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Abstract: - Nonequilibrium statistical mechanics helps to estimate corrections to the entropy and energy of the fluid 
with heat flux in terms of the nonequilibrium distribution function, f. This leads to the coefficients of wave model of 
heat: relaxation time, propagation speed and thermal inertia. With these data a quadratic Lagrangian and a variational 
principle of Hamilton’s type follows for the fluid in the field representation of fluid’s motion. We analyze canonical 
conservation laws and show the satisfaction of the second law under the constraint of these conservation laws. 
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1   Introduction 
Extended thermodynamics of fluids can be applied to set 
variational principles for the irreversible energy transfer. 
Significant help can be obtained from nonequilibrium 
statistical theories when evaluating kinetic or flux-
dependent terms in energies and macroscopic 
Lagrangians. Especially, we can treat statistical aspects 
of nonequilibrium fluids with heat flow by applying an 
analysis that uses Grad’s results [1] to determine 
nonequilibrium corrections ∆s or ∆e to the energy e or 
entropy s in terms of the nonequilibrium density 
distribution function f. To find the required corrections 
to the energy e and kinetic potential L we exploit 
corrections ∆s and a relationship that links energy and 
entropy representations of thermodynamics. We may 
also evaluate coefficients of wave model of heat, such 
as: relaxation time, propagation speed and thermal 
inertia factors, g and θ. With these data we can formulate 
a variational principle of Hamilton’s or least action type 
for fluids with heat flux in the field or Eulerian 
representation of fluid motion.  

To find a variational formulation we apply here an 
approach that adjoints a given set of constraints to a 
kinetic potential L and transfers the original variational 
formulation to the space of the Lagrange multipliers 
(also called state adjoints). Considering limiting 
reversible process we evaluate canonical components of 
energy-momentum tensor and associated conservation 
laws. The approach works efficiently; it leads to exact 
imbedding of constraints in the potential space of 
Lagrange multipliers, implying that the appropriateness 
of the constraining set should be verified by physical 

rather than mathematical criteria. An analysis shows that 
the approach is particularly useful in the field (Eulerian) 
description of transport phenomena, where equations of 
thermal field follow from variational principles based on 
the state adjoints rather than on the original physical 
variables. Exemplifying process is hyperbolic heat 
transfer, but the approach can also be applied to coupled 
parabolic transfer of heat, mass and electric charge. With 
various gradient or non-gradient representations of 
physical fields in terms of state adjoints useful action-
type criteria emerge. Symmetry principles are effective, 
and components of the formal energy-momentum tensor 
can be found. Focusing on heat flow, our work 
represents, in fact, an approach that shows the advantage 
of approaches borrowed from the optimal control theory 
in the variational setting of irreversible transport. The 
limiting reversible process provides a suitable reference 
frame for more involved irreversible evolutions. 
 

2   Optimization Type Approach  
Statistical theories are useful [1] to evaluate 
nonequilibrium corrections to the energy and other 
thermodynamic potentials in situations when a 
continuum is inhomogeneous because of the presence of 
irreversible fluxes. To illustrate benefits resulting from 
nonequilibrium statistical thermodynamics, heat transfer 
in locally non-equilibrium fluids is analyzed [2]. Quite 
essential therein is the connection between various 
representations of thermodynamics and a relationship 
(resembling the Gouy-Stodola law) that links energy and 
entropy pictures. With this relationship nonequilibrium 
corrections to the energy can be found from those known 
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for the entropy. These energy corrections can next be 
used to find a suitable kinetic potentials L. 

The present approach is optimization-type; it differs 
from the conventional variational ones in that the action 
functional is systematically constructed rather than 
assumed from the beginning. Equations of constraints 
(reversible or not) follow in the form of their 
counterparts in the space of Lagrange multipliers; they 
are extremum conditions for the action based on a 
composite (constraint involving) Lagrangian Λ or its 
gauge counterpart. As long as the representations of 
physical variables are explicit in terms of Lagrange 
multipliers, the whole variational formalism can be 
transferred to the adjoint space of multipliers, i.e. a 
variational principle can be formulated in the adjoint 
space. The Lagrangian can also be used to obtain the 
matter tensor and associated conservation laws.  

