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Abstract: - Nonequilibrium statistical mechanics helps to estimate corrections to the entropy and energy of the fl
with heat flux in terms of the nonequilibrium distribution functibriThis leads to the coefficients of wave model of
heat: relaxation time, propagation speed and thermal inertia. With these data a quadratic Lagrangian and a variat
principle of Hamilton’s type follows for the fluid in the field representation of fluid’s motion. We analyze canonical
conservation laws and show the satisfaction of the second law under the constraint of these conservation laws.
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1 Introduction rather than mathematical criteria. An analysis shows that

Extended thermodynamics of fluids can be applied to seth® approach is particularly useful in the field (Eulerian)
variational principles for the irreversible energy transfer. description of transport phenomena, where equations of
Significant help can be obtained from nonequilibrium thermal field _fo_IIow from variational prlnC|p_Ie_s based on
statistical theories when evaluating kinetic or flux- the state adjoints rather than on the original physical
dependent terms in energies and macroscopiariables. Exemplifying process is hyperbolic heat
Lagrangians. Especially, we can treat statistical aspectdansfer, but the approach can also be applied to coupled
of nonequilibrium fluids with heat flow by applying an par_abollc tran_sfer of heat, mass_and electric char_ge. With
analysis that uses Grad's results [1] to determinevarious gradient or non-gradient representations of
nonequilibrium correctionas or Ae to the energg or ~ Physical fields in terms of state adjoints useful action-
entropy s in terms of the nonequilibrium density type criteria emerge. Symmetry principles are effective,
distribution function f To find the required corrections &nd components of the formal energy-momentum tensor
to the energye and kinetic potentialL we exploit ~¢@n be found. Focusing on heat flow, our work
correctionsAs and a relationship that links energy and represents, in fact, an approach that S.hOWS the advantage
entropy representations of thermodynamics. We mayf f approaches borrowed from the optimal control theory

also evaluate coefficients of wave model of heat. sucH" the variational setting of irreversible transport. The
as: relaxation time, propagation speed and tr']erm;‘imiting reversible process provides a suitable reference

o : rame for more involved irreversible evolutions.
inertia factors, g and. With these data we can formulate

a variational principle of Hamilton’s or least action type .
for fluids with heat flux in the field or Eulerian 2 Optimization Type Approach

representation of fluid motion. Statistical theories are wuseful [1] to evaluate
To find a variational formulation we apply here an nonequibrium corrections to the energy and other
approach that adjoints a given set of constraints to dhermodynamic potentials in situations when a
kinetic potentialL and transfers the original variational continuum is inhomogeneous because of the presence of
formulation to the space of the Lagrange mu|tip|iersirreversible fluxes. To illustrate benefits resulting from
(also called state adjoints). Considering limiting honequilibrium statistical thermodynamics, heat transfer
reversible process we evaluate canonical components df locally non-equilibrium fluids is analyzed [2]. Quite
energy-momentum tensor and associated Conservatioﬂssential therein is the connection between various
laws. The approach works efficiently; it leads to exact'epresentations of thermodynamics and a relationship
imbedding of constraints in the potential space of(resembling the Gouy-Stodola law) that links energy and
Lagrange multipliers, implying that the appropriatenessentropy pictures. With this relationship nonequilibrium
of the constraining set should be verified by physica|corrections to the energy can be found from those known
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for the entropy. These energy corrections can next be For a given nonequilibrium state at a point A in
used to find a suitable kinetic potentials L. Fig.1, two equilibrium reference states, at points B and
The present approach is optimization-type; it differs C, say, correspond, respectively, to the energy and
from the conventional variational ones in that the actionentropy representation. A researcher knowing entsopy
functional is systematically constructed rather than (e. g., from distribution functiof corresponding to A)
assumed from the beginning. Equations of constraintsformulates his description of state A in terms of
(reversible or not) follow in the form of their equilibrium parameters at B, for a set of variables, here
counterparts in the space of Lagrange multipliers; theythe entropy fluxjs. Yet, one who knows energycan
are extremum conditions for the action based on abase his view on the heat flqxand equilibrium at C.
composite (constraint involving) Lagrangiaf or its When point A moves the equilibrium states (B and C)
gauge counterpart. As long as the representations o¥ary. The conventional picture of motion in terms of
physical variables are explicit in terms of Lagrange Hamilton's principle corresponds to following the
multipliers, the whole variational formalism can be behavior of B and the kinetic energy of entropy flux,
transferred to the adjoint space of multipliers, i.e. awhereas the kinetic theory view corresponds to tracking
variational principle can be formulated in the adjoint of C and the deviation of entropy from equilibrium. The
space. The Lagrangian can also be used to obtain thtransition from one view to the other is possile
matter tensor and associated conservation laws. It is important to realize that for a single
Finally we show that the use of the canonical nonequilibrium state the use of the entropy
conservation laws constructed for the reversible processepresentation and energy representation establishes two
and variational extremum conditions assures thedifferent equilibrium states located on the Gibbs surface.
satisfaction of the second law of thermodynamics, theThis, of course, is because of the difference in what is
property that renders the variational theory considered aheld constant. The distance between two discussed

