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Abstract: - The determination of a specific orbit and the procedure to calculate orbital maneuvers for artificial 
satellites are problems of extreme importance in the study of orbital mechanics. Therefore, the transferring 
problem of a spaceship from one orbit to another, and the attention to this subject has increased during the last 
years. Many applications can be found in several space activities, for example, to put a satellite in a 
geostationary orbit, to change the position of a spaceship, to maintain a specific satellite’s orbit, in the design of 
an interplanetary mission, and others. The orbit and the general data of the Brazilian Satellite SCD-1 (Data 
Collecting Satellite) will be used as example in this paper. It is the first satellite developed entirely in Brazil, and 
it remains in operation to this date. SCD-1 was designed, developed, built, and tested by Brazilian scientists, 
engineers, and technicians working at INPE (National Institute for Space Research) and in Brazilian Industries. 
During its lifetime we will study its orbital behavior and we will perform some orbital maneuvers that could be 
necessary, being this one either an orbital transferring, or just to make periodical corrections. The purpose of the 
transferring problem is to change the position, velocity and the satellite’s mass to a new pre-determined state. 
This transfer can be totally linked (in the case of “Rendezvous”) or partially free (free time, free final velocity, 
etc). In the global case, the direction, the orientation and the magnitude of the thrust to be applied must be 
chosen, respecting the equipment’s limit. In order to make this transferring, either sub-optimal or optimal 
maneuvers may be used. In the present study, only the sub-optimal will be shown, since we want to study an 
algorithm for this type of maneuver. Hence, this method will simplify the direction of thrust application, to allow 
a fast calculation that may be used in real time, with a very fast processing. The thrust application direction to be 
applied will be assumed small and constant, and the purpose of this paper is to find the time interval that the 
thrust is applied. This paper is basically divided into three parts: during the first one the sub-optimal maneuver is 
explained and detailed, the second presents the Satellite SCD-1, and finally the last part shows the results using 
the sub-optimal maneuver applied to the Brazilian Satellite. 
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1 Sub-optimal Maneuvers 
 
1.1 Orbital Elements 
 
The motion of a satellite around the Earth may be 
described mathematically by three scalar second-

order differential equations. The Integration of these 
equations of motion yields six constants of 
integration. Those constants of integration are known 
as the orbital elements. 
The Keplerian orbital elements are often referred as 
classical or conventional elements and are the 
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simplest and the easiest to use. This set of orbital 
elements can be divided into two groups: the 
dimensional elements and the orientation elements. 
The dimensional elements specify the size and the 
shape of the orbit and relate the position of the 
satellite in its orbit with a given time. They are as 
follows: 
a = semi major axis, which specifies the size of the 
orbit; 
e = eccentricity, which specifies the shape of the 
orbit. 
τ = time for the perigee passage, which relates the 
position in orbit to time (τ is often replaced by M, the 
mean anomaly at some arbitrary time t, the mean 
anomaly τ is a uniformly varying angle). 
The orientation elements specify the orientation of 
the orbit in space. They are as follows: 
i = inclination of the orbital plane with respect to the 
reference plane, which is taken to be the Earth’s 
equator plane for the orbits of the satellites (0 deg ≤ i 
≤ 180 deg). 
Ω = right ascension of the ascending node (often 
shortened to simply “node”); Ω is measured 
counterclockwise in the equator’s plane, from the 
direction of the vernal equinox to the point at which 
the satellite makes its south-to-north crossing of the 
equator (0 deg ≤ Ω ≤ 360 deg). 
ω = argument of perigee, ω is measured in the orbital 
plane in the direction of motion, from the ascending 
node to the perigee (0 deg ≤ ω ≤ 360 deg). 
The angles i and Ω specify the orientation of the 
orbital plane in space. The angle ω then specifies the 
orientation of the orbit in its plane. The argument of 
latitude u defines the position of the satellite relative 
to the node line. 

 
 
 

Fig. 1. Orientation of orbit in space. 
 
 

1.2 REVISION OF THE LITERATURE 
 

The Hohmann transfer1, that study the transfer 
between two circular and coplanar orbits, is the first 
and one of the most important transfer orbits that 
exists in the literature. Several other important transfer 
can be found in books and papers published in the 
literature2,3,4,5,6. Going back in time, R. H. 
Goddard7 was one of the first researchers to work on 
the problem of optimal transfers of a spacecraft 
between two points. He proposed optimal 
approximate solutions for the problem of sending a 
rocket to high altitudes with minimum fuel 
consumption. 

