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Abstract: - In this paper we present a new method to study the mechanics of a particle on a curve without 
friction. Two aspects are discussed. First is the static developed in linear independent co-ordinates, not 
necessary orthogonal. The second aspect treats the dynamics in intrinsic co-ordinates, obtaining not only the 
speed but also the components of the acceleration and the time variation of the generalized co-ordinate on the 
curve. The theory is applied in practical situations. 
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1   Introduction 
In the classical mechanics the linkage of the particle 
on a curve is seen in two different ways. In static, 
the curve is defined as an intersection of two 
surfaces of equations ( ) 0,, =zyxf , respective 

. The equilibrium position results 
together with the normal reaction (defined by its 
components on two directions in the normal plan) by 
solving a system of five equations with five 
unknowns. In dynamics the motion is studied in 
intrinsic co-ordinates. On the tangent direction 
results the speed, and on the normal and bi-normal 
directions result the components of the normal 
reaction. 

( ) 0,, =zyxg

     If there exists friction between the curve and the 
particle, the problem is more complicated. In the 
static, the usual condition is given with the aid of a 
dot product and a cross product. In the dynamics the 
differential equations contain non-continuous 
function (name it, the signature function) so that the 
moving equations must be treated on distinctive 
intervals. 
     In this paper we shall give a unitary approach to 
the study of the particle’s mechanics. We shall prove 
that in the static the equilibrium position can be 
separated of the problem of the normal reaction. In 
addition, this normal reaction results by its 
components on two directions, neither necessary 
orthogonal one to another and nor necessary situated 
in the normal plan, that is, we shall work on three 
independent directions, not necessary orthogonal 
one to another. In dynamics, we shall obtain not 
only the variation of the speed, but also the variation 
of the acceleration of the particle on the given curve 
and, of course, the normal reaction. 

     The problem of the mechanics of a particle on a 
curve is and old one and many papers deal with it. 
One type of problems is those which treat celestial 
mechanics [1, 2]. Another type consists of problems, 
which lead to the dynamics on a curve, no matter if 
the authors consider a particle, a rigid body, or a 
system of rigid bodies [3, 4]. A unitary approach for 
the case without friction is given in [7]. 
 
 
2   The Static of the Particle on a 
Curve without Friction 
Let us consider the curve  of parametric 
equations 

( )Γ
( )θ= xx , , . In this 

way the position vector  is 
(θ= yy

r
) z ( )θ= z

( )θ=++= rkjir zyx . (1) 
     Let M  be the particle and  the resultant of the 
forces which act upon it, resultant being assumed to 
be function of the position vector r , 

F

( )rFF =  and 
therefore ( )θ= FF , where  is a real parameter 
(fig. 1). 

θ

     We shall denote by a ,  and  the vectors given 
by 

b c

kjia
θ

+
θ

+
θ

=
d
d

d
d

d
d zyx , (2) 

kjib
2

2

2

2

2

2

d
d

d
d

d
d

θ
+

θ
+

θ
=

zyx , (3) 

kjic
3

3

3

3

3

3

d
d

d
d

d
d

θ
+

θ
+

θ
=

zyx  (4) 

and we shall assume that these three vectors are 
linear independents, that is . Let us 
observe that the vector  is on the tangent direction 

( ) 0≠⋅× cba
a
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to the curve , but the vectors  and  are 
arbitrary. 

( )Γ b c
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Fig. 1. The static without friction. 

 
     If M  is an equilibrium position, then the normal 
reaction is orthogonal to the vector , so that  
will have components only on the directions of the 
vector b  and , 

a N

c
cbN cb NN += . (5) 

     Because M  is an equilibrium position, results 
the equation 

0NF =+ , (6) 
where 

cbaF cba FFF ++=

a c

. (7) 
     The relation (6) will be multiplied successively 
by , b  and  obtaining 

0=++ cabaFa cb NN , , 02 =++ cbbFb cb NN
02 =++ cbcFc cb NN , (8) 

     The last two relations (8) offer us 

2

2

2

cbc
bcb
cFc
bcFb

−
−

=bN , 

2

2

2

cbc
bcb
Fcbc
Fbb

−
−

=cN , (9) 

that is,  and  are linear functions of  and 
, 

bN cN Fb
Fc

FcFb cbbN λ+λ= , FcFb cbcN μ+μ= . (10) 
     Replacing now in the first expression (8) we find 

( ) ( ) 0=μ+μ+λ+λ+ caFcFbbaFcFbFa cbcb , 
(11) 

relation from which results the equilibrium position. 
 
