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Abstract: -In this paper, a non-linear model for a cracked rotor is established based on constitutive equations and 
local flexibility due to a transverse breathing  crack on a rotor shaft. The crack is characterized by a switching 
function and change in shaft stiffness, whose variation and value defines the closing-opening or breathing 
condition of the crack during rotation of the shaft. The model accounts for the rotor shaft weakening parallel and 
perpendicular to the direction of the crack opening. The system equation bears discontinuity, and its numerical 
solution exhibits bifurcation and chaos. The model is used to investigate the dynamics of the vibrating rotor 
system, and the crack force reconstructed’ by Time delay and Embedding Technique. The crack force manifests 
the action of the crack on the rotor. It is observed that the largest computed Lyapunov exponent of the simulated 
time series is a good and sufficient indicator of the system’s chaotic state. Various scenarios of the system at 
sub-critical and super-critical speeds have been simulated and discussed.  
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1 Introduction 
Nomenclature 
B   14× matrix 

dC,  A damping matrix in ξ  and η direction 
eG,  Gyroscopic matrix and eccentricity     

  respectively 
ba hh ,  Crack compliance in ξ  

andη direction respectively 

ηξ kk ,  Stiffness in ξ andη direction  
respectively 

M   Equivalent mass of the rotor 
Ω   Angular speed , π2/Ω=f  
f  Rotating frequency  

ξF   Elastic force in the direction of the  
rotating coordinate ξ   

ηF   Elastic force in the direction of the  
rotating coordinate η   

β   Angle between unbalance and crack  
opening directions 

ξ η  Rotating coordinate parallel and  
perpendicular to the crack respectively. 

okK ,   System stiffness matrix and stiffness of 
the uncracked rotor respectively 

 

21, kk ∆∆  Stiffness decrease in ξ andη   
direction respectively 

yx,  Inertial coordinates axes 
 

Wauer [1], Gasch [2] and Dimarogonas [3] 
have presented reviews on linear models used in 
cracked rotor dynamics. Dimarogonas and 
Papadopoulos [4, 5] proposed novel techniques 
for computing crack compliance which form a 
basis for various crack identification methods. 
Gasch’s [6] dynamic model has stimulated 
evaluation of cracked rotors and consequent 
crack detection algorithms [7-8]. For a 
comparatively deep crack, the vibration of a 
rotor system exhibits nonlinear characteristics 
such as chaos and bifurcation [9-11]. In such a 
state, the crack opening-closing mechanism 
becomes elusive and unfeasible to yield the 
vibration response by analytical method. 
However, if damping between crack surfaces is 
neglected, then the crack breathing is solely 
dictated by stress in the crack’s vicinity. In this 
condition and under tensional stress, the crack 
will be in an open state, and vice versa. For this 
scenario, the shaft distortion pattern will 
determine the open-closure state of the crack. 
Although the “Hinge-Mechanism” as is called, 
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may still be valid, the critical condition between 
opening and closing should be transformed into 
the displacement in body-fixed rotating 
coordinates ηξ − . In this paper, the nonlinear 
dynamics of a cracked De Laval rotor on stiff 
isotropic bearings (Fig.1) is investigated. The 
model is established for non-weight dominance, 
i.e. the static deflection is of small order 
magnitude in comparison to the dynamic 
deflection and the crack breathing is determined 
by vibration due to dynamic and static forces. 
 
2 Cracked rotor model 

Dimarogonas [4] has shown that, the 
compliance h , of a shaft in ξ  and η directions 
will increase in case of an opening crack (fig.2). 
The additional compliance in η  direction is 
usually neglected when the crack is shallow and 
the elastic force crack model equation 
sufficiently represented by 
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in which case, the compliance in the crack 
direction only increases by a value ah  dependent 
on crack depth. For a nonlinear system, (which 
amounts to non weight-dominance), the 
additional compliance in η  direction would 
cause considerable excitation in the vibration 
response. The elastic force crack model equation 
for this scenario takes the form 
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The crack-opening condition would 
consistently formulated by considering curvature 
at the crack location. In a multi-degree of 
freedom (MDOF) rotor system, when the 
displacement in ξ direction and near the crack is 
larger than the displacement at the adjacent 
points, i.e. 
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the crack will be in an open state and vice versa. 
In a single degree of freedom (SDOF) rotor 
system, the vibration in the ξ direction would 
determine the crack-opening condition. For this 