Finally we show that the use of the canonical 
conservation laws constructed for the reversible process 
and variational extremum conditions assures the 
satisfaction of the second law of thermodynamics, the 
property that renders the variational theory considered a 
candidate to be the physical one. 

 

3 Energy and Entropy Representations 
Now our task is to recall some basic knowledge on the 
thermodynamics of heat flow without local equilibrium. 
This will help us to construct Lagrangians, variational 
principles and conservation laws. We work in the 
framework of extended thermodynamics of fluids [3] 
and restrict to incompressible, one-component fluid with 
heat flow.   

Consider a nonequilibrium state, say A, off but near 
the Gibbs surface, when the local equilibrium 
assumption is inapplicable, Fig. 1. The energy at the 
state A is the nonequilibrium internal energy. This 
internal energy depends not only on the usual state 
variables, but also on some nonequilibrium variables 
such as heat flux or diffusive entropy flux. Here we 
select the heat flux, q, as the nonequilibrium variable of 
choice. It is treated as an internal variable which may 
relax to an equilibrium. Nonequilibrium energy density 
of a continuum, ρe, or its specific energy e, is a function 
of density ρ, specific entropy s and diffusive entropy 
flux js or heat flux q. For a continuum as a stable 
macrosystem, its equilibrium internal energy density ρe

eq 
is the minimum of ρe with respect to unconstrained js or 
q, at constant ρ and s. As ρ = v-1, the reciprocal of 
specific volume, the minimum of ρe (or e itself) with 
respect to js or q occurs at the constant entropy s and 
volume v which are proper variables at which the energy 
attains minimum at equilibrium. This is in agreement 
with basic thermodynamics [4]. Since js or q are a 
diffusive fluxes, the minimum occurs for js = 0 or q=0. 

For a given nonequilibrium state at a point A in 
Fig.1, two equilibrium reference states, at points B and 
C, say, correspond, respectively, to the energy and 
entropy representation. A researcher knowing entropy s 
(e. g., from distribution function f corresponding to A) 
formulates his description of state A in terms of 
equilibrium parameters at B, for a set of variables, here 
the entropy flux js. Yet, one who knows energy e can 
base his view on the heat flux q and equilibrium at C. 
When point A moves the equilibrium states (B and C) 
vary. The conventional picture of motion in terms of 
Hamilton's principle corresponds to following the 
behavior of B and the kinetic energy of entropy flux, 
whereas the kinetic theory view corresponds to tracking 
of C and the deviation of entropy from equilibrium. The 
transition from one view to the other is possible [2]. 

It is important to realize that for a single 
nonequilibrium state the use of the entropy 
representation and energy representation establishes two 
different equilibrium states located on the Gibbs surface.  
This, of course, is because of the difference in what is 
held constant. The distance between two discussed 
equilibrium states (B and C) increases with the distance 
of the state A from the Gibbs surface.  This distance can 
also be measured in terms of the modulus of the flux js 
or in terms of the differences ∆e = AB or ∆s = AC. 
When the curvature of the Gibb's surface can be 
neglected, corresponding to the near-equilibrium 
situation, the two disequilibrium excesses are linked by 
an equality resembling the Gouy-Stodola law 

  

ρeeqρseq ssTee ,, )()( −−=−    (1) 

 
This formula states that the energy released during 

the isoentropic relaxation equals the product of the 
absolute temperature and the entropy deficiency in the 
system caused by the presence of the heat flux q or the 
entropy flux, js.   
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Fig. 1. Diverse reference equilibrium states (B, D, C, etc.) for 
a given nonequilibrium state A.  

 

4 Nonequilibrium Corrections to Energy 
and Entropy  

It is essential that the entropy representation is assumed 
in the Grad’s formalism of the kinetic theory [1].  Hence 
the specific energy of an ideal gas or fluid with heat at 
the point A is equal to the specific energy at equilibrium 
C in Fig. 1.  The reference temperatures and pressures 
that appear in the expressions of kinetic theory are T(C) 
and P(C).  From the formalism one finds disequilibrium 
corrections ∆s or ∆e in terms of the non-equilibrium 
density distribution function f. Here we recapitulate the 
results of several different works [3]-[6] all using Grad’s 
[1] solution of the Boltzmann equation in macroscopic 
predictions for dilute gas of rigid spheres. 