candidate to be the physical one. equilibrium states (B and C) increases with the distance
of the state A from the Gibbs surface. This distance can
3 Energy and Entropy Representations also be measured in terms of the modulus of thejflux

Now our task is to recall some basic knowledge on theOr in terms of the differenceAe = AB or As = AC.
thermodynamics of heat flow without local equilibrium. When the curvature of the Gibb's surface can be
This will help us to construct Lagrangians, variational n€glected, —corresponding to the near-equilibrium
principles and conservation laws. We work in the situation, the two dl_sequmbrlum excesses are linked by
framework of extended thermodynamics of fluids [3] &n equality resembling the Gouy-Stodola law
and restrict to incompressible, one-component fluid with
heat flow. (& &g)s, =~ T(S5~Seg)e,p @)
Consider a nonequilibrium state, sAyoff but near
the Gibbs surface, when the local equilibrium This formula states that the energy released during
assumption is inapplicable, Fig. 1. The energy at thethe isoentropic relaxation equals the product of the
state A is the nonequilibrium internal energy. This absolute temperature and the entropy deficiency in the
internal energy depends not only on the usual statesystem caused by the presence of the heatdfloxthe
variables, but also on some nonequilibrium variablesentropy flux, §.
such as heat flux or diffusive entropy flux. Here we
select the heat fluxg, as the nonequilibrium variable of
choice. It is treated as an internal variable which may
relax to an equilibrium. Nonequilibrium energy density
of a continuumpe, or its specific energg, is a function
of density p, specific entropys and diffusive entropy
flux js or heat fluxq. For a continuum as a stable A -7 escsnpiart C
macrosystem, its equilibrium internal energy dengif§ '
is the minimum ofpe with respect to unconstrainegdagr
g, & constantp ands. As p = v*, the reciprocal of
speific volume, the minimum ofoe (or e itself) with
respect tgs or q occurs at the constant entropyand
volumev which are proper variables at which the energy
attains minimum at equilibrium. This is in agreement
with basic thermodynamics [4]. Singg or q are a
diffusive fluxes, the minimum occurs far$ 0 or g=0.

energy

p=constant Gibba equilibriumn
q= constant # surface
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Fig. 1. Diverse reference equilibrium states (B, D, C, etc.) forwould correspond to the minimum energy. The second
a given nonequilibrium state A. order correction to the entropy density (in entropy
representation) is

4 Nonequilibrium Corrections to Energy @ 1 a2

ps” =pAs=-— kB'[ f*Ip; dc (7)
and Entropy 2

It is essential that the entropy representation is assumeklence, in view of the relation betwedke and As

in the Grad’s formalism of the kinetic theory [1]. Hence implied by Fig. 1 or Eq. (1)

the specific energy of an ideal gas or fluid with heat at 1 A eqn2

the point A is equal to the specific energy at equilibrium Ae= _EkBTp J. ¢ dc (8)