case, if )(ξf  is the crack switching function 
then, 
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Consequently, the governing equation of a 
damped and non weight dominant cracked rotor 
system is 
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where 1)( kfkk o ∆−= ξξ  and 2)( kfkk o ∆−= ξη . 
Eq. (5) is converted to a state space form to yield 

)(tuAzz +=&      (6) 
Where 
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'],,,[ ηηξξ &&=z      (8) 
The state vector q  in inertial coordinates is 
established by the transformation 

zPq ×=      (9) 
Where 

'],,,[ yyxxq &&=                 (10) 
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P is a transformation matrix. The state vector 
)(kz  is determined numerically from Eq.(6) 

leading to )(kq . The change in stiffness of the 
cracked shaft is a function of shaft vibration 
displacement response and rotating angle. Let 
the equation of motion of the cracked rotor 
system be of the form 
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 )()(),()()()( tfttKtGCtM =+++ φφφφ &&&             (12)
 and consider the uncracked rotor under action of 
the crack as a system with an external excitation 
[6] in the form  

),()()()()()( tNtftKtGCtM φφφφ +=+++ &&&
       (13) 

[ ]′= yx,φ               (14) 
where ),( tzN  is a nonlinear force. Let the two 
systems in eq (12) and eq (13) be equivalent. 
Ignoring gyroscopic term, eq.(13) in state space 
form will read  

)()()( 0 tButqAtq +=&              (15) 
where 
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By a suitable discretization interval l , the 

continuous system would be discretized into 
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The sequence of the external force ][ku  may 
then be computed recursively by the equation 
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eq.(18) may as well be discretized approximately 
into  
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and 
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The state vector )(kq  is obtainable by 

numerical method. Only ][ku  in eq. (18) and 
eq.(20) are unknown whereas, ][ku  is computed 
from eq.(18) given the initial value evaluated 
from eq.(20). The “Crack force” is reconstructed 
discarding unbalance force from ][ku  and, a 
unique relation between the vibration responses 
and the “crack force” obtained as a crack 

detection tool. From the foregoing discussion, 
together with manipulation of eq.15 as a series 
based on variable hk instead of t , the system 
state and acceleration may be represented in the 
following form upon making vector u the 
subject: 

[ ] [ ] [ ]{ }khqAkhqBkhu ⋅−= − &1
            (20b) 

Further, exponential operation on A  could 
be avoided by using eq. (20b) to rebuild ][ku , 
though, this requires prior designation of the 
acceleration sequence. An accurate 
reconstruction based on a practical rotor 
response is complicated by noise contamination. 
Prior noise elimination is imperative besides, l  
is to be reasonably small to curb on recursion 
errors. 
 
2.1 Characterization of the rotor 

The opening-closing function proposed by 
Gasch holds under weight dominance. For a 
weight-dominant vibration, the amplitude is far 
less than static sag of the rotor and breathing of 
the crack is determined by the rotation angle of 
the linear system. From the foregoing in 
conjunction with the “hinge-mechanism”, the 
vibration response of the cracked rotor would be 
quasi-periodic. 

When the rotating speed is larger than 
critical speed, the rotor will run at a 
super-critical speed, and in this case, the 
unbalance force dominates and determines the 
vibration of the cracked rotor. The angle 
between the crack and the unbalance directions 
determines the crack open-closure condition. In 
a stable vibration, the crack either will be opened 
or closed throughout. The vibration response of 
the cracked rotor will be periodic. 

However, breathing becomes complex when 
the crack and unbalance forces become are of 
same order magnitude. In this condition, the 
system will neither be weight-dominant nor 
unbalance dominant. The response at given time 
values may become sensitive to crack parameters 
and rotating speed, leading to chaos.  

