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Abstract: - In this paper we present a new method to study the mechanics of a particle on a curve without
friction. Two aspects are discussed. First is the static developed in linear independent co-ordinates, not
necessary orthogonal. The second aspect treats the dynamics in intrinsic co-ordinates, obtaining not only the
speed but also the components of the acceleration and the time variation of the generalized co-ordinate on the

curve. The theory is applied in practical situations.
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1 Introduction

In the classical mechanics the linkage of the particle
on a curve is seen in two different ways. In static,
the curve is defined as an intersection of two
surfaces of equations f(X, Y, Z) = (0, respective

9(x,y,2)=0. The equilibrium position results

together with the normal reaction (defined by its
components on two directions in the normal plan) by
solving a system of five equations with five
unknowns. In dynamics the motion is studied in
intrinsic co-ordinates. On the tangent direction
results the speed, and on the normal and bi-normal
directions result the components of the normal
reaction.

If there exists friction between the curve and the
particle, the problem is more complicated. In the
static, the usual condition is given with the aid of a
dot product and a cross product. In the dynamics the
differential ~equations contain non-continuous
function (name it, the signature function) so that the
moving equations must be treated on distinctive
intervals.

In this paper we shall give a unitary approach to
the study of the particle’s mechanics. We shall prove

The problem of the mechanics of a particle on a
curve is and old one and many papers deal with it.
One type of problems is those which treat celestial
mechanics [1, 2]. Another type consists of problems,
which lead to the dynamics on a curve, no matter if
the authors consider a particle, a rigid body, or a
system of rigid bodies [3, 4]. A unitary approach for
the case without friction is given in [7].

2 The Static of the Particle on a
Curve without Friction
Let us consider the curve () of parametric
equations x = x(0), y =y(0), z=2(0). In this
way the position vector r is
r=xi+yj+zk =r(0). (1)
Let M be the particle and F the resultant of the
forces which act upon it, resultant being assumed to
be function of the position vector r, F = F(r) and
therefore F = F(0), where © is a real parameter
(fig. 1).
We shall denote by a, b and ¢ the vectors given
by

that in the static the equilibrium position can be dx. dv . dz

: - J Kk 2
separated of the problem of the normal reaction. In a= E' + EJ + 00 )
addition, this normal reaction results by its PP 42 £
components on two directions, neither necessary = i( g i fk , (3)
orthogonal one to another and nor necessary situated do doé do
in the normal plan, that is, we shall work on three o d3x . . d3y . N d3z @)
independent directions, not necessary orthogonal de3 de3 ] do3

one to another. In dynamics, we shall obtain not
only the variation of the speed, but also the variation
of the acceleration of the particle on the given curve
and, of course, the normal reaction.
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and we shall assume that these three vectors are
linear independents, that is (axb)-c # 0. Let us

observe that the vector a is on the tangent direction
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to the curve (I'), but the vectors b and ¢ are
arbitrary.

Fig. 1. The static without friction.

If M is an equilibrium position, then the normal
reaction is orthogonal to the vector a, so that N
will have components only on the directions of the
vector b and c,

N=N,b+N.c. (5)
Because M is an equilibrium position, results

the equation

F+N=0, (6)

where

F=Fa+Fb+Fc. (7

The relation (6) will be multiplied successively
by a, b and c obtaining

Fa+ Ny,ba+ N,ca=0, Fb+ N,b? + N.cb =0,

Fc+ N,bc+ N.c? =0, (8)
The last two relations (8) offer us
—Fb bc b2 - Fb
_‘—Fcc2 _|bc —Fc 9
* " lb2bd ¢ |b2bd ©)
bc c? bc c?

that is, N, and N, are linear functions of Fb and
Fc,
N, =A,Fb+A.Fc, N, =p,Fb+p Fc. (10)
Replacing now in the first expression (8) we find
Fa + (A,Fb + 1 Fc)ba + (u,Fb + n Fcla = 0,
(1

relation from which results the equilibrium position.