Cin Fig. 1. The reference temperatures and pressuré§ince the state A is close to the equilibrium surface, the

that appear in the expressions of kinetic theory are T(Chjiplicative coefficients involving usual thermostatic

and P(C). From the formalism one finds disequilibrium \ 4riaples  can always be evaluated at arbitrary

correctionsAs or Ae in terms of the non-equilibrium  eqilibrium points (B or C in Fig. 1). However, in Egs.

density distribution functior. Here we recapitulate the (1) (9) and (10), they are evaluated (in the kinetic

results of several different works [3]-[6] all using Grad's theory) for the case of the isoenergetic equilibrium

[1] solution of the Boltzmann equation in macroscopic (point C, Fig. 1). The functio;, obtained in Grad's

predictions for dilute gas of rigid spheres. method when the system's disequilibrium is maintained
The molecular velocity distribution functiof),out of by a heat flux q is

equilibrium but close to it is given as 2 1 5
@ :E( i P TZ)(E nC? 3 kgT)Cq 9)

F(C)=H(C)a+4y) @) where m is the mass of a molecule ([1], [3]). From Eqgs.
(7), (8) and (9) one obtains for the entropy deviation

where f*%is the local equilibrium (Maxwell-Boltzmann) 1 e s

distribution pertaining to the entropy representation As= —g(m/pPkBT )a (10)

equilibrium (point C, Fig. 1).f andf* are scalars, but i .

fundtions of the peculiar veloGitE = ¢ - u. andd, is a iind for the energy deviation, Eq. (1), with entropy flux
. o A . =qT

function of the deviation from equilibrium. This 1 1

deviation is expressed in terms of the gradT in the Aezg(mz/ksp’fl)ji =§p_zgj§ (11)

Chapman-Enskog method and in terms of the heatyflux .
in the Grad's method. Using Eqg. (2) in the entropyEquatlons (10) and (11) hold to the accuracy of 'the
definition, one integrates the expressftnf over all of ~ thirteenth moment of the velocity [1]. When passing

the space of the molecular velocity c from Eq. (10) to (11) state equation RieTm™ is used
ard a constang is defined as
ps ==Ky [ fIn fdc 3) gz 2mTp _ 2m’ (12)
5Pky  5k2

Praceeding with development pf up to second order in Here we abandoned the entropy representation. Pressure
one obtains p. =, +,9 +,@ _with the local . . py rep o
@ Ps=Ps TPs TPs e in Egs. (9) and (12) is that of an ideal gas, given by the

equilibrium entropy definition used in the kinetic theory (Grad 1958 [1]). Eq.
(11) with constantg defined by Eq. (12) is the
pat = _kB.[ f%In f*dc (4)  characteristic feature of the ideal monoatomic gas (dilute

Boltzmann gas composed of hard spheres). For arbitrary
fluids (polyatomic gases, dense monoatomic gases and
" . . liquids) one can retain the form of the last expression in
ps = —kaj f %, In f*dc=0 (5)  Eq. (11) by using a general formula for by noting that

9(p,9) = P&(0°/0j%)cq (13)

Again, this proves that one deals with the entropy|, ihe ideal gas case the derivativé’e/dj2=

representation where the entropy is maximum at 2 _ .
equilibrium. A counterpart of the above equation in the(Z/S)(mZ/kB o) from Eq (11) and the deflnl'_uon (12.) IS
energy representation recovered form definition (13). quation (13) is consistent

with a hypothesis about the equality of the kinetic and
W e 0. static nonequilibrium energy corrections in a thermal
Pe “j g, mcdc =0, (6)  shock-wave front [5]. The hypothesis can be used to
compute §’e/6j)° for arbitrary fluids asT/(oc,G) and

ard the nonequilibrium correction
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henceg as To/(c,G), where G is the shear modulus. a T 12