From bifurcation plots, one may not 
uniquely distinguish quasi-periodic from chaotic 
vibrations. Based on the existing simulations, a 
rule of thumb is that, if the Poincare section is 
composed of discrete points, the vibration is 
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periodic, if it is a closed curve, the vibration is 
quasi-periodic, and if it is a fractal map, the 
vibration is chaotic. Precisely, Lyapunov 
exponent indicates chaos in the system and will 
be discussed in section 5. Whether chaos and 
bifurcation will appear or not depends on 
specific conditions.  

In the current simulations, bifurcation and 
chaos are obvious for the changing parameter of 
rotation frequency as shown in Fig. 3, 
(where 5.0/ =Da , mme  102 4−×= , 200=d ) and 
Fig. 4, (where 4.0/ =Da , mme 4102 −×= , 

100=d ). Similar results are depicted in Figs.5 
and Fig.6.  Bifurcation plots with respect to 
crack depth at Hzf 20= , mme 05.0=  and 

100=d  are shown in Figs. 7 and. 8. Double and 
triple period Bifurcation is evident. The rotor 
orbit, power spectrum and Poincare sections are 
shown in Figs. 9-12 for a crack depth 

2.0/ =Da . In fig 9c, the Poincare section is a 
single point, and the response is periodic. 
When 36.0/ =Da , the possibility of chaos is 
observed in Fig. 4. The rotor orbit is shown in 
Fig. 10a and the Poincare section in Fig. 10c 
depicts Chaos. The rotor orbit, power spectrum, 
Poincare sections are shown in Figs. 11 and 12 
for values 44.0/ =Da  and 48.0/ =Da  
respectively. Poincare sections change 
remarkably with the parameters and a consistent 
crack feature is not discernable. In Figs. 9b, 10b, 
11b and 12b, the results are close to the power 
spectrum of a weight dominant rotor; emergence 
of high order harmonics is prevalent in the power 
spectrum if a crack exists. Unfortunately, these 
features cannot be used to diagnose an inchoate 
crack as they do not exist for a shallow crack. 
.  
2.1.1 Reconstruction of the dynamic measure of 
the crack   

The ‘crack force’ is associated with the 
dynamic change of the crack and manifests 
excitation of the rotor by the crack. Its 
reconstruction is based on eqs. (19) - (20). 
For 1.0/ =Da , kgm 25= and mme 05.0= , the 
corresponding static sag is 

mmkmgu oo
2109.4/ −×==  and the 

displacement due to the unbalance is 
mmkme o

42 1087.9/ −×=ω . The corresponding 

static sag is larger than the vibration amplitude 
consequently, the rotor is weight dominant. Its 
reconstructed crack force is illustrated in fig. 13. 
The result is consistent with Gasch’s hinge 
model except for high order harmonic 
components. Crack forces are about zero as the 
crack closes and change to periodic excitations 
as it opens. In fig.14, the crack forces are for 

05.0/ =Da , apparently, a shallow crack. At 
44.0/ =Da , mme 2.0= , Hzf 20= , the system is 

chaotic and the force is shown in fig. 15. The 
crack force is of diversified frequency 
components. The reconstructed “crack force” 
bears a close relation to the crack behavior. 
. 
3 The Lyapunov Exponent  

Lyapunov spectrum provides an intuitive 
description of the dynamic behaviour of a 
chaotic system. It quantifies the average rate of 
convergence or divergence of nearby trajectories 
in a global sense. Positive and negative 
Lyapunov exponent implies respectively 
divergence, and convergence. Consequently, a 
system with positive exponents has positive 
entropy, trajectories initially close move apart 
over time. The more positive the exponent, the 
faster the trajectories diverge.  Similarly, for 
negative exponents, the trajectories move close 
to each other. A system with both positive and 
negative Lyapunov exponents is said to be 
chaotic. Based on the system’s differential 
equations, Lyapunov spectrum is given by, 

( )





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→∞→
pJeig

n

n

pn
i

1
ln1limλ                    (21) 

where J  is the system Jacobian as p  moves 
around the attractor. 