The molecular velocity distribution function, f, out of 
equilibrium but close to it is given as 
  

)1)(()( 1ϕ+= CC eqff    (2) 

 
where feq is the local equilibrium (Maxwell-Boltzmann) 
distribution pertaining to the entropy representation 
equilibrium (point C, Fig. 1).  f and feq are scalars, but 
functions of the peculiar velocity C = c - u, and ϕ1 is a 
function of the deviation from equilibrium. This 
deviation is expressed in terms of the gradT in the 
Chapman-Enskog method and in terms of the heat flux q 
in the Grad's method. Using Eq. (2) in the entropy 
definition, one integrates the expression flnf over all of 
the space of the molecular velocity c, 
 

∫−= cfdfkρ Bs ln     (3) 

Proceeding with development of ρs up to second order in 
φ1, one obtains ....)2()1(

ss
eq
ss ρρρρ ++= with the local 

equilibrium entropy 
      

 ∫−= cdffkρ
eqeq

B
eq
s ln   (4) 

and the nonequilibrium correction 
 

0ln1
)1( =−= ∫ cdffkρ

eqeq
Bs ϕ   (5) 

 
Again, this proves that one deals with the entropy 
representation where the entropy is maximum at 
equilibrium.  A counterpart of the above equation in the 
energy representation 

     

 ,02
1

)1( =−= ∫ cc dmfρ
eq

e ϕ    (6) 

would correspond to the minimum energy.  The second 
order correction to the entropy density (in entropy 
representation) is 

∫−=∆= cdfksρρ
eq

Bs
2
1

)2(

2

1 ϕ     (7) 

Hence, in view of the relation between ∆e and ∆s 
implied by Fig. 1 or Eq. (1) 

∫
−−=∆ cdfTρke eq

B
2
1

1

2

1 ϕ   (8) 

Since the state A is close to the equilibrium surface, the 
multiplicative coefficients involving usual thermostatic 
variables can always be evaluated at arbitrary 
equilibrium points (B or C in Fig. 1).  However, in Eqs. 
(1), (9) and (10), they are evaluated (in the kinetic 
theory) for the case of the isoenergetic equilibrium 
(point C, Fig. 1). The function ϕ1, obtained in Grad's 
method when the system's disequilibrium is maintained 
by a heat flux q is 

  qCC .)
2

5

2

1
)(/(

5

2 222
1 TkmTPkm BB −=φ  (9) 

where m is the mass of a molecule ([1], [3]). From Eqs. 
(7), (8) and (9) one obtains for the entropy deviation 

   22)/(
5

1
qTρPkms B−=∆   (10) 

and for the energy deviation, Eq. (1), with entropy flux js 
= qT-1  

 22222

2

1
)/(

5

1
ssB gρρkme jj −==∆   (11) 

Equations (10) and (11) hold to the accuracy of the 
thirteenth moment of the velocity [1]. When passing 
from Eq. (10) to (11) state equation P = ρkBTm-1 is used 
and a constant g is defined as  

.
5

2

5

2
2

2

BB k

m

Pk

mT
g =≡ ρ

  (12) 

Here we abandoned the entropy representation.  Pressure 
in Eqs. (9) and (12) is that of an ideal gas, given by the 
definition used in the kinetic theory (Grad 1958 [1]). Eq. 
(11) with constant g defined by Eq. (12) is the 
characteristic feature of the ideal monoatomic gas (dilute 
Boltzmann gas composed of hard spheres). For arbitrary 
fluids (polyatomic gases, dense monoatomic gases and 
liquids) one can retain the form of the last expression in 
Eq. (11) by using a general formula for by noting that  

  eqseq esρg )/(),( 222 j∂∂≡ ρ   (13) 

In the ideal gas case the derivative ∂2e/ 2
sj∂ = 

(2/5)(m2/kB
2ρ2) from Eq. (11) and the definition (12) is 

recovered form definition (13). quation (13) is consistent 
with a hypothesis about the equality of the kinetic and 
static nonequilibrium energy corrections in a thermal 
shock-wave front [5]. The hypothesis can be used to 
compute (∂2e/∂js