 
3   Application 
Application 1. Let us consider the circular helix 
given by the parametric equations θ= cosRx , 

, . On this helix there is the 

particle 

θ= sinRy θ= Rz

M  of mass 
g
Rα  acted by its weight and by 

the force R  given by 
α=R MA

A
, (12) 

the point  having the co-ordinates  ( )R,0,0 , α  
being a positive real parameter, and g  the 
gravitational acceleration (fig. 2). 
     We immediately find the vectors ,  and  in 
the form 

a b c

kjia RRR +θ+θ−= cossin , 
jib θ−θ−= sinRR cos

i
, 

jc θ−θ= cosRR sin , (13) 
     The resultant of the forces which act on the 
particle reads 
 

x mg

A

M
R

y

z

 
Fig. 2. Application 1. 

 
( )[ ]

( ). sincos

sincos

kjik

−

g

R kji

θ−θ−θ−α=
α

−

−θ−+θ

R
g
R

RRRF −θα=
 (14) 

     We immediately find 
22 R=b , 0=bc , , 22 R=c

0=ab
α=Fb
, , (15) 

, 

2R−=
0

ac
2R =Fc , . (16) 

     The expressions (9) offer us 
θα−= 2RFa

α−=

−

=

2

2

2

0

0

R

R
Nb

α

2

0

0
R

R

, 

0
0

2

2

2

=

α

=

R

R
RR

Nc

0

0
2

2 −

R
. (17) 

     The first relation (8) gives us now 
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02 =θα− R
θ
, (18) 

wherefrom , so that the equilibrium position is 
given by , , . For this 
equilibrium position we have . 

0=
x = R 0=y 0=z

bα−= iN Rα=
 
 
4   The Static of the Particle on a 
Curve with Friction 
Let us now consider that there exists friction of 
coefficient of friction μ  between the curve and the 
particle. We decompose the force F  onto the 
direction of the tangent  and into the normal plan 

. The component  is equilibrated by the friction 
force , and the component  by the normal 
reaction  (fig. 3) 

tF

tnF F

fF
N

nF

 

z

y

x

r

(Γ)
M t Ft

nF

 
 

Fig. 3. The static with friction. 
 
     We have 

t
t

tFF 2
⋅

=t , (19) 

t
t

tFFFFF 2
⋅

−=−= tn , (20) 

where  is a vector tangent to the curve at the point t
M . 
     The inequality of the friction 

NF μ≤f  (21) 

leads us to 

t
t

tFFt
t

tF
22
⋅

−≤
⋅ , (22) 

relation from which we obtain the equilibrium 
positions. 
 
 

5   Application 
Application 2. Let us consider again the example 
given in the application 1 and let be μ  the 
coefficient of friction between the helix and the 
particle. 
     We find that 

( )kjsinicosRF θ−θ−θ−α= , (23) 
kjit RRR +θ+θ−= cossin , (24) 

22 2R=t , (25) 

, (26) θα−=⋅ 2RtF

( )kji +θ+θ−θ cossint
t

tF
−=

⋅
2

α
2

R , (27) 

⎥
⎦

⎤θ
−⎟

⎠
⎞

⎜
⎝
⎛ θ−+

α=
⋅

− t
t

tFF

sin

2

θθ
+

+⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ θθ

−θ−

kj

i

22
cos

2
sincosR

, (28) 

2

2

2

θα
=

⋅ R
t

t
tF , 2

2 2
2

θ+
α

=
⋅

−
Rt

t
tFF , (29) 

so that the inequity (22) becomes 
22 θ+≤θ  (30) 

or, equivalently, 
20 ≤ , (31) 

that is, the particle stays at rest onto the whole helix. 
 