Equilibrium values of thermodynamic parameters can be co = (2)M? =(—j . a7)
applied in such expressions. For an ideal gas the shear r €9

modulus is just the pressuke (the result of Maxwell) Substituting to this formula the ideal gas data,g.ef

and ¢ = 5ks/(2m). These results allow one to recover Eq. (12) andc, = 5ks/(2m), yields propagation speed in
definition (12) from the expressiog = To/(c,G); they the ideal gas

support the hypothesis mentioned above. Yet, for the 12 12
purpose of general considerations the use of the implicit C :(Lj :(Mj (18)
dependence of] on the basic variables,(s) is often %9 m

enough, i. e., functiog(p, s) will be used when passing
to arbitrary fluids. Some entropy flux adjoints,andis, (thermal speed). Thus the results of nonequilibrium
are useful. They are defined, respectively, by equations statistical mechanics help to estimate coefficients of the
heat transfer model. Datamdndc, are used below in a
a5 (S,p,)s) =00ES, 0,)s) s 105 = a2 (14) variational principle for heat transfer. One more
and coefficient that is quite useful in the wave theory of heat
is that describing a thermal mass per unit of entropy
, N T _
i(5,p,05)= @75 = gv, = gs(u, - u) (15) A 19)
The entropy diffusion velocitys = us - U = j/ps appears
in Eq. (15). One may also introduce the produygsk [6]. For anideal gas, Eq. (18) yielésas
which has the dimension of mass. For the ideal gas this
product yieldsm, = 2/5(’skg?), a measure of heat 6= mig* (20)
inertia.

In the model of a constany, nonequilibrium
temperaturd(B) is equal to the equilibrium temperature
T(p, ) which is both the measure of mean kinetic energy Lo .
of an equilibrium and the derivative of energy with S A_ppr(_)aCheS A_J oining Constraints to a
respect to the entropy. This equality emerges because, Kinetic Potential
above, we have chosen the entropy flyxnot the heat For a heat conduction described in an Eulerian frame by
flux g, as the nonequilibrium variable in enemyf one  the Cattaneo equation and conservation law for the
differentiates the nonequilibrium entrogywith respect internal energy, the constraints are
to the energy holding constant, then a quantitfC) of
Jouet al ([3]) follows, which differs from the reciprocal 0_q+i+Dp -0 (21)
of the related temperatuiig, by a term quadratic iq. ot cir ¢
In general, "nonequilibrium temperatures" (understood 5y
as the fifth moment of the nonequilibrium density P
functions) are not the measures of mean kinetic energy. —>+0g=0, (22)

. . e ot
The knowledge of inertial coefficients, such @s : -
from statistical considerations helps to calculate twoWhere the density of the thermal enepgysatisfies g,

basic quantities in the model of heat transfer with finite = #dT, CoiS propagation speed for the thermal wawe,

wave speed. They are: thermal relaxation tmad and 'S thermal relaxation time, anbi=c,’7 is the thermal

the propagation speed, ©f several formulae available diffusivity. Equation (22) assumes the conservation of
that link 7andg, probably the following expression ther_mal_energy (r|g_|d ”!e.d'“m and neglect of the viscous
dissipation). For simplicity we assume constant values

of involved fields at the boundary. We ignore the

We can now set a variational model of the heat problem.

— -1
z=kg(pT) (16)  vorticity properties of the heat flux.
The energy-representation of the Cattaneo equation,
is most useful ([6], p. 199). It links thermal relaxation e . s
time 7 with thermal conductivityk, inertiag and state ot T TOTE0 (23)
S S

parameters of the system. As, by definition, the
propagation speed of the thermal waye(@ 1", where

a=k /(ocp) is thermal diffusivity, the quantity,enay be i 12
determined from the useful formula cs=(p,07) (24)

uses diffusive entropy fluxs instead of heat flug. The
coefficient ¢ is defined as

ISSN: 1991-8747 762 Issue 8, Volume 3, August 2008



WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS

where 6Tc;?,
Equation (23)

and thermal diffusivity k = pg,c2r .

is Kaliski's equation [6]. For an

incompressible medium one may apply this equation in

the form

0js Js
+=5S_+[]
cot oot ps=
which uses the entropy densit as a field variable.
Yet, we focus here on the action and extremum