2)eq for arbitrary fluids as T/(ρcpG) and 
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hence g as Tρ/(cpG), where G is the shear modulus. 
Equilibrium values of thermodynamic parameters can be 
applied in such expressions. For an ideal gas the shear 
modulus is just the pressure P (the result of Maxwell) 
and cp = 5kB/(2m). These results allow one to recover 
definition (12) from the expression g = Tρ/(cpG); they 
support the hypothesis mentioned above. Yet, for the 
purpose of general considerations the use of the implicit 
dependence of g on the basic variables (ρ, s) is often 
enough, i. e., function g(ρ, s) will be used when passing 
to arbitrary fluids. Some entropy flux adjoints, as and is, 
are useful. They are defined, respectively, by equations 

     

 sssρsss gρseρs jjjja 2
, /),,(),,( −=∂∆∂= ρ  (14) 

and  
     

 )(),,( 1 uuvjji −=== −
sssss gsgsgρρs  (15) 

   
The entropy diffusion velocity vs = us - u = js/ρs appears 
in Eq. (15).  One may also introduce the product kBgs 
which has the dimension of mass.  For the ideal gas this 
product yields ms = 2/5(m2skB

-1), a measure of heat 
inertia.  

In the model of a constant g, nonequilibrium 
temperature T(B) is equal to the equilibrium temperature 
T(ρ, s) which is both the measure of mean kinetic energy 
of an equilibrium and the derivative of energy with 
respect to the entropy.  This equality emerges because, 
above, we have chosen the entropy flux js, not the heat 
flux q, as the nonequilibrium variable in energy e. If  one 
differentiates the nonequilibrium entropy s with respect 
to the energy holding q constant, then a quantity T(C) of 
Jou et al ([3]) follows, which differs from the reciprocal 
of the related temperature Teq by a term quadratic in q.  
In general, "nonequilibrium temperatures" (understood 
as the fifth moment of the nonequilibrium density 
functions) are not the measures of mean kinetic energy.  

The knowledge of inertial coefficients, such as g, 
from statistical considerations helps to calculate two 
basic quantities in the model of heat transfer with finite 
wave speed. They are: thermal relaxation time τ and and 
the propagation speed, c0. Of several formulae available 
that link τ and g, probably the following expression 

 

  1)( −= Tgτ ρk     (16) 
 
is most useful ([6], p. 199). It links thermal relaxation 
time τ with thermal conductivity k, inertia g and state 
parameters of the system. As, by definition, the 
propagation speed of the thermal wave c0=(a/τ)1/2, where 
a= k /(ρcp)  is thermal diffusivity, the quantity c0 may be 
determined from the useful formula 
  

.
g

)(

2/1

2/1
0 













==

pc

Ta
c

τ
    (17) 

Substituting to this formula the ideal gas data, i.e. g of 
Eq. (12) and cp = 5kB/(2m), yields propagation speed in 
the ideal gas  

2/12/1

0 g







=













=

m

Tk

c

T
c B

p

   (18) 

 
(thermal speed). Thus the results of nonequilibrium 
statistical mechanics help to estimate coefficients of the 
heat transfer model. Data ofτ� and c0 are used below in a 
variational principle for heat transfer. One more 
coefficient that is quite useful in the wave theory of heat 
is that describing a thermal mass per unit of entropy 
 

   θ=T 2
0
−c ,   (19) 

 
[6]. For an ideal gas, Eq. (18) yields θ  as 
    

1−= Bmkθ    (20) 

 
We can now set a variational model of the heat problem. 

 

5 Approaches Ajoining Constraints to a 
Kinetic Potential 

For a heat conduction described in an Eulerian frame by 
the Cattaneo equation and conservation law for the 
internal energy, the constraints are 

 

0
2
0

2
0

=∇++
∂

∂
e

ctc
ρ

τ
qq

   (21) 

and 

 0. =∇+
∂

∂
q

t
eρ

,   (22) 

where the density of the thermal energy ρe satisfies dρe 
= ρcvdT, c0 is propagation speed for the thermal wave, τ 
is thermal relaxation time, and D=c0

2τ is the thermal 
diffusivity. Equation (22) assumes the conservation of 
thermal energy (rigid medium and neglect of the viscous 
dissipation). For simplicity we assume constant values 
of involved fields at the boundary. We ignore the 
vorticity properties of the heat flux.   

