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Abstract: - Creep stresses and strain rates for a transversely isotropic and isotropic materials have been obtained for 
a thin rotating disc using Seth’s transition theory. Results obtained have been discussed numerically and depicted 
graphically. It is seen that a disc made of transversely isotropic material rotating with higher angular speed 
increases the possibility of fracture at the bore as compared to a disc made of isotropic material and possibility of 
fracture further decreases with the increase in measure N. The deformation is significant for transversely isotropic 
disc for the measure N =7.  
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Nomenclature of Symbols: 
a and b               : Internal and external radii of disc 
D  : a constant 
R  : Radial distance 

zyx ,,   : Cartesian co-ordinates 
u, v, w : Displacement components 

zr ,,θ   : Polar co-ordinates 

ije  and  : Strain and stress tensor ijT

iie   : First strain invariant 
β   : Function of r only 
P  : Function of β  only 

ijC   : Material constants 
μλ and  : Lame’s constants 

)/(),/( 0 baRbrR ==  

66/ CTrrr =σ - Radial stress components 

66/ CTθθθσ = -Circumferential stress components 
 

 
1.  Introduction 
This paper is concerned with the analysis of a 
transversely isotropic thin rotating disk. There are 
many applications of such type of rotating disks, such 
as in turbines, rotors and with the advent of 
computers, disk drives. Naturally, with all these 
applications and interest, there has been much 

research in this field. The analytical procedures 
presently available are restricted to problems with 
simplest configurations. The use of rotating disk in 
machinery and structural applications has generated 
considerable interest in many problems in domain of 
solid mechanics. Solutions for thin isotropic disks can 
be found in most of standard creep text books [1-4]. 
Han [5] has investigated elastic and plastic stresses for 
isotropic materials with variable thickness. Wang [6] 
has investigated deformation of elastic half rings. 
Enescu[7] give some numerical methods for 
determining stresses in rolling bearings while 
Mahri[8] calculated the stresses by using finite 
element method for wind turbine rotors. Wahl [9] has 
investigated creep deformation in rotating disks 
assuming small deformation, incompressibility 
condition, Tresca’s yield criterion, its associated flow 
rule and a power strain law. Transition theory [10-11] 
does not require any assumptions like a yield 
criterion, incompressibility condition and thus poses 
and solves a more general problem from which cases 
pertaining to above assumption can be worked out. 
Transition theory uses the concept of generalized 
principal strain measure which simplifies the 
constitutive equations by prescribing a priori the order 
of the measure of deformation and helps to achieve 
better agreement between the theoretical and 
experimental results. It has been shown that for the 
uni-axial case a generalized measure, which includes 
all the known measures of Cauchy, Green, Almansi, 
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Hencky and others, is given by [12]. The generalized 
principal strain measure [12] is defined as 
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where  is the measure and  is the principal 
Almansi finite strain components [13]. This theory is 
applied to a large number of elastic-plastic and creep 
problems [14-20]. In this paper an attempt has been 
made to study the behaviour of transversely isotropic 
thin rotating disc using transition theory [10-11]. 
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2.  Governing Equations 
We consider a thin disc of constant density made of 
transversely isotropic material with internal and 
external radii ‘a’ and ‘b’ respectively. The disc is 
rotating with angular velocity ‘ ω ’ about an axis 
perpendicular to its plane and passing through the 
centre of the disc. The disc is thin and is effectively in 
a state of plane stress. 
The displacement components in cylindrical polar co-
ordinates are given [13] by, 

,,0),1( dzwvru ==−= β                  (2) 

where β  is a function of 22 yxr +=  only and 
is a constant. d

The finite components of strain [13] are 
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where drd /ββ =′  
Substituting (3) in (1), the generalized components of 
strain are  
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The stress-strain relations for transversely isotropic 
material are  
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where  are material constants. ijC
Using equation (4) in equation (5) we have 
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where ( )33
2

1311 / CCCA −= . 
The equations of equilibrium are all satisfied except 

0)( 22 =+− rTrT
dr
d

rr ρωθθ    (7)                       

where ρ  is the density of the material. 
Using equation (6) in equation (7), we get a non-linear 
differential equation in β  as, 
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where   . Pr ββ ='

The transition points of β  in equation (8) 
are ∞±→−→  1 PandP . 
The boundary conditions are   

0=rrT   at  ar =  and    (9) br =
 
 
3. Solution through Principal Stress 

Difference 
It has been shown that the asymptotic solution through 
the principal stress difference [13-14, 16, 18-19] at the 
transition point 1−→P leads to creep state. The 
transition function R is defined as  