The crack breathes irregularly; the 
differential equations are discontinuous and eq. 
(21) is not directly adaptable for evaluation of 
Lyapunov exponents. Instead, )(kq  from 
 eq. (15) has been treated as a noise-free signal 
and the system’s largest Lyapunov exponent 
evaluated from it following Wolf et al [12] and 
Banbrook et al [13]. By Time Delay and 
Embedding [14], a new state space is established 
on the series calculated from equation (9). 
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Fig.1 The De Laval rotor  
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Fig.2 The rotating and inertial coordinates 

 

 
Fig. 3. The bifurcation diagram a/D=0.5;d=200; 
e=0.0002 
 

For brevity, only results are given here.  
Wolf’s approach was initiated by carrying out an 
exhaustive search of the data in the reconstructed 
state space to locate the nearest neighbor to the 
first point. Time delay was determined by the 
method proposed by Kember and Fowler [15]. 
Reconstructed attractors are 

 
Fig. 4.The bifurcation diagram a/D=0.4; 
d=100;  e=0.0002. 

 

 
Fig. 5. the bifurcation diagram a/D=0.3; 
d=100; e=0.0002. 

 
Fig. 6. the bifurcation diagram a/D=0.1; 
d=100, e=0.0002. 

 
shown in figs. 16 and 17. The original attractors 
are illustrated in fig.9a and fig.10a respectively 
for the parameters 360.a/D = ,  mm,. e 20=  

100=d ,  Hzf 20= . 
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Fig. 7. The bifurcation diagram. Rotating 
frequency=20Hz, d=100, e=0.0002. 
 

 
Fig. 8. The bifurcation diagram. Rotating 
frequency=20Hz, d=100, e=0.0002. 

 

 
Fig. 9a. Rotor orbit . 

 

 
Fig 9b(i) horizontal vibration power 
spectrum 

 

 
Fig. 9b(ii). Power spectrum. 

 

 
Fig. 9c. Poincare section. 

 

 
Fig. 10a. Rotor orbit. 

 

 
Fig. 10b(i). Power spectrum. 
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Fig. 10b(ii). Power spectrum. 

 

Fig. 10c. Poincare section. 
 

 
Fig. 11a. Rotor orbit. 

 

 
Fig. 11b(i). power spectrum. 

 

 
Fig. 11b(ii). Power spectrum. 

 

 
Fig. 11c. Poincare section. 

 

 
Fig. 12a. Orbit of rotor. 

 

 

 
Fig. 12b. power spectrum. 

 

 
Fig. 12c. Poincare section. 

The rotor orbit, power spectrum and 
Poincare plots are in fig. 10, and the vibration is 
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periodic; the largest Lyapunov exponent is 
convergent to zero (fig. 19). When 

48.0/ =Da (orbit shown in fig. 12a), the largest 
Lyapunov exponent is convergent to a positive 
value (fig.20) signifying loss of stability. 
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Fig. 13. Reconstructed crack forces. 
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Fig. 14. Reconstructed crack forces. 

 
4   Conclusion 

A new technique based on state space theory 
and Time Embedding technique has been used to 
reconstruct the non-linear dynamics of a cracked 
rotor. The model used for the crack accounts for 
stiffness decrease in ξ  and η directions 
respectively. The system is sensitive to rotation 
frequency and crack depth. Chaos and 
Bifurcation are observed as parameters fall into 
specific zones. It is demonstrated that the largest 
computed Lyapunov exponent of the simulated 
time series 
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Fig. 15. Reconstructed crack forces. 

 

 
Fig. 16 Reconstructed attractor. 
 

 
Fig. 17 Reconstructed attractor. 

 
is a sufficient indicator for the system’s chaotic 
state. The crack affects the rotor vibration in 
diversified modes dependent on the selected 
parameters. High order harmonics are an 
inherent crack symptom whether the model is 
weight dominant or non-weight dominant. The 
current result compares well with listed 
literature. 
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Fig.18 Overview of the algorithm for computing 
the system Lyapunov exponents 

 

 
Fig. 19. Largest Lyapunov exponent. 