 
5   The Dynamics of the Particle on a 
Curve without Friction 
Let us consider the curve  given by the 
parametric equations 

( )Γ
( )θ= xx , , ( )θy=y ( )θ= zz  

and let us denote by F  the resultant of the forces 
which act upon the particle M  of mass . Let  
be the initial position of the particle. In the point 

m 0M
M  

we consider the unit vectors of the tangent , 
normal , and bi-normal b . We also denote by  
the speed of the particle and by  its acceleration 
(fig. 4). Obviously, 

t
vn

a

tv v= , nta nt aa += . (32) 
 

s

n

b
M

0M (Γ)
an

v
at

tF

 
Fig. 4. The dynamics. 
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     From the relation 

t
vat d

d
=  (33) 

we find successively 

s
vv

s
vv

t
s

s
vat d

d
d
d

d
d

d
d

d
d θ

θ
=== , (34) 

so that the moving equation on the tangent direction 
reads 

θ
=

θ d
d

d
d sFvmv t , (35) 

where 
bntF bnt FFF ++= . (36) 

     On the other hand, 

( ) θθ=θ⎟
⎠
⎞

⎜
⎝
⎛
θ

+⎟
⎠
⎞

⎜
⎝
⎛
θ

+⎟
⎠
⎞

⎜
⎝
⎛
θ

= dd
d
d

d
d

d
dd

222

Lzyxs , (37) 

the notation being obvious, so that the equation (35) 
becomes 

( ) ( ) ( )θθ=
θ

LFvm td
d

2
1 2

, (38) 

and by integration one obtains 

( ) ( )∫
θ

θ

θθθ=−
0

d
2
1

2
1 2

0
2 LFmvmv t . (39) 

     The last expression leads us to 

( ) ( ) ( )θ±=θθθ+±= ∫
θ

θ

MLF
m

vv t

0

d22
0 , (40) 

the notation being again obvious. 
     The component  of the acceleration is na

ρ
=

2van , (41) 

where  is the curvature radius, ρ

222

2
3

222

d
d

d
d

d
d

CBA

zyx

++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
θ

+⎟
⎠
⎞

⎜
⎝
⎛
θ

+⎟
⎠
⎞

⎜
⎝
⎛
θ

=ρ , (42) 

with 

2

2

2

2

d
d

d
d

d
d

d
d

θθ
−

θθ
=

xyyxA , 
2

2

2

2

d
d

d
d

d
d

d
d

θθ
−

θθ
=

yzzyB , 

2

2

2

2

d
d

d
d

d
d

d
d

θθ
−

θθ
=

zxxzC , (43) 

     Therefore, we have 
( )

m
F

a t
t

θ
= , 22

nt aaa += , 

( )
2

4

2

2
2

ρ
+

θ
=

v
m

F
a t . (44) 

    But 

t
v

t
vat d

d
d
d

d
d θ

θ
== , (45) 

so that we obtain 
( )

( )
θ
θ

±

θ

=
θ

=
θ

d
dd

d
d
d

M
m

F

v
a

t

t

t , (46) 

where we kept into account the expression (40). 
 
 
6   Applications 
Application 3. Let us consider again the application 
given at paragraph 3. In this case we have 

( )kjiF θ−θ−θ−α= sincosR , (47) 

2
cossin kjit +θ+θ−

= , (48) 

, sincos
d
d

d
d

d
d

2

2

2

2

2

2

1

ji

kjin

θ−θ−=

=
θ

+
θ

+
θ

=

RR

zyx
 (49) 

, cossin
d
d

d
d

d
d

3

3

3

3

3

3

1

ji

kjib

θ−θ=

=
θ

+
θ

+
θ

=

RR

zyx
 (50) 

01 =tn , (51) 

ji
n
n

n θ−θ−== sincos
1

1 , (52) 

2
1

R
−=tb , 01 =nb , (53) 

( ) ( )
)( ) ( 2

cossin

11

11

nbtt
nbtt

1

1 ji
nb
nbb

b
−

b
θ−θ

=
−−
−

= , (54) 

2
θα

−==
RFt Ft , (55) 

( ) 2RL =θ , (56) 

( ) ( ) ( 22
0

2

2
d

0

θ−θ
α

=θθθ∫
θ

θ

RLFt ) . (57) 

     Further on, we shall consider that at 0=t  we 
have 00 =θ , that is , , Rx = 0=y 0=z  and 

( )v kj += 0c0 , where  is a non-zero real 
constant. In these conditions, the expression (57) 
becomes 