The energy-representation of the Cattaneo equation,  

  0
22

=∇++
∂

∂
T

ctc s

s

s

s

τ
jj

   (23) 

uses diffusive entropy flux js instead of heat flux q. The 
coefficient cs is defined as 

2/11)( −≡ θρ vs cc     (24) 
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where θ=T 2
0
−c , and thermal diffusivity τρ 2

0ccv≡k . 
Equation (23) is Kaliski’s equation [6]. For an 
incompressible medium one may apply this equation in 
the form 

0
2
0

2
0

=∇++
∂

∂
s

ss

ctc
ρ

τ
jj

   (25) 

which uses the entropy density ρs as a field variable. 
Yet, we focus here on the action and extremum 
conditions in the entropy representation (Eqs. (21) and 
(22) in variables q and ρe). For Eqs. (23) - (25) another 
approach will be developed in a complementary paper.  
Action approaches should be distinguished from 
entropy-production approaches [6], [7]. Here an action 
is assumed that absorbs constraints (21) and (22) by 
Lagrange multipliers, the vector ψψψψ and the scalar φ 

.)}. ().(

2

1

2

1

2

1
{

2
0

2
0

22

2
0

2

,

1
2

1

dVdt
t

φ
ctc

c
A

e
e

e

t

Vt

q
qq

ψ

q

∇+
∂

∂
+∇++

∂
∂+

−−= ∫
−

ρρ
τ

ερε
.  (26) 

As kinetic potentials can be diverse, the conservation 
laws for energy and momentum substantiate the form 
(26). In Eq. (26), ε is the energy density at an 
equilibrium reference state, the constant which ensures 
action dimension for A, but otherwise is unimportant. 
Yet we assume that the actual energy density�ρe is close 
to ε, so that the variable ρe can be identified with the 
constant ε in suitable approximations.   

We call the multiplier-free term of the integrand of 
Eq. (26) 

}{
2

1 22
2
0

2
1 ερε −−≡ −

e
c

L
q    (27) 

the kinetic potential of Hamilton type for heat transfer. 
It is based on the quadratic form of an indefinite sign, 
and it has usual units of the energy density. Not far 
from equilibrium, where ρe is close to ε, two static 
terms of L yield altogether the density of thermal 
energy,  ρe. Indeed, in view of admissibility of the 
approximation  ρe =ε in Eqs. (27), the kinetic potential 
(27) represents - in the framework of the linear heat 
theory - the Hamiltonian structure of a difference 
between “kinetic energy of heat”, and the 
nonequilibrium internal energy, ρe. To secure proper 
conservation laws, no better form of L was found in the 
entropy representation. The theory obtained in the 
present case is a linear one.  

Vanishing variations of action A with respect to 
multipliers ψψψψ and  φ  recover constraints, whereas those 
with respect to state variables q and ρe yield 
representations of state variables in terms of  ψψψψ and  
φ . For the accepted Hamilton-like structure of L,  

      

 φc
τt

∇+−
∂
∂= 2

0
ψψ

q     (28) 

and 

.
te ∂

∂−−∇= φρ ψ    (29) 

 
These equations enable one to transfer variational 
formulation to the space of Lagrange multipliers.   

For the accepted structure of L, the action A, Eq. 
(26), in terms of the adjointsψψψψ and φ is 

 

) ..
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1
.

2

1

2

1 2
2

22
02
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1
2
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t

c
tc

A
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





−








∂
∂+∇−∇+








 −
∂
∂= ∫

− εφφ
τ

ε ψ
ψψ

    

(30) 
Its Euler equations with respect to ψψψψ  and φ are  
 

0.
11 2
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
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∂
∂

∂
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t
c
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c
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φφ
ττ

φ
τ

ψ
ψψψψ   (31) 

and 

.0.. 2
0 =







 ∇+−
∂
∂∇+









∂
∂+∇

∂
∂− φ

τ
φ

c
ttt

ψψ
ψ    (32) 