 

 
 

Fig. 20. Largest Lyapunov exponent 
 

Acknowledgement 
This research has been supported by the Dept 

of Mechanical and Industrial Engineering, 
University of South Africa. 
 
References: 
[1] Jorge Wauer, On the dynamics of cracked  

rotors: A literature survey, Applied 
Mechanics Reviews January, 1990, 
43(1):13-17 

[2] R.Gasch, A Survey of the Dynamic    
Behavior of a Simple Rotating Shaft with a  
Transverse Crack, Journal of Sound and  
Vibration, 1993, 160(2):313-332. 

[3] A. D. Dimarogonas, Vibration of Cracked 
Structures: A State of the Art Review, 
Engineering Fracture Mechanics, 1996, 
55,831-857. 

[4] A.D.Dimarogonas and C.A.Papadopoulos, 
Non-linear Rotor Dynamics As Applied To 
Oilwell Drillstring Vibrations, Journal of 
Sound and Vibration, 1991, 147(1):115-135. 

[5] C.A Ppdopoulos and A.D.Dimarogonas , 
Coupled longidutinal and bending vibrations 
of a rotating shaft with an open crack, Journal 
of Soumd and Vibration, 117(1):81-93 

[6] R.Gasch, Dynamic behavior of a simple rotor 
with a cross-sectional crack, vibrations in 
Rotating Machinery, Institution of 
Mechanical Engineers, London, 
1976,123-128. 

[7] Mayes. I.W. and Davies. W.G.R, The 
Vibrational Behavior of a Rotating Shaft 
System Containing a Transverse Crack, 
Vibrations in Rotating Machinery, Institution 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS Alfayo A. Alugongo

ISSN: 1991-8747 787 Issue 8, Volume 3, August 2008



 

of Mechanical Engineers, London, 1976, 
53-65. 

[8] Grabowski B, The Vibrational Behavior of a 
Rotating Shaft Containing a Transverse 
Crack, Dynamics of Rotors-Stability and 
System Identification, CISM Courses and 
Lectures no 273, Springer, NewYork, 1984, 
423-465. 

[9] P.C.Müller, J.Bajkowski and D. Söffker, 
Chaotic Motions and Fault Detection in a 
Cracked Rotor, Nonlinear Dynamics, 1994, 
5:233-254. 

[10] A. Alugongo, C. Jin, Characterization and 
reconstruction of crack forces for a cracked 
De Laval rotor based on state space theory, 
ASME 2003 DETC2003/MECH-48582 

[11] Jianhua Peng, Yanzhu Liu, Chaotic motion 
of a gyrostat with asymmetric rotor, 
International Journal of Non-Linear 
Mechanics, 2000(35):431-437. 

[12] Alan Wolf, Jack B.Swinneh and John 
A.Vastano, Determining Lyapunov 
Exponents From a Times Series, Physica 
16D, 1985, 285-317. 

[13] M. Banbrook, G. Ushaw, and S. 
McLaughlin, How to Extract Lyapunov 
Exponents from Short and Noisy Time 
Series, IEEE Transactions on Signal 
Processing, May 1997, 45(5):1378-1382. 

[14] F. Takens, Detecting Strange Attractors in 
Turbulence, in Lecture Notes in 
Mathematics, Springer, Berlin, 1981, 
(898):366-385. 

[15] G. Kember and A. C. Fowler, A Correlation 
Function for Choosing Time Delay in Phase 
Reconstruction, Physical Letters A, 1993, 
179,72-80. 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS Alfayo A. Alugongo

ISSN: 1991-8747 788 Issue 8, Volume 3, August 2008


	27-253
	28-443
	28-469
	Department of Mechanical Engineering
	ANTONIO FERNANDO BERTACHINI DE ALMEIDA PRADO
	1.4 Continuous optimal maneuvers
	2   The Brazilian Satellite SCD-1

	28-655