0c

( ) ( ) ( ) ( ) 2
2

0
2

dd
0

θ
α

−=θθθ=θθθ ∫∫
θθ

θ

RLFLF tt . (58) 

     From the relation (40) we find 
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22
0

2
2

2
0 2

2
22 θ−±=θ

α
α

−±= gRcR
R
gcv . (59) 

     The expressions , A B  and C  from the formula 
(43) become now 

2RA = , , , (60) 
the radius of curvature writing 

θ= sin2RB θ−= cos2RC

( ) R
RRR

RRR 2
cossin

cossin
24244

2
3

22222
=

θ+θ+

+θ+θ
=ρ . (61) 

     One deduces now the expressions 

R
gRcvan 2

2 22
0

2 θ−
=

ρ
= , (62) 

22
g

R
gR

t
θ

−=
α

θα
−=α , (63) 

( )
R

gRgRc
a

2
22 222222

0 θ+θ−
= , (64) 

R

gRc
t 2

2
d
d 22

0 θ−
±=

θ . (65) 

     From the relation (59) we find that the speed 
becomes zero for 

gR
c 2

0* 2
=θ . (66) 

     Let us denote by  the function ( )θG

( )
22

02
2

θ−
=θ

gRc
RG , (67) 

for which we have 

( ) ( ) 2
3

22
0

2 22 −θ−θ−=θ′ gRcgRG , 

( ) ( )
( ) , 222

223

2
3

22
0

2

2
5

22
0

22

−

−

θ−−

−θ−θ=θ′′

gRcgR

gRcRG
 (68) 

, , ( ) 00 =G ( ) 00 =′G ( ) 3
0

20 −−=′′ cgRG . (69) 
     Expanding in series the relation (65), for small 

, one obtains θ

t
c

gR dd
2

2

3
0

2
=θ

θ
m , (70) 

wherefrom, by integration between , 0=t 0=θ  
and , , it follows tt = θ=θ

t
c

gR
=

θ
6

3

3
0

2
m . (71) 

     Making now , one deduces *θ=θ

46
122 2

0
2
0

3
0

2 T
gR
c

gR
c

c

gR
=⋅ , (72) 

where T  is the period of the motion, 

     One deduces the period of the small oscillations 

g
RT

3
24

= . (73) 

     Application 4 (The motion of a Planet around the 
Sun). Let M  be a planet of mass  which rotates 

on the ellipse 

Pm

1
2

2

2

2
=+

b
y

a
x , , around the Sun 

 of mass  (fig. 5). 

ba >

1A Sm
 

v0
F

1A
n

t

A2

y

x
O

 
Fig. 5. Application 4. 

 
     The parametric equations of the trajectory are 

θ= cosax , θ= sinby
F
, (74) 

and the attraction force  has the form (  being the 
constant of the universal attraction) 

k

( ) 13
1

MA
MA

mkm SP=F  (75) 

where ( )0 ,1 cA  with 
22 bac −=  (76) 

     We shall denote by 
a
b

=λ , so that 

21 λ−= ac , the expression (75) becoming 

( )
( )

. 

sincos1

sincos1

2
3

22
2

2

2

2

⎥⎦
⎤

⎢⎣
⎡ θλ+θ−λ−

θλ−θ−λ−
×

×=

ji

F
a

mkm SP

 (77) 

     We have 

θ−=
θ

sin
d
d ax , θλ=

θ
cos

d
d ay , θ−=

θ
cos

d
d

2

2
ax ,  

θλ−=
θ

sin
d
d

2

2
ay , (78) 

θλ+θ

θλ+θ−
=

222 cossin
cossin jit , (79) 

θλ+θ

θ−θλ−
=

222 cossin
sincos jin , (80) 

, 2aA λ= 0=B , 0=C , (81) 

( )2
3

22 cos θ2 λ+θsin
λ

=ρ
a . (82) 
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     We shall assume that at 0=t , , 0=θ 0vv = , so 
that we obtain 

( )

( )
( )

, 

sin

1

cos

2

2

2

⎥⎦
⎤θ

λ−

λ

mS

cos1

cos11sin

sin

2
3

2
2

2

2

222

⎢⎣
⎡ λ+θ−λ−

θ+λ−θ
×

×
θ+θ

=⋅=θ
a

kmF P
t tF

 (83) 

( ) θλ+θ=θ 222 cossinaL , (84) 