   
It is easy to see that (31) and (32) are the original 

equations of the thermal field, eqs. (21) and (22), in 
terms of potentials  ψψψψ and φ. Their equivalent form 
below shows the damped wave nature of the transfer 
process. In fact,  Lagrange multipliers  ψψψψ and φ  of this 
problem satisfy certain inhomogeneous wave equations. 
In terms of the modified quantities ΨΨΨΨ and    Φ  satisfying 

ΨΨΨΨ        = ψψψψ 2
0τc and Φ  = − φτ 2

0c  these equations are 

.
2

0
22

0

2
2 q

ΨΨ
Ψ =

∂
∂+

∂
∂−∇

tctc τ
  (33) 

and 

.
2
0

22
0

2
2

e
tc

Φ

tc

Φ
Φ ρ

τ
=

∂
∂+

∂
∂−∇   (34) 

As both state variables (q, ρe) and adjoints (ψψψψ, φ) appear 
herein, they represent mixed formulations of the theory.  
 

6 Canonical Conservation Laws 
The energy-momentum tensor is defined as 
 

( ) Λ−












∂∂∂
Λ∂

∂
∂≡∑ jk

l
k

l
j
ljk

v

v
G δ

χχ
  (35) 

 
where δjk is the Kronecker delta and χ = (x, t) comprises 
the spatial coordinates and time. Our approach here 
follows those in [8] and [9], where components of Gjk 
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are calculated for a reversible Λ whose gauged form is 
obtained from the reversible limit of Eq. (26) at ψψψψ=0 by 
use of the divergence theorem and the differentiation by 
parts. In our problem 

   

 }
2

1
)(

2

1
)(

2

1
{ 22

0
21 εε −∇−

∂
∂=Λ −

φc
t

φ
   (36) 

 
Below the results for tensor G = Gjk are discussed in 

physical variables. The momentum density of heat is 
αααα

ε
ρ

qcqcG e 2
0

2
0

4 −− ≅=−=Γ   (37) 

Clearly, ΓΓΓΓ vanishes in the Fourier’s case (c0 ∞→ ).  
The stress tensor Tab has the form 

     
 Λ−−= −− αββααβ δqqcεT 2

0
1    (38) 

  
whence (after substituting the stationary Lagrangian)  
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2212

0
1 ερεδαββααβ −−−−= −−−− cqqcεT e q     (39) 

The energy density follows as the Legendre transform 
of the Lagrangian Λ  with respect to rate change of φ  
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Finally, density of energy flux follows as 
 

ββββ ρε qqQG e ≅== −14  .   (41) 

The associated conservation laws for the energy and 
momentum show the role of thermal inertia effects 
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These are canonical conservation laws which are 

obtained on the reversible paths. Now the important 
question is if these laws can be recovered for 
irreversible processes in which the entropy is produced 
and the Second Law holds.   

 

7 Satisfaction of Second Law 
Calculating the four-divergence of the entropy flow 
( t∂∂∇ /, ) and using the global conservation law for the 
total energy E  we obtain the entropy balance 
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Applying Cattaneo equation we arrive at the second law  
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where a = k-1 is the thermal resistance. It should be kept 
in mind that the density Sv appearing in the above 
equations is not identical with the density of classical 
equilibrium entropy ρs. As shown by Eq. (61) in Sec.8, 
Sv is rather the density of the nonequilibrium entropy 
which contains the heat flux as an extra variable and 
appears in extended irreversible thermodynamics (EIT; 
[3]).  

2
22

q
T

S sv λ
τρ −=  

 