3 Application

Application 1. Let us consider the circular helix
given by the parametric equations X = Rcos9,
y =Rsin®, z=RO. On this helix there is the
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particle M of mass oR acted by its weight and by
g

the force R given by

R = aMA, (12)
the point A having the co-ordinates (0,0, R), a
being a positive real parameter, and g the

gravitational acceleration (fig. 2).
We immediately find the vectors a, b and ¢ in
the form
a=-Rsin6i + Rcos 6j + Rk ,
b = —-Rcos0i — Rsin 6],
¢ = Rsin 6i — Rcos 6], (13)
The resultant of the forces which act on the
particle reads

Fig. 2. Application 1.

F = o[- Rcos 6i — Rsin 6 + (R — ROk] -

- %R gk = aR(~ cos Bi — sin 6 — 0K). (14
We immediately find
b2 =R?,bc =0, c? =R?,
ab =0, ac = -R?, (15)
Fb = aR?, Fc =0, Fa = —aR?0. (16)
The expressions (9) offer us
-aR? 0
0 R?
N, =———F=—-a,
R2 0
0 R2
R? — aR?
19 R® =0 (17)
¢ R 0 '
0 R?

The first relation (8) gives us now
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-aR?0 =0, (18)
wherefrom 6 = 0, so that the equilibrium position is
given by x=R, y=0, z=0. For this
equilibrium position we have N = —ab = aRi.

4 The Static of the Particle on a

Curve with Friction
Let us now consider that there exists friction of
coefficient of friction p between the curve and the

particle. We decompose the force F onto the
direction of the tangent F, and into the normal plan

F,. The component F, is equilibrated by the friction
force F;, and the component F, by the normal

reaction N (fig. 3)

Fig. 3. The static with friction.

We have
F-t
=——t, 19
] 7 (19)
FnzF—thF—%t, (20)
t

where t is a vector tangent to the curve at the point
M.
The inequality of the friction

Fe| < N| (21)
leads us to

F-t F-t

[REEE -

relation from which we obtain the equilibrium
positions.
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5 Application
Application 2. Let us consider again the example
given in the application 1 and let be p the

coefficient of friction between the helix and the

particle.
We find that
F = aR(~ cosbi — sinbj — k), (23)
t =-Rsin0i + Rcos 6] + Rk, (24)
lt* = 2R, (25)
F-t=-aR%, (26)
FH'Zt t= —% RO(- sin 6i + cos ] + K), @7)
t
F - F—;tt = OLRK— cos 0 — O sin eji +
t 2
(28)
+(— sin O + Ocosﬁjj —gk}
2 2
|F ¢ [ R|6| F-t R
. o . o
t = , [F - tf = —+/2+0%, (29)
e ‘ ] 2

so that the inequity (22) becomes

|9| <2462 (30)
or, equivalently,
0<2, (1)

that is, the particle stays at rest onto the whole helix.

5 The Dynamics of the Particle on a

Curve without Friction

Let us consider the curve (') given by the
parametric equations X = x(0), y = y(0), z = z(0)
and let us denote by F the resultant of the forces
which act upon the particle M of mass m. Let M,
be the initial position of the particle. In the point M
we consider the unit vectors of the tangent t,
normal N, and bi-normal b. We also denote by v
the speed of the particle and by a its acceleration
(fig. 4). Obviously,

v=vt,a=at+a,n. 32)

Fig. 4. The dynamics.
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From the relation

dv
CT g (33)
we find successively
a, =ﬂﬁzvﬂ=vﬂ@, 34)
ds dt ds do ds

so that the moving equation on the tangent direction
reads

mvﬂ =F E, (35)
do do
where
F=FRt+Fn+Fpb. (36)
On the other hand,

ds = \/[%jz N (%j [:;j do = L(6)d6, (37)

the notation being obvious, so that the equation (35)
becomes

1 d(v?)