( ) ( )

( )
( )

. 

cos1

1cos11sin

2
2

2

2

⎢⎣
⎡ λ+θ−λ−

θ+λ−θ
×

=θθ
a
mkmLF SP

t

sin 2
3

2

2

⎥⎦
⎤θ

λ−

×

 (85) 

     But  is an odd periodical of period ( ) ( )θθ LFt π2  
function, so that it results 

( ) ( ) 0d
2

=θθθ∫
π+θ

θ

LFt

a ta na

, (86) 

and from the relation (40) we obtain that  is a 
periodical of period  function. This is also true 
for , , and . 

v
π2

     Finally, we get 

( ) ( )∫
θ

θθθ+=
0

2
0 d2 LF

m
vv t

P

, (87) 

( ) ( )

( ) λ
θλ+θ

θθθ+

=
∫
θ

222
0

2
0

cossin

d2

a

LF
m

v
a

t
P

n , (88) 

( )
( ) ( )

( )
2λ22222

2

0

2
0

2

2

cossin

d2

θλ+θ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
θθθ+

+
θ

=
∫
θ

a

LF
m

v

m
Fa

t
P

P

t

( )

, (89) 

P

t
t m

Fa θ
= . (90) 

    Two particular cases are very important. First is 
characterized by , therefore , that is the 
ellipse becomes a circle. In this case we get the 
following relations 

ba = 1=λ

( jiF θ−θ−= sincos
2a
mkM SP ) , (91) 

, , (92) 
, , , (93) 

, (94) 

jit θ+θ−= cossin
2aA = 0=B =C

a=ρ

jin θ−θ−= sincos
0

( ) 0=θtF , (95) 
( ) aL =θ , (96) 

, (97) ( ) ( )∫
θ

=θθθ
0

0dLFt

ct0 == vv , (98) 

a
van

2
0= , na

a
va

0→

==
2
0 , . (99) 

     We obtained the uniform circular motion. 

0=ta

     The second case is the linear one, that is , 0→b
λ . In this case we get 

( )222 1 −
=

a
kmPF

cos θ

mS i , (100) 

( )it θ−= sinsign , ( )jn θ−= sinsign , (101) 
0=A , 0=B , 0=C , (102) 
∞=ρ , (103) 

( ) ( )
( )22 cos θ−

mkm SP

1
sinsign−=θFt θ

a
, (104) 

( ) θ=θ aL

( )

sin , (105) 

( )
( )2θ

θ
cos1 −a

mkm SP sin
−=

( )

θθ LFt

( )

, (106) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− cos1

1
θ−

−
θ 0cos1

1S=
a
mkmPθθ dθ∫

θ

θ0

LFt , 

(107) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θ−− 0

2
0 cos

1
1

1
a

kmS −
θ 1cos

+=
2vv , (108) 

( )
P

t

m
Fa θ

= . (109) 

 
 
7   The Dynamics of the Particle on 
a Curve with Friction 
The friction force reads 

2
bNμμ

v
vNv 2

nf N +−=−=
v

F , (110) 

where  is the velocity of the particle,  and  
being the components of the normal reaction onto 
the directions of the normal and bi-normal. 

v nN bN

     From the moving equations 

( ) 22sign bnt NNvFvm +μ−=& , nn NFmv
+=

ρ

2
, 

bb NF +=0 , (111) 
we get 

( ) 2
22

sign bnt FFmvvFvm +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

ρ
μ−=& . (112) 

 
 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS Nicolae–Doru Stanescu, Stefan Tabacu

ISSN: 1991-8747 884 Issue 11, Volume 3, November 2008



8   Applications 
Application 5. Let us consider a heavy ring that 
moves with friction on a circle of radius R  situated 
in a vertical plan. At the time , θ , 0=t 0= 0vv =  
(fig. 6). 
     We have 

θ−= sinmgFt , . (113) 
     The second relation (111) offers us 

θ−= cosmgFn

Nmg
R

mv
+θ−= cos

2
, (114) 

so that the first relation (111) leads us to 
 

mg
f

0v
F

v
tn

N

θ

0M

 
Fig. 6. Application 5. 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θ+μ−θ−= cossin

2
mg

R
mvmgvm & . (115) 