(25)

conditions in the entropy representation (Egs. (21) and

(22) in variableqy andp.). For Egs. (23) - (25) another
approach will be developed in a complementary paper.
Action approaches should be distinguished from
entropy-production approaches [6], [7]. Here an action

is assumed that absorbs constraints (21) and (22) by

Lagrange muItipIiers the vectgrand the scalap

A jg-l{;g LR

2q§ 2" 2 (26)

<§at - +00) + A2 %. , Oq)ldvd:

As kinetic potentials can be diverse, the conservation

Stanislaw Sieniutycz, Piotr Kuran

oy
ot

N4 2

q= —7+COD¢ (28)

ard

9¢

. (29)

Pe =Dy -

These equations enable one to transfer variational
formulation to the space of Lagrange multipliers.

For the accepted structure bf the action A, Eg.
(26), in terms of the adjoingsand gis

A=jv { 2(5[ +(~OD¢)Z [m +a¢’] 152}dth

(30)
Its Euler equations with respectpaandgare

s i o @

laws for energy and momentum substantiate the form and

(26). In Eq. (26),¢ is the energy density at an

equilibrium reference state, the constant which ensures

action dimension foA, but otherwise is unimportant.
Yet we assume that the actual energy depsis/close
to & so that the variabl@. can be identified with the
constante in suitable approximations.

We call the multiplier-free term of the integrand of
Eq. (26)

'1{ -¢&% (27)

the kinetic potential of Hamllton type for heat transfer.
It is based on the quadratic form of an indefinite sign,
and it has usual units of the energy density. Not far
from equilibrium, wherep, is close tog, two static
terms of L yield altogether the density of thermal
energy, p.. Indeed, in view of admissibility of the
approximation o, =¢ in Eqgs. (27), the kinetic potential

—;(D.\w?f] +|](‘2’ —% +(‘02D¢] =0 (32)

It is easy to see that (31) and (32) are the original
equations of the thermal field, egs. (21) and (22), in
terms of potentials and @ Their equivalent form
below shows the damped wave nature of the transfer
process. In fact, Lagrange multiplieds and ¢ of this
problem satisfy certain inhomogeneous wave equations.
In terms of the modified quantitidd and @ satisfying

Y =yrcZand® = - grc; these equations are
2
DZ‘I'—az—‘I’+a—lf=q. (33)
Qo Ot?  1yot
0’0 0P
0%® -—— +—— = p,. 34

(27) represents - in the framework of the linear heat As both state variables|(0.) and adjointsy, ¢) appear

theory - the Hamiltonian structure of a difference
between “kinetic energy of heat’, and the
nonequilibrium internal energyp.. To secure proper
conservation laws, no better form bfwas found in the
entropy representation. The theory obtained in the
present case is a linear one.

Vanishing variations of actiolA with respect to
multipliers ¢ and @ recover constraints, whereas those
with respect to state variableg and g Yyield
representations of state variables in terms yofand
@. For the accepted Hamilton-like structureLof

ISSN: 1991-8747 763

herein, they represent mixed formulations of the theory.

6 Canonical Conservation Laws
The energy-momentum tensor is defined as

M

oy’

Gk =

(35)

whered is the Kronecker delta and= (x, t) comprises
the spatial coordinates and time. Our approach here
follows those in [8] and [9], where components df G
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are calculated for a reversibtewhose gauged form is 0S, q q2 _ q2 -
obtained from the reversible limit of Eq. (26)yat0 by ot + D-(?) = s =T =45, (45)
use of the divergence theorem and the differentiation by
parts. In our problem wherea = k™ is the thermal resistance. It should be kept
in mind that the density5, appearing in the above
21,00, 1 , 1, equations is not identical with the density of classical
N=¢ {E(g) "E(COD@ ¢ } (36) equilibrium entropyp.. As shown by Eg. (61) in Sec.8,

S, is rather the density of the nonequilibrium entropy
which contains the heat flux as an extra variable and

Below the results for tensdd = G* are discussed in : : _ :
physical variables. The momentum density of heat is appears in extended irreversible thermodynamics (EIT;
[3]).