—m——~= = F,(0)L(O
LY e o)o),

and by integration one obtains

1 1 [
B mv2 — 3 mv2 = (;[ F.(0)L(6)d6 .

The last expression leads us to
v_+\/v0+—IF L(6)do = +M(8),

09
the notation being again obvious.
The component a, of the acceleration is

(3%)

(39)

(40)

V2

n s

p
where p is the curvature radius,

BECEGN
do do do
VA2 + B? +C? ’

dy d’z dz d?y

© d0 de>  do do?’

(41)

w

(42)

(43)

(44)
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dv dv do

a =—=—-—, 45
toodt do dt (43)
so that we obtain

F.(0)
O _ 40 m (46)
d ‘v dm ()’

+

do
where we kept into account the expression (40).

6 Applications
Application 3. Let us consider again the application
given at paragraph 3. In this case we have

F = aR(- cos i — sin 0j — 6k), (47)
t=—sm6|+cos6]+k, (48)
V2
N d2xI dzijr d?z
bode? der T de? (49)
= —R cos 6i — R sin 0],
d3’x. d’y. d3z
b, = I + =
' a0 T ae ! T ae (50)
= Rsin 0i — R cos 0],
nt=0, (51)
nzﬁz—cosei—sinej, (52)
I
byt =-—<, bn=0 (53)
1 \/5’ 1 >
b, - (b )t ( n ) smel—cosej, (54)
b, - (b,t)t - (b,n)n] V2
aRO
F = Ft = s (55)
‘ V2
L(9)= RV2, (56)
j F.(0)L(6)do = 0‘5 (02 - 0?) (57)

Further on, we shall consider that at t =0 we
have 0, =0, that is Xx=R, y=0, z=0 and
Vo, =Co(j+ k), where ¢, is a non-zero real

constant. In these conditions, the expression (57)
becomes

IF L(6)do = IF

From the relation (40) we find

L(6)do = ——92 (58)
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2
V= i\/ch 29 oR%

- 02 = +,/2c2 — gRO? . (59)
o

The expressions A, B and C from the formula
(43) become now

A=R?,B=R?sin0, C =-R?cos0, (60)
the radius of curvature writing
3
2 qin2 2 2 2),
p:(R sin® 0 + R* cos 6+R)2:2R. (61)
VR* + R*sin2  + R* cos? 0
One deduces now the expressions
2 2¢} - gR6?
o= (©)
p 2R
aRO g 0g
oG =——F—=——=——, (63)
Y2 eR 2
\/(2cg — gRO2 )’ + 2R202g>
= , (64)
2R
do _, 2cj — 9RO’ (65)
a 2R

From the relation (59) we find that the speed
becomes zero for

2c2
o' = |50 66
R (66)
Let us denote by G(6) the function
G(6) = L, (67)
y2¢2 — gRo?
for which we have
3
G'(6) = —2grR26(2c2 — gRO2) 2,
5
G"(6) = 3W2R262(2c2 — gRO? ) 2 — )
3
~2gR24/2(2¢2 - grRO?) 2,
G(0)=0,G'(0)=0, G"(0)=-gR?[c,|”. (69

Expanding in series the relation (65), for small
0, one obtains

2 02
L R0

el 2
wherefrom, by integration between t =0, 6 =0
andt =t, 6 = 0, it follows

do = dt, (70)

— = (71)

e 6

Making now 0 = 0", one deduces

Rz 2¢ci [2¢; 1 T
9_3_0 | 1_T (72)
|Co| gRVOgR 6 4
where T is the period of the motion,
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One deduces the period of the small oscillations

Tzﬂﬁ,
3 Vg

Application 4 (The motion of a Planet around the
Sun). Let M be a planet of mass m, which rotates
2 2

on the ellipse X—2 + y
as b

_2_

(73)

1, a > b, around the Sun

A of mass mg (fig.5).

yﬂ

Fig. 5. Application 4.

