative solution required 
to determine stress from strain in a stress-based 
model, and to improve convergence in a finite 
element package, a strain-based non-linear elastic 
model can be formulated for geomaterials. The 
model requirements are: 

• Strain-based for rapid computation and 
improved convergence in a finite element 
analysis. 

• Energy and elastic strain conserving under 
all reasonable loading conditions. 

• Few model parameters with each parameter 
making physical sense, preferably related 

to parameters used for existing stress-based 
model 

• Able to accurately model the small-strain 
elastic behaviour of geomaterials. 

 
The first two requirements were addressed by 
creating a strain-based hyperelastic model where a 
strain energy density function (U(ε)) is defined and 
the stresses can be determined by differentiating 
this function, as discussed in Section 3.1. The third 
and fourth requirements are addressed in the model 
formulation which is discussed in Section 3.2.  A 
comparison between the implementation of a 
stress-based and strain-based hyperelastic 
formulation is presented in Figs 5 and 6. 
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Fig. 5: Implementation of the finite element method for stress-based hyperelastic models 
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Fig. 6: Implementation of the finite element method for strain-based hyperelastic models 
 
3.1 Energy and strain conservation  
While it is fairly simple to formulate a constitutive 
model that does not predict permanent strains, it is 
also imperative that any model either conserves or 
dissipates the applied energy, but never creates it. 
Any energy creation would be a violation of the 
second law of thermodynamics, and will result in 
an incorrect solution in a finite element program 
which is using the minimum potential energy to 
solve the problem. During loading, geomaterials 
materials dissipate energy from hysteretic / plastic 
response during loading and unloading cycles. 
Experimental evidence has shown this behaviour is 
largely rate-independent in granular materials, with 
the stiffness largely independent of loading rate [5]. 
 
There are numerous energy-dissipation models for 
soils (e.g. [6]), with most of these originally 
developed for earthquake engineering purposes. 
They are generally valid only for constant mean 
effective stress conditions and are therefore of little 
use for three dimensional modelling applications 
where shear stresses and mean effective stresses 
undergo simultaneous changes. A rigorous 
implementation of hysteretic energy dissipation is 
extremely complex as any model must ensure 
resilient strains are conserved and that energy is 
always dissipated (and never created). This will 
greatly increase solution time in a finite element 
analysis and it is therefore proposed that 
constitutive models for unbound geomaterials first 
ensure that no energy is created before including 
energy dissipation. Should the reader require more 
information on rigorous implementation of rate-
independent energy dissipation, this is available in 
[7]. 
 
The easiest rigorous method of ensuring energy is 
conserved in a non-linear elastic model is through 

the use of hyperelasticity. A hyperelastic 
constitutive model is derived from a potential 
function and will ensure that when implemented in 
a finite element code, the internal strain energy will 
equal the energy from external forces and 
displacements. Hyperelastic models can be either 
stress-based or strain-based, and they consist of an 
arbitrary function (V(σ) or U(ε)) which, when 
differentiated with respect to any stress or elastic 
strain direction (σ’ij or εe

ij in direction ij), gives the 
corresponding strain or stress related to that 
variable: 
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Hyperelastic models will always conserve energy 
and strains, regardless of the stress path followed, 
and are therefore considered a rigorous method of 
implementing non-linear elastic models in a finite 
element code.  
 
The use of hyperelasticity in the formulation of a 
strain-based elastic model is discussed below. 
 
3.1 Model formulation  
Many stress-based elastic models have been 
validated the following relation between mean 
effective stress (p’) and bulk elastic strain (εp

e) 
under hydrostatic conditions (e.g. [1], [2], [3]): 

e  therefor
'

'
n

R

e
p pK

p
=ε                  (4) 

( ) ne
pRKp −= 1

1

' ε                (5) 
 
These same models have a corresponding shear 
modulus (under hydrostatic conditions) with the 
following form: 

n
R p'GG =                (6) 
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By substituting Equation (5) into Equation (6), it is 
possible to obtain the general form of a model that 
will have similar constants and behaviour to stress-
based hyperelastic models, but this model will be 
strain-based which will improve solution time and 
convergence in a finite element package. The 
complete form of the hyperelastic model is 
determined from the strain energy density function 
(U(ε)) that was calculated using the model 
requirements listed earlier : 
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The shear stress and mean effective stress (and 
therefore secant shear and bulk moduli) can be 
determined by partially differentiating U with 
respect to the shear strains and volumetric strains 
respectively: 
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The model described above is a three-dimensional 
isotropic hyperelastic model, and uses the repeated 
index summation convention used in solid 
mechanics. The model appears complex, but this is 
mainly because it was formulated so the parameters 
are identical to those from other stress-based 
models under hydrostatic conditions [2,3]. Under 
these conditions, each parameter has the same 

physical meaning as in Equations (1) and (2) and as 
used for other models [1,2]. The parameter n 
controls the increase in stiffness with an increase in 
mean effective stress, and the parameters GR and 
KR give the shear and bulk moduli of the soil at a 
mean effective stress of one stress unit. To ensure 
the model parameters are independent of units 
used, it is suggested that the stresses be normalised 
by atmospheric pressure before implementation in a 
finite element package, resulting in GR and KR 
being unit independent. 
 