     Keeping into account that , we can write θ= &Rv
( )
θ

=θ
θ

=
d

d
2
1

d
d 2v

R
vv && , (116) 

wherefrom 
( ) ( θμ+θ−=μ+
θ

cossin22
d

d 2
2

Rgvv ). (117) 

     The homogenous differential equation reads 
( ) 02
d

d 2
2

=μ+
θ

vv , (118) 

and its solution is 
μθ−= 22 Cevh

C
, (119) 

where  is a constant of integration which depends 
on the initial conditions. 
     For the non-homogenous differential equation we 
are looking for a solution in the form 

θ+θ= sincos2 BAvn , (120) 
wherefrom 
( )

θ+θ−=
θ

cossin
d

d 2
BA

vn . (121) 

     Replacing in the equation (117) and equating the 

correspondent terms in  and , we obtain a 
linear system of two equations with two unknowns, 

sin cos

RgBA 22 −=μ+− , Rgμ−Aμb =+ 22 . (122) 
     The solution of this system is 

( )2
2

21
41

2
μ−

μ+
=

RgA , 
24μ+

μRg
1

6
−=B . (123) 

     The solution of the differential equation (117) 
writes now 

( −

+

21 )[ ]θcos

t

μ+θμ−
μ+

+

= μθ−

sin3
41

2 2
2

22

Rg
Cev

. (124) 

     Keeping into account that at , 0= 0=θ , 
, we obtain the value of the constant , 2

0
2 vv = C

( )
2

2
0 21

41
2

−
μ+

−=
RgvC 2μ , (125) 

and therefore 

( )

( )

μθ−

cos

2

*θ

[ ]θμ+θμ−
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⎦

⎤
⎢
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⎡
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2sin3
41
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1
41
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2
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2
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2
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2

Rg

e
Rg

vv
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1

2

*θ

. (126) 

     The particle stops at the angle  when . 
The motion continues in the opposite direction if 
and only if at the angle  the relation 

02 =v

** cossin θ≤θ mgmg  (127) 

is not fulfilled, that is μ>θ*tan , or, if we denote 

by ϕ  the friction angle >*θtan ϕtan . 
     Let us consider that 

( 2
2

2
0 21

41
μ−

μ+
Rg )2

=v . (128) 

     In this situation the solution (126) of the 
differential equation (117) takes the form 

( )[ ]θμ cos2

*θ

−μ−
μ+

= 2sin3
41

2
2

2 Rgv +θ 1 . (129) 

     The particle stops at the angle  given by 

μ
μ−

=θ
3
21tan

2
* , (130) 

and the motion is still possible if and only if 

μ>
μ
μ−

3
21 2

, (131) 

that is 

5
1

<μ . (132) 

     Let us remark that the solution (129) is valid only 
for the time between 0 and the time when the 
particle stops. It would be wrong to consider that the 
particle has an oscillatory motion. 
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     If the motion is without friction, that is 0=μ , 
the differential equation of the motion (117) 
becomes 
( )

θ−=
θ

sin2
d

d 22
Rgv , (133) 

with the solution 
( θ−−= cos122

0
2 Rgvv ) . (134) 

     From the relation (114) we get the value of the 
normal reaction, 

θ+= cos
2

mg
R

mvN , (135) 

where  is given by the expression (126). 2v
     If the link is unilateral, then there exists another 
condition for the motion, that is . 0>N
     For the particular case defined by the relation 
(128), the normal reaction can be negative only if 

the stop angle  is greater than or equal to *θ
2
π . This 

condition implies 
021 2 ≤μ−  (136) 

and therefore 

2
1

≥μ . (137) 

     From the relation (130) we obtain 

24

*2
*

541
3

tan1
1cos

μ+μ+

μ
−=

=
θ+

−=θ

, (138) 

24

2

*2

*
*

541
21
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tansin

μ+μ+

μ−
=

θ+

θ
=θ . (139) 

     The velocity is now 

24

2

2
2

541
21

41
12

μ+μ+

μ−
μ+

−=
Rgv , (140) 

and the normal reaction takes the value 

24

2

2 541
45

41
3

μ+μ+

μ−
μ+

μ
−=

mgN . (141) 

     The normal reaction is negative if 
045 2 ≤μ− , (142) 

that is 

2
5

≥μ . (143) 