The parametric equations of the trajectory are
X=acos0, y=bsin0, (74)
and the attraction force F has the form (k being the
constant of the universal attraction)
kmpmg

F= M 75
where A (c,0) with
c=+a?-b? (76)
We shall denote by A= g, so that
c = av1l — A?, the expression (75) becoming
F_ kmpmg "
a2
(\/1 —A* - cos 6) — A sin 0] (77)
T
[(\/1 — 22 — cos 9)2 + 2% sin? 9}2
We have
2
x = -asinb, dy =lacosH, ax =-acos0,
d de de?
d?y .
—=— =-)\asin 0, 78
Y (78)
. — sin 01 + A cos 6] ’ (79)
\sin2 0 + 22 cos? 0
_ — A cos 6i — sin 0] ’ (80)
\sin? 0 + A2 cos? 0
A=2%xa’>,B=0,C=0, (81)
a 3
p= x(sin2 0 + 22 cos? 9)2 . (82)
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We shall assume thatat t =0, 6 =0, v =V, so
that we obtain
FO)=F-t= K, M

a2+/sin2 @ + A2 cos> 9

sin OvT — 72 (1 + cos 041~ 22 (83)
[(ﬁ ~ cosB) +22sin? ef
L(6) = av/sin? 0 + 22 cos2 0, (84)
F.(0)L(0) = XMeMs
sin 05T — 221 + cos 1 — 12 (85)

3
[(\/1 — 22 —cos 6)2 + 22 sin? 6}2

But F,(8)L(0) is an odd periodical of period 27

function, so that it results
0+2m

th (0)L(6)d0 = 0,
0
and from the relation (40) we obtain that v is a
periodical of period 2m function. This is also true
for a, a;,and a,.

Finally, we get

(86)

0
v= \/vg + 2[R (o)L(oko, (87)
P
Lo
vi + [ R(0)L(0)do
Po
an a(sin? 0 + 22 cos? 0) o (88)
j F.(0 e)de}
a= Fz( { A, (89)
ma a (sm2 0 + A% cos 9)2
_ k()
&= (90)

Two particular cases are very important. First is
characterized by a = b, therefore A =1, that is the
ellipse becomes a circle. In this case we get the
following relations

=kM—P2mS(— cos 0i — sin Gj), 91)
t=—sinBi+cosBj, N =—-cosBi —sinB), (92)
A=a>,B=0,C=0, (93)
p=a, 94)
F(0)=0, (95)
L) =a, (96)
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0

[R©)(0)0 =0, 97)

0

V=YV, =ct, (98)
2 2

anzvzo,a_v;ozan,at—o (99)

We obtained the uniform circular motion.
The second case is the linear one, thatis b — 0,
A — 0. In this case we get

Fo_ KMeMsi (100)
( —cos? 0f
t= —s1gn(sm6) n= —51gn(sm6)j (101)
A=0,B=0,C=0, (102)
p=o (103)
L kmpem
F.(0)= —s1gn(sm9)a2(1+coze)2, (104)
L(e) = (105)
kmp,mg sin 6
F(O)LO)= -—F="—, 106
t( ) ( ) a(l — oS 6)2 ( )
0
kmpm 1 1
0)do = 2 - ,
é[ ()()d (l—cose l—cose()]
0
(107)
V- \/vg + 2Ks [ SR j . (108)
a (l-cos® 1-cosb,
a= R (6) (109)
Mp

7 The Dynamics of the Particle on
a Curve with Friction

The friction force reads

Fi = —uﬁINI = —uﬁ\/Nﬁ +Ng

where V is the velocity of the particle, N, and N,

(110)

being the components of the normal reaction onto
the directions of the normal and bi-normal.

From the moving equations
2

mv = F, - u(signvN2 + N2, ™ - F ¢ N,,
p

we get

2
mv = F, — p(sign V)\/[ mv
p

2
- FHJ +R2. (112
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8 Applications
Application 5. Let us consider a heavy ring that
moves with friction on a circle of radius R situated
in a vertical plan. Atthe time t =0, 6 =0, v =,
(fig. 6).