After him comes the very important work done by 
Hohmann1. He solved the problem of minimum ΔV 
transfers between two circular coplanar orbits. His 
results are largely used nowadays as a first 
approximation of more complex models and it was 
considered the final solution of this problem until 
1959. A detailed study of this transfer can be found 
in Marec8 and an analytical proof of its optimality 
can be found in Barrar9.  
The Hohmann transfer would be generalized to the 
elliptic case (transfer between two coaxial elliptic 
orbits) by Marchal10. Smith11 shows results for 
some other special cases, like coaxial and quasi-
coaxial elliptic orbits, circular-elliptic orbits, two 
quasi-circular orbits. A numerical scheme to solve 
the transfer between two generic coplanar elliptic 
orbits is presented by Bender12. Hohmann type 
transfers between non-coplanar orbits are discussed 
in several papers, like McCue13, that study a 
transfer between two elliptic inclined orbits 
including the possibility of rendezvous; or Eckel and 
Vinh14 that solve the same problem with time or 
fuel fixed. Another line of research studies the 
effects of the reality of finite thrust in the results 
obtained from the impulsive model. Zee15 obtained 
analytical expressions for the extra fuel consumed to 
reach the same transfer and for the errors in the 
orbital elements and energy for a nominal maneuver 
(a real maneuver that uses the impulses calculated 
with the impulsive model). More recently, the 
literature studied the problem of a two-impulse 
transfer where the magnitude of the two impulses 
are fixed, like in Jin and Melton16; Jezewski and 
Mittleman17. Later, the three-impulse concept was 
introduced in the literature. Using this concept, it is 
possible to show that a bi-elliptical transfer between 
two circular orbits has a lower ΔV than the 
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Hohmann transfer, for some combinations of initial 
and final orbits. After that, Ting showed that the use 
of more than three impulses does not lower the ΔV, 
for impulsive maneuvers. Roth18 obtained the 
minimum ΔV solution for a bi-elliptical transfer 
between two inclined orbits. Following the idea of 
more than two impulses, we have the work done by 
Prussing19 that admits two or three impulses; 
Prussing20 that admits four impulses; Eckel21 that 
admits N impulses. Another line of research that 
comes from the Hohmann transfer is the study of 
multi-revolutions transfer with N impulses applied 
during N successive passages by the apses. Spencer, 
Glickman and Bercaw22 shows equations and 
pictures to obtain the ΔV required for this transfer, 
as a function of the number of revolutions allowed 
for the transfer. After that, Redding23 and 
Matogawa24 would extend this concept of multi-
revolution transfer to the non-impulsive case, by 
applying finite thrust around the apses. Some other 
researchers worked on methods where the number of 
impulses was a free parameter, and not a value fixed 
in advance. It is the case of the papers made by Lion 
and Handelsman25, Jezewski and Rosendaal26, 
Gross and Prussing27, Eckel28 and Prussing and 
Chiu29. Most of the research done in this particular 
case is based on the "Primer-Vector" theory 
developed by Lawden30,31. Several other 
publications are available treating this 
problem32,33,34,35,36,37,38. Similar topics in other 
fields can also be found in the literature39,40. 
 
 
1.3     The Maneuver Description 
This topic has the objective to develop a sub-optimal 
method with computational high speed that calculates 
orbital maneuvers based in continuos thrust. The 
purpose is to have a method which generates fast 
results and low fuel consumption. 
Kluever and Oleson2, developed one method to 
calculate sub-optimal orbital maneuvers (with 
minimum time, therefore with minimum fuel 
consumption, given that the thrust magnitude is 
constant, and the time that the thrust is applied is 
proportional to the fuel consumption) for spaceships 
around the Earth, equipped with thrusters moved by 
solar electrical propeller. To solve the problem of 
optimal control, it is utilized a direct optimization 
technique, with approximations in the thrust’s 
direction. 

The equations for the spaceship, when the thrust is 
applied, are shown bellow. These equations are 
written in terms of non-singular equinoctial elements 
in order to cover circular orbits and planar orbits (i  = 
0º, 180º). The relationship between the equinoctial 
elements and the classical elements is given by: 
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For one spaceship moving in a gravitational field, and 
submitted to a propulsion force, the equations of 
motion are shown: 
 

∧•

= αMax t       
       (6) 
The state vector for the equation (6) is: 
 

Tqpkhax ],,,,[=     (7) 

The vector (3X1) is a canonical vector, in the 
thrust’s application direction. The value of  is the 
thrust acceleration magnitude, given by: 

∧
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Where η is the thrust system efficiency,  is the 
initial force given by the propulsion system, m is the 
vehicle’s mass, g is the gravitational acceleration at 
the sea level, and  is the specific impulse. The 
state equation for F is not included because the 
average of classical elements is utilized, and 
therefore, only elements that vary slowly are 
considered. 