     Application 6. Let us study the motion with 
friction of a heavy material point acted by its own 
weight and by the force 

rF ξ−=  (144) 
on the cylindrical helix by equations 

θ= cosRx , θ= sinRy , . (145) 
     The element of the arc is given by 

αθ= tgRz

θ
α

=

=θ⎟
⎠
⎞
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θ
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⎛
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d
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d
d
d

d
d

d
dd

222

R

zyxs
. (146) 

     The unit vector tangent to the helix reads 
 

kji

rt

α+αθ+αθ−=

==

sincoscoscossin
d
d

s . (147) 

     From the first Frenet relation, 

ρ
=

nt
sd

d , (148) 

one obtains the unit vector of the normal 
jin θ−θ−= sincos , (149) 

and the curvature radius 

α
=ρ

2cos
R . (150) 

     Expressing the unit vector b  of the bi-normal by 
the relation 

ntb ×= , (151) 
it follows 

kjib α+αθ−αθ= cossincossinsin . (152) 
     The force F  that acts the particle is 
 

( )k
jiF

αθξ−+
+θξ−θξ−=

tg
sincos

Rmg
RR

t

 (153) 

and therefore its components onto the directions of 
the unit vectors , n  and b  are 
 

( )mgRFt +αθξ−α=⋅= tgsintF
RFn

, (154) 
ξ=⋅= nF , (155) 

( )mgRFb +αθξ−α=⋅= tgcosbF . (156) 
     Writing the velocity as 

θ
α

== &
cosd

d R
t
sv , (157) 

the relation (112) becomes 

( )

( ) ( )2222 tgcos

tgsin
cos

mgRRmR

mgRmR

+αθξ−α+ξ−θμ−

−+αθξ−α=
α
θ

&

&&

. 

(158) 
     If the motion is without friction, that is 0=μ , 
the last differential equation reads 

( mgRmR
+αθξ−α=

α
θ tgsin

cos

&&
)  (159) 

or, equivalently, 
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αα+αθξ−=θ cossinsin 2 mgRmR && . (160) 
     The solution is 

α
ξ

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ϕ+α

ξ
=θ cossincos

R
mg

m
tC , (161) 

where  and ϕ  are two constants of integration 
which depends on the initial conditions. 

C

     In addition, in the case without friction, the force 
 is a conservative one because it admits the force 

potential 
F

( 222
1 2

zyxU ++
ξ

−= ) . (162) 

     But the weight is also a conservative function, 
and from the above arguments it follows that in the 
case without friction, the mechanical energy has a 
constant value. 
     The particle oscillates in the vicinity of the 
equilibrium position, this position being determined 
by the minimum of the potential energy. In this 
point the velocity of the particle has a maximum 
value in modulus. 
     If the motion is with friction, then the relation 
(158) offers us the solution only for the motion 
between the time 0 and the time when the particle 
stops. This time is given by the condition 

0=θ&

θ

 (163) 
and from here we obtain a value  of the parameter 

 when the particle stops. 
*θ

     The motion can continue if and only if the 
position given by  is not a static equilibrium 
position. 

*θ

 
 
9   Conclusions 
In our paper we described a new method for the 
mechanics of the particle on a curve. The most 
important thing is that the curve is described in a 
parametric mode. In the static, the co-ordinates 
frame is not necessary a tri-orthogonal one, the only 
thing that is asked is to have the unit vectors of the 
axes linear independent. In the dynamics the system 
is selected to be the intrinsic system. We obtained 
more than the speed of the particle; we also obtained 
the acceleration of the particle. For the small 
oscillations around the equilibrium position, the 
method gives us the period of the motion. In the 
paper we also presented applications for which the 
solutions are very difficult in the classical way. The 
approach is unitary and the theory can be applied to 
a large class of problems. 
     From our presentation the reader can easily 
observe that the most difficult problems appear in 
the mechanics of the particle with friction. In this 

situation, there exist, generally speaking, infinite 
equilibrium positions which define zones of 
equilibrium on the curve. The possibility of the 
motion is constrained by the differential equation of 
the motion, by the physical constraints (the positive 
value of the normal reaction, for instance) and by 
the positions where the velocity of the particle 
becomes zero (if the velocity is zero in a point of 
static equilibrium, then the particle stays at rest for 
ever in that point). 
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