8 Sources of internal energy and 
conservation laws 

However, while simple and useful, the method of 
construction of a suitable action A in the space of 
potentials by the direct substitution of the representation 
equations to the kinetic potential L is limited to cases 
with linear constraints that do not contain sources. This 
may be exemplified when the internal energy balance 
contains a source term a’q2, where a’ is a positive 
constant. The augmented action integral, generalizing 
Eq. (26), should now contain the negative term - a’q2 in 
its φ term.  
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The energy representation (29) is unchanged, but the 
heat flux representation follows in a generalized form 
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Substituting Eqs. (29) and (47) into action A of Eq. (26) 
(L of Eq. (27)) shows that in terms of the potentials the 
action acquires the form 
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However the Euler-Lagrange equations for this action 
are not the process constraints in terms of potentials, 
i.e. the method fails to provide a correct variational 
formulation for constraints with sources. The way to 
improve the situation is to substitute the obtained 
representations to a transformed augmented action in 
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which the only terms rejected are total time or space 
derivatives. The latter can be selected via partial 
differentiation within the integrand of the original 
action A. (As we know from the theory of the 
functional extrema the addition of subtraction of terms 
with total derivatives and divergences do not change 
extremum properties of a functional.) When this 
procedure is applied to the considered problem and 
total derivatives are rejected, a correct action follows in 
the form 
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 (49) 

 
This form differs from that of Eq. (34) only by the 

power of the coefficient containing the constant a’, 
related to the source. With the related representation 
equations (29) and (47), action (49) yields the proper 
Cattaneo constraint (21) and the generalized balance of 
internal energy which extends equation (22) by the 
source term a’q2.  

Equation (49) proves that four-dimensional potential 
space (ψψψψ, φ) is sufficient to accommodate an exact 
variational formulation for the problem with a source. 
Yet, due to the presence of this source, the formulation 
does not exist in the original four-dimensional original 
space (q, ρe), and, if somebody insists to exploit this 
space plus possibly a necessary part of the potential 
space, the following action is obtained from Eqs. (29), 
(47) and (49) 
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This form of A shows that, when original state space 

is involved, the state space required to accommodate 
the variational principle must be enlarged by inclusion 
of the Lagrange multiplier φ as an extra variable. In 
fact, Eq. (50) proves that original state space (“physical 
space”) is lacking sufficient symmetry (Vainberg’s 
theorem [6]). Yet, as Eq. (50) shows, the adjoint space 
of potentials (ψψψψ, φ), while also four-dimensional as 
space (q, ρe0), can accommodate the variational 
formulation. Why is this so? Because the 
representation equations do adjust themselves to the 
extremum requirement of A at given constraints, 
whereas the given constraints without controls cannot 
exhibit any flexibility.  

Somewhat surprisingly, it follows that a source term 
in the internal energy balance, as in Eq. (46), should be 
the necessary property of the Cattaneo model, else the 
energy conservation will be violated. Indeed, aimed at 
the evaluation of energy conservation we multiply the 
non-truncated Cattaneo formula 
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by heat flux q. The result is an equation 
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which describes an energy balance We observe that the 
combination of this balance with the sourceless balance 
of internal energy 
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leads to a differential result 
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which – under the linear approximations of the present 
theory – yields not a conservation law for the total 
energy, but a balance formula with an energy source 
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This shows violation of the total energy conservation 
for the source-less internal energy of the model, and 
leads to the conclusion that the model composed of the 
Cattaneo equation and source-less balance of internal 
energy is physically admissible only in the reversible 
case of an infinite τ. Certainly, this is not a demanded 
property of the energy transfer model, thus a further 
analysis is required. The solution of the dilemma seems 
to admit a properly large, yet a non-vanishing, source 
in the internal energy balance.  

Admitting a source of the internal energy, as in 
equation (46), and using Eq. (46) in Eq. (51) we find 
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From this formula we observe that for a’ satisfying  

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS Stanislaw Sieniutycz, Piotr Kuran

ISSN: 1991-8747 765 Issue 8, Volume 3, August 2008



TTDcc
a

hve k
1=

ρ
1=

τρ
1= 2

00

' .  (55) 

 
and - under the approximation of the linear theory - 
conservation of  total energy is satisfied by the source-
less equation 
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The positive value of a’ in Eq. (55) implies generation 
of the internal energy in the heat transfer process, as 
described by Eq. (46). Still, the internal energy 
equation with the positive source caused by the 
quadratic heat flux is a dubious structure. Nonetheless, 
it is a step forward in comparison with sourceless 
internal energy balance as we may observe that this 
generation awkwardly mimics the entropy production 
with the coefficient a=Ta’=1/k. This finally leads us to 
the conclusion that it is the entropy balance with the 
source j2/k than that should replace Eq. (46) in the 
entropy representation.  