The behaviour predicted by the model, compared 
with the models with those used by other 
researchers [1,2] is illustrated in Figs 3 and 4. 
 
As shown in Fig. 7, because the model 
formulations are equivalent under hydrostatic 
conditions, there is no difference between the strain 
based model and the stress based models used by 
other researchers. 
 
There is, however, a difference when shear is 
applied (Fig. 8) where the strain-based model 
predicts a decrease in stiffness with increased 
shear. This trend in secant behaviour has been 
observed during testing [5]. The decrease in 
stiffness with shearing is often attributed to energy 
dissipation, but in the case of the model presented 
here, no energy is dissipated. The increase in 
stiffness with increased shear for the rigorous 
stress-based model [2] is not observed in practice. 
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Fig. 7: Model behaviour under hydrostatic conditions (no shear) 
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Fig. 8: Model behaviour under constant mean effective stress 
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3.2 Combining with other strain-based 
models 
The most common models for energy dissipation of 
geomaterials under repeated loading are described 
using modulus degradation where the reduction in 
stiffness is a result of shear strains, such as the 
model proposed by Hardin and Drnevich [6]. While 
these common models are very simplistic and 
should not be considered a rigorous implementation 
of hysteretic response, the use of a strain-based 
energy conserving elastic model allows easy 
combination with a strain-based energy dissipating 
model and allows rapid computation of stresses 
from total strains. The current method of using a 
mixed model with a stress-based energy conserving 
model and a strain-based energy dissipating model 
results in a complicated and slow overall solution 
technique.  
 
The energy dissipation model proposed by Hardin 
and Drnevich [6] is an empirical model presented in 
the form of modulus degradation where the ratio 
between the secant shear modulus (G) and 
hydrostatic shear modulus (Gmax) is given by the 
following equation: 

rG
G

γγ+
=

1
1

max
              (10) 

 
Where γ is the engineering shear strain (twice the 
pure shear strain, i.e. γ=2εs), and γr is a reference 
strain related to the material strength and hydrostatic 
stiffness. 
 
The original form of the model provided an 
empirical relationship where Gmax could be 
calculated from the voids ratio and mean effective 
stress.  However, this required the mean effective 
stress to remain unchanged during analysis and any 
generated pore pressures or vertical accelerations 
were therefore ignored in the analysis.   

 
It is possible to use the energy dissipation model 
with other models for the peak stiffness, and for this 
it was assumed that a soil had a peak friction angle 
of 30 degrees.  Under simple shear conditions with a 
mean effective stress of 101 kPa, the parameter γr 
proposed in reference [6] is 4.124e-04 for stiffness 
parameters in Fig. 8.  Converting Equation 10 to 
give shear stress as a function of shear strain as 
required in a finite element solution (see Fig. 2), the 
following is obtained: 
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If a stress-based model is used to determine Gmax 
(e.g. Equation 2), the following is obtained: 
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This is a mixed formulation where the stresses 
predicted are based on both the stress state and 
strains, and it is therefore impossible to obtain a 
direct solution and an iterative solution is required.   
 
If the strain-based model in Equation 8 is used, a 
solution based solely on strains is obtained: 
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Although this formulation appears complicated, its 
implementation in a strain-based finite element code 
is simple.  If a saturated sand with the initial 
conditions in Fig. 8 is modeled with Equation 13, 
the response in Fig. 9 is obtained.  In this figure the 
pure shear strains are converted to engineering shear 
strains to allow comparison wit the original 
reference, which produces an identical result if the 
same value of Gmax is used. 
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Fig. 9: Predicted model response when combined with Hardin and Drnevich [6] modulus degradation 
curve.   
 
4 Conclusion 
This paper has shown the requirements for 
implementing non-linear elastic models into a finite 
element code to model field conditions. Many 
previous non-linear “elastic” models can predict 
permanent strains on certain stress paths which is a 
major concern for repeated load applications. These 
models can also create energy which violates the 
laws of thermodynamics and prevents accurate 
implementation into a finite element code.  
 
Stress-based hyperelastic models will never create 
energy and will never predict permanent strains and 
are rigorous constitutive models that can be 
correctly implemented into a finite element code. As 
the model is stress-based, its implementation into a 
strain-based finite element code requires an iterative 
solution, resulting in slow computation and possible 
lack of convergence. In addition, many stress-based 
hyperelastic models predict an increase in resilient 
modulus with an increase in shear, a trend opposite 
to observed behaviour. 
 
As a result, a strain-based hyperelastic model is 
proposed. The model has the same material 
parameters and predicts the same behaviour under 

hydrostatic conditions as popular stress based 
models [1,2], but the behaviour under shearing is 
different with the new model predicting a decrease 
in resilient modulus with increased shear, as noted 
during laboratory testing. The use of a strain-based 
model also improves convergence and significantly 
reduces computation time in a finite element 
analysis. 
 
A strain based elastic model can easily combined 
with a strain-based modulus degradation model such 
as that originally proposed by Hardin and Drnevich 
[6].  This allows the direct computation of stresses 
from strains without the need for an iterative 
solution. 
 
There are some problems where this approach will 
not work, for example when a stress-based 
hysteretic or yielding model is required, but the use 
of strain-based hyperelastic models in modelling 
geomaterials shows promise for certain applications. 
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