0P

spI

The elements of the matrix M that appears in the 
equation (6) are: 
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The processing time is reduced when orbital averages 
are used. Since all the orbital elements utilized are 
variables that vary slowly, due to the fact that the 
thrust force have a small magnitude, large integration 
steps can be used. The equation of motion for the 
spaceship can be approximated, calculating the 
increment of each orbital element within one period 
and dividing by this time. Hence, the variations of the 
equinoctial elements with respect to time, are: 
 

dF
dF
dtMa

T
x t

∧

−∫= α
π

π

1`     (39) 

 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Bruno Nunes Vaz, Antonio Fernando 
Bertachini De Almeida Prado

ISSN: 1991-8747 772 Issue 8, Volume 3, August 2008



Where x is the approximation of the state, and T is 
the orbital period. The strip above the variables 
means that they were availed using the average state 
vector. The integral represents the change of the 
orbital elements in one turn, keeping the orbital 
elements as constants.  
 
 
1.4 Continuous optimal maneuvers 
 
Another possibility to study this problem is to 
consider optimal control. This approach is based on 
Optimal Control Theory. First order necessary 
conditions for a local minimum are used. These 
equations can give us the following information: 
a) One set of differential equations for the Lagrange 
multipliers. They are called "adjoint equations". 
Together with the equations of motion they complete 
the set of differential equations to be integrated 
numerically at each step; 
b) The "Transversality Conditions", that are the 
conditions to be satisfied by the Lagrange multipliers 
at the final time. Together with the constraints of the 
transfer (start in a point that belongs to the initial 
orbit and finishes in a point that belongs to the final 
orbit) these end conditions complete the set of 
boundary conditions to be satisfied. This problem is 
known as the "Two Point Boundary Value Problem" 
(TPBVP), because there are boundary conditions to 
be satisfied at the beginning and at the end of the 
interval of integration; 
c) Maximum Principle of Pontryagin. This principle 
says that the magnitude of the scalar product of the 
Lagrange multiplier by the right-hand side of the 
equations of motion has to be a maximum. Working 
out the algebra involved we will end up with a 
condition for the angles of "pitch" and "yaw" that can 
be solved to give us their numerical values at each 
time. 
 Then, the problem becomes a problem of non-linear 
programming with finite dimension. This problem is 
then solved using the following algorithm: 
i) Choose an estimate for the initial and final "range 
angle" (the variable that replaces the time as the 
independent variable) and for the initial values of the 
Lagrange multipliers; 
ii) Integrate the adjoint equations and the equations 
of motion simultaneously, obtaining the 
instantaneous values of the "pitch" and "yaw" angles 
from the Maximum Principle of Pontryagin; 
iii) At the end of the maneuver, verify if the boundary 
conditions are satisfied. If they are not satisfied 
update the initial values following the procedure 
described in the next session and go back to step i. If 
the constraints are satisfied the procedure is finished. 

 This treatment is called hybrid approach because it 
uses direct searching methods for minimization 
together with first order necessary conditions for a 
local minimum. 
 With this approach, the problem is again reduced to 
parametric optimization, as in the suboptimal 
method, with the difference that the angle's 
parameters are replaced by the initial values of the 
Lagrange multipliers, as the variables to be 
optimized. 
 The main difficulty involved in this method is to find 
good first initial guesses for the Lagrange multipliers, 
because they are quantities with no physical meaning. 
This problem can be solved by using the method 
proposed by Biggs. He proposes a transformation 
called "adjoint-control", where one guess control 
angles and its rates at the beginning of thrusting 
instead of the initial values of the Lagrange 
multipliers. A set of equations is developed that allow 
to obtain the Lagrange multipliers from the values of 
the initial angles of "pitch" and "yaw" and its rates. 
By performing this transformation it is easier to find 
a good initial guess, and the convergence is faster. 
This hybrid approach has the advantage that, since 
the Lagrange multipliers remain constant during the 
"ballistic arcs" (arcs that have the thrusts inactive), it 
is necessary to guess values of the control angles and 
its rates only for the first "burning arc". This 
transformation reduces the number of variables to be 
optimized and, in consequence, the time of 
convergence. 
 To solve the nonlinear programming problem, the 
gradient projection method was used. 
 It means that at the end of the numerical integration, 
in each iteration, two steps are taken: 
i) Force the system to satisfy the constraints by 
updating the control function according to: 
 