We have
FF=-mgsin®, F, =-mgcos0.

The second relation (111) offers us
mv?

R

so that the first relation (111) leads us to

(113)

—-mgcos6 + N, (114)

M,

Vo

Fig. 6. Application 5.

2

mv = —mg sinG—u(mI: +mg coseJ. (115)

Keeping into account that v = RO, we can write

) 2
vzﬂezid("), (116)
do 2R d6
wherefrom
2
% +2uv? = —2Rg(sin 6 + p cos 6). (117)
The homogenous differential equation reads
d(vz)
—— +2w? =0, 118
g T2 (118)
and its solution is
v2 = Ce 29 (119)

where C 1is a constant of integration which depends
on the initial conditions.

For the non-homogenous differential equation we
are looking for a solution in the form

v2 = Acos®+Bsinb, (120)
wherefrom

d 2

M=—Asin6+BcosO. (121)

do
Replacing in the equation (117) and equating the
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correspondent terms in sin and cos, we obtain a
linear system of two equations with two unknowns,

— A+2uB =-2Rg, b+ 2uA =-2uRg. (122)
The solution of this system is
_ 2R9 (1_g02), BRI g3
1+4u? 1+ 4u2

The solution of the differential equation (117)
writes now
v =Ce™2 4
2Rg (124)
1+4u?

Keeping into account that at t=0, 0=0,

[~ 3usin 0 + (1 - 2p2)cos 6]

vZ = vZ, we obtain the value of the constant C,

2Rg
C=v?- 1-2u?), 125
F g - 2) (125)
and therefore
v2 = {vg T aul 2Fig 5 (1 - 2u2)}e2“9 +
- T (126)
g . 2
+ —3usin® + (1 -2 cos 0
289 L susino - 20 eos o

The particle stops at the angle 6" when v2 = 0.
The motion continues in the opposite direction if
and only if at the angle 0" the relation

|mg sin 6*| < |mg cos 6*| (127)

is not fulfilled, that is [tan 0°| > ., or, if we denote

by ¢ the friction angle |tan 9*| > tan .

Let us consider that
2Rg
1—2u?).
1+ 4u2( )
In this situation the solution (126) of the
differential equation (117) takes the form

v =

(128)

2Rg .
v2 = —3usin 0 + (1 —2u?)cos 6f. (129
1+4uz[u (1-2u)cos6].  (129)
The particle stops at the angle 0" given by
. 1=2u?
tan 0" = , (130)
3u
and the motion is still possible if and only if
1-2p?
> M, (131)
3u
that is
p<—. (132)

NG

Let us remark that the solution (129) is valid only
for the time between 0 and the time when the
particle stops. It would be wrong to consider that the
particle has an oscillatory motion.
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If the motion is without friction, that is pn =0,

the differential equation of the motion (117)
becomes

av?)? |

——Z~ = -2Rgsin 0, 133
m g (133)

with the solution

v2 =vZ - 2Rg(l - cos 0). (134)

From the relation (114) we get the value of the
normal reaction,

mv?
N =

+mgcos 0, (135)

where v? is given by the expression (126).

If the link is unilateral, then there exists another
condition for the motion, thatis N > 0.

For the particular case defined by the relation
(128), the normal reaction can be negative only if

the stop angle 0" is greater than or equal to g . This

condition implies

1-2u2 <0 (136)
and therefore
1
p>—. (137)
V2
From the relation (130) we obtain
cos0” = IR
V1 + tan? 0"
; (138)
__ 3p
J1+4u* + 52
* _ 2
singr = —@n® 12 g5
V1 + tan2 0 \/1 +4p* + 5u2
The velocity is now
R _ 2
. 12 92 1-2up , (140)
L+4p® 1+ 4p4 +5p2
and the normal reaction takes the value
A2
_ 3umg2 5—-4p ' (141)
L+4p® 1+ 4p* +5p2
The normal reaction is negative if
5-4u% <0, (142)
that is
o> g (143)