Replacing Eq. (46) with a’ of Eq. (55) by its 
conserved counterpart i.e. total energy balance 
expressed in entropy terms 
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(where ρs is equilibrium entropy density) we expect to 
obtain a pronounced result. After rearranging   
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and using in this result the Cattaneo equation (21) in 
the equivalent form 
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we obtain 
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and hence the second law balance for the entropy of 
extended thermodynamics 
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The total energy is conserved in the linearized form 
(56) or in an exact form 
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A similar scheme of reasoning can be applied in the 
energy representation where the entropy balance is the 
process constraint. 

 

9 Entropy balance as process constraint 
Assume that a variational functional can be constructed 
in the entropy representation for the Kaliski’s equation 
(25) [10]. This assumption means that after 
transforming the variational stationarity condition of an 
action with respect to ψψψψ  
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into the form 
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and using the relation between coefficients cs and c0 
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we obtain Kaliski’s equation of entropy transfer with 
explicit temperature gradient 
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Af ter multiplying Kaliski’s equation (23) by js we 

find 
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Under the assumption of the entropy conservation 
Eq.(65) would yield an equation 
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thus leading to the following energy balance  
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This result implies a non-vanishing source of the 
energy and means that the assumption of the conserved 
entropy would result in the violation of the energy 
conservation law.  

Yet, for the ‘physical’ entropy satisfying the non-
conserved balance 
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with the coefficient a equal to the reciprocal of thermal 
conductivity 
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total energy balance follows from Eqs. (65), (68) and 
(69) in the form 
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which is conservative because the two source terms 
mutually cancel. This is show in Eq. (71) below. Thus 
the energy conservation is preserved whenever the 
coefficient a satisfies Eq. (69). 

Importantly, even when the conservation laws are 
satisfied in irreversible processes in their canonical 
form the related extremum action and potential 
representations of physical variables do explicitly 
contain potentials not only their derivatives.   

We may thus claim that whenever a irreversible 
process occurs with the coefficient a satisfying Eq. 
(69), conservation laws in their canonical form (the 
same as for reversible processes) can be obtained from 
the Noether’s theorem. In particular the energy 
conservation law has the form  
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As the coefficient cs

2=k(Tτ)-1, the above equation is 
equivalent with Eq. (62). In conclusion, the 
mathematical scheme obtained preserves the 
conservation of energy and simultaneous production of 
the entropy, in accordance with laws of 

thermodynamics.  
 

10 Conclusions 
The most important physical properties resulting from 
the obtained generalization are: a finite momentum of 
heat and the non-classical terms in the stress tensor 
caused by the heat flux. And with all this one still has 
both the first and the second law satisfied. Here the 
product of temperature T and positive entropy source of 
Eq. (68) (quadratic in js) emerges as the kinetic energy of 
heat in the energy balance (70) or (71). While this result 
is simple, its role is nontrivial for the existence of the 
variational formulation. Let us recall that in the 
variational dynamics of real fluids it is always extremely 
difficult to simultaneously satisfy both laws of 
thermodynamics (classical Hamilton's principle holds 
only for reversible processes i.e. those without entropy 
production). The optimizing approach overcomes 
familiar difficulties resulting from the presence of both 
odd and even derivatives with respect to time in the 
differential equations of heat, and, consequently, sets a 
variational formulation for the irreversible heat 
conduction.  

Extremum conditions, Eqs. (33) and (34), show that 
for given q and ρe heat transfer can be broken down to 
potentials. This is similar to the case of electromagnetic 
field theory or gravitation theory, where the knowledge 
of sources defines the field potentials. An important case 
is a “ ballistic” transfer with τ ∞→ , when undamped 
thermal waves propagate with speed c0 and satisfy 
d'Alembert's equation. As shown by Eq. (45) the results 
are consistent with the second law in an identically 
satisfied form; this holds in both classical irreversible 
theory (CIT) and extended irreversible thermodynamics 
(EIT; [3]). 

Associated approaches with Lagrange multipliers and 
Dirac brackets are available [11,12,13]. It is interesting 
that not only variational calculus but also other 
optimization methods may also be fruitful in the context 
of problems considered here, such as, e.g., simulated 
annealing [14] and dynamic programming [15, 16].    
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