rv=-6"= g o 0% (37) ;

— 2
SV_pS_ZATZq

Clearly,I” vanishes in the Fourier's casg {c).
The stress tensdf” has the form
s 8 Sources of internal energy and
af — _ -1 _ .
TP = g da" - "N (38) conservation laws
o _ _ However, while simple and useful, the method of
whence (after substituting the stationary Lagrangian)  construction of a suitable actioA in the space of
T = _ A2l — 5Pyl 2 Loz 1.2 39 potenfuals by the dl_rect_ substltut_lor_l of_ th_e representation
¢ d'a £ {Zpe 9% 28} (39) equations to the kinetic potentihlis limited to cases
The energy density follows as the Legendre transformwith linear constraints that do not contain sources. This

of the Lagrangian with respect to rate change @f may be exemplified when the internal energy balance
s o1 1 5 1, 1 40 contains a source terr@q®, wherea is a positive
FeGTEe {E?ngEpe +55}Dgg+pe( ) constant. The augmented action integral, generalizing
Eq. (26), should now contain the negative terag? in
Finally, density of energy flux follows as Its gterm. )
-0q = %0 -a'q? (46)
GY¥ =Qf =¢7p,0” 0g” . (41) ot

The associated conservation laws for the energy and
momentum show the role of thermal inertia effects

1 4 _ —
o e 5% + pe) /0t = —D.(g 1,oeq) (42)

qu{e‘l(—cazq"qﬂ +o% (%qzcaz—%p§+%€2))} - (43)

The energy representation (29) is unchanged, but the
heat flux representation follows in a generalized form

, 4,0
q=(1-2a'¢c?) 1(6—‘1’—¥+cém¢) (47)

These are canonical conservation laws which are Substituting Egs. (29) and (47) into actiénof Eq. (26)
obtained on the reversible paths. Now the important (L Of EQ. (27)) shows that in terms of the potentials the
question is if these laws can be recovered for &ction acquires the form
irreversible processes in which the entropy is produced

and the Second Law holds. Av Ts_l{l - 2a’cpc§)‘2(a"'—"'+cozmcp)2 }dth
£ ch o 1

7 Satisfaction of Second Law o 2

Calculating the four-divergence of the entropy flow - Ig_l E(D.\y +0_(pj +152 dvdt. (48)

(0,8/0t) and using the global conservation law for the " o) 2

total energy E we obtain the entropy balance
GSV+D¢):q{DT-1_16q]_ a [_NIT_qu) . (49 However the EuIer-Lagrange_ eqL_Jations for this act'ion
ot €T ot are not the process constraints in terms of potentials,
i.e. the method fails to provide a correct variational
Applying Cattaneo equation we arrive at the second law formulation for constraints with sources. The way to
improve the situation is to substitute the obtained
representations to a transformed augmented action in

k72!
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which the only terms rejected are total time or space Somewhat surprisingly, it follows that a source term
derivatives. The latter can be selected via partial in the internal energy balance, as in Eq. (46), should be
differentiation within the integrand of the original the necessary property of the Cattaneo model, else the
action A. (As we know from the theory of the e€nergy conservation will be violated. Indeed, aimed at
functional extrema the addition of subtraction of terms the evaluation of energy conservation we multiply the
with total derivatives and divergences do not change Non-truncated Cattaneo formula

extremum properties of a functional.) When this

procedure is applied to the considered problem and 2—q+%+ﬂpe:0 (21)
total derivatives are rejected, a correct action follows in ot Gy
the form _ _
by heat fluxg. The result is an equation
v L)1 dy v 2
— ) Lo 52y O Y 2 2 2
A JE {mga zaab)[at T+C°Ddiwvm 42%—F£EDQ+D({th:—(t (51)
v 2£C06t & &yl

t 2
foa]l 0o 1,
B J's {E Dy +E +Es dvdt (49) which describes an energy balance We observe that the
combination of this balance with the sourcelessnce
of internal energy