  u ui 1 i+

−
= −∇ ∇ ∇f . f. f fT T 1

  (40) 
 
where f is the vector formed by the active constraints; 
ii) After the constraints are satisfied, try to minimize 
the fuel consumed. This is done by making a step 
given by: 
   

u ui 1 i+ = +α
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  [ ]( ) )(J.. 1TT u∇∇∇∇−−=
− ffffId  (43) 

 
where I is the identity matrix, d is the search 
direction, J is the function to be minimized (fuel 
consumed) and γ is a parameter determined by a trial 
and error technique. The possible singularities in 
equations (40) to (43) are avoided by choosing the 
error margins for tolerande in convergence large 
enough. 
 This procedure continues until u ui 1 i+ − < ε  in both 
equations (40) and (41), where ε is a specified 
tolerance. 

 
 

2   The Brazilian Satellite SCD-1 
 
The first Data-Collecting Satellite (Satélite de Coleta 
de Dados) was launched on February 9, 1993. It is the 
first satellite developed entirely in Brazil and it 
remains in operation in orbit to this date. SCD-1 was 
designed, developed, built, and tested by Brazilian 
scientists, engineers, and technicians working at 
INPE (National Institute of Space Research) and in 
Brazilian industries. 
 
 

 
 

Fig. 2. The Satellite SCD-1 
 
 
 

 
 

Fig. 3. The Area Coverage by SCD-1 (STK®) 
 

SCD-1 is an experimental satellite with an 
environmental mission. It receives data collected on 
the ground or at sea by hundreds of automatic data-
collecting platforms (DCPs) and retransmits all the 
information in a combined real-time signal back to 
tracking stations on Earth. Applications include 
hydrology, meteorology, and monitoring of the 
environment in general. The data are used by 
agencies such as the Weather Forecasting and 
Climate Studies Center (Centro de Previsão do 
Tempo e Estudos Climáticos - CPTEC), hydroelectric 
power managers, and both private and governmental 
institutions with many different interests. An example 
is the meteorological and environmental data 
collected in the Amazon region, including the levels 
of carbon monoxide and carbon dioxide in the 
atmosphere. These data are transmitted to INPE and 
are used for monitoring forest fires. 
 
 

 
 

Fig. 4. The SCD-1 Orbit (STK®) 
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SCD-1 weighs approximately 110 kg and goes 
around the Earth every 100 minutes on a nearly 
circular orbit at about 760 km altitude. The 
inclination of the orbit with respect to the plane of the 
equator is 25 degrees, providing excellent coverage 
of equatorial, tropical, and subtropical regions (up to 
about 35 degrees of latitude) around the world. The 
spin-stabilized spacecraft has the shape of an 
octogonal prism, with a diameter of 1 meter and a 
height near 70 cm without the antennas that are 
mounted on both base surfaces. It was originally 
designed for a life of one year with 80% probability, 
but it has survived 15 years in operation without any 
crippling functional failure. However, since its 
chemical (nickel-cadmium) batteries are now 
completely run down, the satellite can no longer be 
used while it is in the Earth's shadow. 
 
 
3   Results 
 
The results consist of plots that show the orbital 
element’s variation, according to the time. 
Due to the very fast processing, this method could be 
utilized in real time to make any correction 
maneuver. 
 
 
 

 
Fig. 5. Variation of the semimajor 

 
 
 

 
Fig. 6. Variation of the Eccentricity 

 

 
Fig. 7. Variation of the Argument of perigee 

 
 

 
Fig. 8. Variation of the Inclination 
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Fig. 9. Variation of the Longitude of the Ascending 

Node 
 
 
4 Conclusion 
 
A numerical algorithm was developed to calculate a 
transferring problem, and the purpose is to change the 
position, velocity and the satellite’s mass to a new 
pre-determined state. Hence, this method simplifies 
the directions of the application of the thrust, to allow 
a fast calculation that may be used in real time. The 
level of the thrust to be applied is assumed to be 
small and constant. 
The Brazilian Satellite SCD-1 was used as an 
example in this paper. It is the first satellite 
developed entirely in Brazil and it remains in 
operation in orbit to this date. 
In real applications, as in the case of SCD-1, it might 
be necessary to do a complementary maneuver, being 
this one either to an orbital transferring, or just to 
make periodical corrections.  
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