Application 6. Let us study the motion with
friction of a heavy material point acted by its own
weight and by the force
F=-¢r

on the cylindrical helix by equations

(144)

ISSN: 1991-8747

886

Nicolae—Doru Stanescu, Stefan Tabacu

X = RcosO, y =Rsinf, z=ROtga. (145)
The element of the arc is given by
2 2 2
o) <) ) -
do do de . (146)
= R do
cos o
The unit vector tangent to the helix reads
L_dr
ds (147)
= —sin 0 cos ai + cos 0 cos o + sin ak
From the first Frenet relation,
a_n (148)
ds »p
one obtains the unit vector of the normal
n = —cos 0i — sin 6], (149)
and the curvature radius
= R2 . (150)
cos” o

Expressing the unit vector b of the bi-normal by
the relation

b=txn, (151)
it follows
b = sin O sin ai — cos Osin aj + cos ak . (152)
The force F that acts the particle is
F = —&R cos Oi — ER sin 0 +
g g ] (153)

+(mg - ERO tg o)k
and therefore its components onto the directions of
the unit vectors t, n and b are

F, =F-t=sina(-&ROtga + mg), (154)
F —F.n=¢R, (155)
F, = F-b = cosa(- &RO tg o + mg). (156)
Writing the velocity as
ds R
dt  cosa
the relation (112) becomes
mRY = sin oc(— ERB tg o + mg)—
cos o .
- p\/(mRéz - iR)2 +cos? a- EROtg o + mg)’
(158)

If the motion is without friction, that is u =0,
the last differential equation reads

mRY = sin a(— ERO tg a + mg)

(159)
COos o

or, equivalently,
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mMRO = —ERO sin? o + Mg sin o cos a . (160)
The solution is
9=Ccos[t\/gsina+(p)+mcosoc, (161)
m ER

where C and ¢ are two constants of integration

which depends on the initial conditions.

In addition, in the case without friction, the force
F is a conservative one because it admits the force
potential

U, :—%(x2 +y? +2%). (162)

But the weight is also a conservative function,
and from the above arguments it follows that in the
case without friction, the mechanical energy has a
constant value.

The particle oscillates in the vicinity of the
equilibrium position, this position being determined
by the minimum of the potential energy. In this
point the velocity of the particle has a maximum
value in modulus.

If the motion is with friction, then the relation
(158) offers us the solution only for the motion
between the time 0 and the time when the particle
stops. This time is given by the condition

=0 (163)
and from here we obtain a value 0" of the parameter
6 when the particle stops.

The motion can continue if and only if the
position given by 0" is not a static equilibrium
position.

9 Conclusions
In our paper we described a new method for the
mechanics of the particle on a curve. The most
important thing is that the curve is described in a
parametric mode. In the static, the co-ordinates
frame is not necessary a tri-orthogonal one, the only
thing that is asked is to have the unit vectors of the
axes linear independent. In the dynamics the system
is selected to be the intrinsic system. We obtained
more than the speed of the particle; we also obtained
the acceleration of the particle. For the small
oscillations around the equilibrium position, the
method gives us the period of the motion. In the
paper we also presented applications for which the
solutions are very difficult in the classical way. The
approach is unitary and the theory can be applied to
a large class of problems.

From our presentation the reader can easily
observe that the most difficult problems appear in
the mechanics of the particle with friction. In this
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situation, there exist, generally speaking, infinite
equilibrium positions which define zones of
equilibrium on the curve. The possibility of the
motion is constrained by the differential equation of
the motion, by the physical constraints (the positive
value of the normal reaction, for instance) and by
the positions where the velocity of the particle
becomes zero (if the velocity is zero in a point of
static equilibrium, then the particle stays at rest for
ever in that point).
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