til‘V

This form differs from that of Eqg. (34) only by the
power of the coefficient containing the constat 00, B
related to the source. With the related representation ?+Dq =0, (22)
equations (29) and (47), action (49) yields the proper
Cattaneo constraint (21) and the generalized balance of|e5(s to a differential result
internal energy which extends equation (22) by the
source terna’ g’ o . p.op, B q
Equation (49) proves that four-dimensional potential @J“?EJG'@ ae.) v
space @, ¢ is sufficient to accommodate an exact
variational formulation for the problem with a source. which — under the linear approximations of the present
Yet, due to the presence of this source, the formulation theory — yields not a conservation law for the total
does not exist in the original four-dimensional original energy, but a balance formula with an energy source
space ¢, o), and, if somebody insists to exploit this
space plus possibly a necessary part of the potential a( g2
ot

2

(52)

space, the following action is obtained from Egs. (29),
(47) and (49)

t
A= js—l{(l_ 2a‘qx:§)q—22—1p§o +182}dth (50) This shows violation of the total energy conservation
2c; 2 2 for the source-less internal energy of the model, and
leads to the conclusion that the model composed of the
Cattaneo equation and source-less balance of internal
energy is physically admissible only in the reversible
case of an infiniter. Certainly, this is nhot a demanded

2

&t

2
2 +pe)+[j-(€_lqpe) =- da ) (53)
2ec)

A%

This form of A shows that, when original state space
is involved, the state space required to accommodate

the variational principle must be enlarged by inclusion

. , property of the energy transfer model, thus a further
of the Lagrange multiplieyp as an extra variable. I 5,5\ js is required. The solution of the dilemma seems
fact, Eq. (50) proves that original state space (“physical {q aqmit a properly large, yet a non-vanishing, source
space”) is lacking sufficient symmetry (Vainberg's ij the internal energy balance.
theorem [6]). Yet, as Eq. (50) shows, the adjoint space  aAdmitting a source of the internal energy, as in
of potentials @, ¢, while also four-dimensional as  equation (46), and using Eq. (46) in Eq. (51) we find
space ¢, p-, can accommodate the variational
formulation. Why is this so0? Because the ag®
representation equations do adjust themselves to the 2ec’0t
extremum requirement oA at given constraints,
whereas the given constraints without controls cannot From this formula we observe that frsatisfying
exhibit any flexibility.

2

+&%—&a‘q2 +0(e7gp,) =~ qz .
£ o ¢

0

(54)
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1 1 1
a= = = T (55) The total energy i d i ineari
2 gy is conserved in the linearized form
PeoCoT PG DT KT (56) or in an exact form

ard - under the approximation of the linear theory - .2

conservation of total energy is satisfied by the source- ﬂ T +p. [+0.(Tj) =0 (62)
. e * S

less equation ot| 2k

a(qszpGJJrD.(g-lqpe):O (56) A similar scheme (_)f reasoning can be applied in_ the
ot| 2ec? energy representation where the entropy balance is the
process constraint.

The positive value o0& in Eqg. (55) implies generation )
of the internal energy in the heat transfer process, as9 EnNtropy balance as process constraint
described by Eq. (46). Still, the internal energy Assume that a variational functional can be constructed
equation with the positive source caused by the in the entropy representation for the Kaliski's equation
guadratic heat flux is a dubious structure. Nonetheless, (25) [10]. This assumption means that after
it is a step forward in comparison with sourceless transforming the variational stationarity condition of an
internal energy balance as we may observe that this action with respect tg
generation awkwardly mimics the entropy production
with the coefficiena=Ta=1/k. This finally leads us to s . s o, =0 (25)
the conclusion that it is the entropy balance with the 2ot cir Ps =
sourcej?/k than that should replace Eq. (46) in the
ertropy representation.

Replacing Eq. (46) witha’ of Eqg. (55) by its
conserved counterpart i.e. total energy balance

into the form

. 5 . )
expressed in entropy terms 215 + 125 =—pg T7OT (63)
ot ¢yt
0ps _
T ot g 7 and using the relation between coefficieaigndc,
(whereps is equilibrium entropy density) we expect to (f = cﬁ(pch _1) (64)

obtain a pronounced result. After rearranging
3 we obtain Kaliski's equation of entropy transfer with
Ps _ _D_(ﬂ) +qOT (58) explicit temperature gradient
ot T _ _
Os . Is
cZot cZt

and using in this result the Cattaneo equation (21) in +UT =0 (23)

the equivalent form

After multiplying Kaliski's equation (23) bjs we

ST, -9 (59) find
AT?2 ot AT?
. 0j¢ 8
we obtain > zat+D.(I'JS)—TD.JS:— > (65)
%:—D(ﬂﬁq( r a_q+ij (60) Cs CsT
ot T TaT? ot AT?

Under the assumption of the entropy conservation

and hence the second law balance for the entropy of Eq.(65) would yield an equation
extended thermodynamics -

0P _ _ s
ot c’r

S

0j2
q2 - 2c2ot
AT?

(T ) +T

; (66)
_ ——T 2 +[J T_l =
at(ps MTij (qT™)

thus leading to the following energy balance
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a  j2 _ 2 thermodynamics.
5t Gz TPe) +0(Tg) == - (67)
2Cs CsT 10 Conclusions

The most important physical properties resulting from
This result |mp||es a non-vanishing source of the the obtained generalization are: a finite momentum of

energy and means that the assumption of the conserved€at and the non-classical terms in the stress tensor
entropy would result in the violation of the energy caused by the heat flux. And with all this one still has

conservation law. both the first and the second law satisfied. Here the
Yet, for the ‘physical’ entropy satisfying the non- Product of temperatur& and positive entropy source of
conserved balance Eq. (68) (quadratic ify) emerges as the kinetic energy of

hea in the energy balance (70) or (71). While this result

ap is simple, its role is nontrivial for the existence of the
-Ojs=—72- ajg (68) variational formulation. Let us recall that in the
0 variational dynamics of real fluids it is always extremely

. o . difficult to simultaneously satisfy both laws of
with the coefficient equal to the reciprocal of thermal  thermodynamics (classical Hamilton's principle holds
conductivity only for reversible processes i.e. those without entropy
production). The optimizing approach overcomes
familiar difficulties resulting from the presence of both
odd and even derivatives with respect to time in the
differential equations of heat, and, consequently, sets a
variational formulation for the irreversible heat
total energy balance follows from Egs. (65), (68) and conduction.

(69) in the form Extremum conditions, Egs. (33) and (34), show that
for givenq and p. heat transfer can be broken down to

1

a=
Tct

_1
= (69)

0 jg P jg potentials. This is similar to the case of electromagnetic
E 2c2 +Pe) + U (Tjs) ~Tas = _czr (70) field theory or gravitation theory, where the knowledge
S S

of sources defines the field potentials. An important case
is a “ballistic’ transfer witht - «», when undamped
thermal waves propagate with speegl and satisfy
d'Alembert's equation. As shown by Eq. (45) the results
are consistent with the second law in an identically

which is conservative because the two source terms
mutually cancel. This is show in Eq. (71) below. Thus
the energy conservation is preserved whenever the

coefficient asatisfies Eq. (69). . satisfied form; this holds in both classical irreversible
I_m_p ortgntl_y, even when the cons_ervatu_)n laws are theory (CIT) and extended irreversible thermodynamics

satisfied in irreversible processes in their canonical EIT; [3]).

form the related extremum action and potential * aggociated approaches with Lagrange multipliers and

representations of physical variables do explicitly pjrac brackets are available [11,12,13]. It is interesting

contain potentials not only their derivatives. that not only variational calculus but also other
We may thus claim that whenever a irreversible optimization methods may also be fruitful in the context

process occurs with the coefficieat satisfying Eq. of problems considered here, such as, e.g., simulated

(69), conservation_laws in their canonical for_m (the annealing [14] and dynamic programming [15, 16].
same as for reversible processes) can be obtained from

the Noether's theorem. In particular the energy Acknowledgements
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12
a(J—sﬂLpeJJfD-(rjs):O- (71)

2
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