])1(1[
2 66 nn

rr P
n
C

TTR +−=−= βθθ                (10)  

Taking logarithmic differentiation of above equation, 
we have   

WSEAS TRANSACTIONS on 
APPLIED and THEORETICAL MECHANICS SANJEEV SHARMA, MANOJ SAHNI

ISSN: 1991-8747 726 Issue 7, Volume 3, July 2008



( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−

+−
= −+

β
β

ββ

d
dPPP

PPP

Rr
CR

dr
d

nn

nnn

11
66

)1(

)1(
2log      (11) 

Substituting the value of βddP /  from equation (8) 
in equation (11) and taking asymptotic 
value , we get  1−→P
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where  ACC 662 2=   
Asymptotic value of β  as  is  being 
a constant. 
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Integrating with respect to r, we have 
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where  is constant of integration. 2A
Using boundary conditions (9) in equation (14), we 
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Substituting values of  and  in equation (14), we 
get 
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From equation (15) and equation (10), we get  
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Now we introduce the following non-dimensional 
quantities 
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For an isotropic material, equation (17) and (18) 
becomes 
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For a disc made of incompressible material, i.e.    (C 
0), the stresses given by equations (19) and (20), 

we get 
→
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These equations are same as obtained by Gupta et.al 
[16].     
 
 
4.  Strain Rates 
The stress-strain relation can be written as, 
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When the creep sets in, strain should be replaced by 
strain rates. The stress-strain relation (23) becomes  
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where  is the strain rate tensor with respect to flow 
parameter t. 
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Differentiating second equation of (4) with respect to 
t, we get 
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For isotropic material, equations (28), (29) and (30) 
becomes  
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These equations are same as obtained by Odquist [2] 
provided we put Nn /1= ,  
For incompressible materials, i.e. , equations 
(31), (32), (33) becomes  
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Numerical Illustration and Discussion 
For calculating the stresses and strain rate distribution 
based on the above analysis, the following values of 
measure n and angular velocity  have been taken 
as: 

2Ω

)73,1..(7131,1
10,5,1,1.02

andNeiandn ==
=Ω
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Elastic constants  for transversely isotropic 
material (Magnesium) and isotropic material (Brass) 
have been given in table 1. 

ijC

Table 1: Elastic Constants  (in terms 

of ) 
ijC

210 /10 mN
 

 
44C  11C  12C  13C  33C  

TIM 
(Mg) 

1.64 5.97 2.62 2.17 6.17 

IM 
(Brass) 

1.0 3.0 1.0 1.0 3.0 

 
Curves have been drawn in figures 1 – 4 between 
stresses and radii ratio R= r/b for a disc rotating with 
different angular speed  and for measure  N = 3, 5 
and 7. 

2Ω

 For a disc made of transversely isotropic 
material rotating with angular speed  = 0.1, 
circumferential stress is maximum at the internal 
surface for measure n = 1/3 (N = 3) as compared to 
disc made of isotropic material and this value of 
circumferential stress decreases at the internal surface 
with increase in measure (i.e., N = 5, 7). The 
circumferential stress   increases at   internal   surface 
with increase in angular velocity (  = 1, 5, 10). It 
means that a disc made of transversely isotropic 
material rotating with higher angular speed increases 
the possibility of fracture at the bore as compared to a 
disc made of isotropic material. Possibility of fracture 
decreases with the increase in measure N. It can be 
concluded that a rotating disc made of isotropic 
material for measure N = 7 is on the safer side of the 
design in comparison to a disc made of transversely 
isotropic material. 

2Ω

2Ω

In figures 5–8, curves have been drawn 
between strain rates and radii ratio (R = r/b) at angular 
speed  and measure N = 3, 5, 7. It has been 
observed that a transversely isotropic disc experiences 
a significant deformation for the measure N = 7 as 
compared to a rotating disc made of isotropic 
material.   

2Ω
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Figure 1: Creep Stresses in a Thin Rotating Disc along the Radius R for Angular Speed 1.02 =Ω
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Figure 2: Creep Stresses in a Thin Rotating Disc along the Radius R for Angular Speed   12 =Ω
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Figure 3: Creep Stresses in a Thin Rotating Disc along the Radius R for Angular Speed   52 =Ω
 

WSEAS TRANSACTIONS on 
APPLIED and THEORETICAL MECHANICS SANJEEV SHARMA, MANOJ SAHNI

ISSN: 1991-8747 733 Issue 7, Volume 3, July 2008



 

 

 

 

102 =Ω
 
Figure 4: Creep Stresses in a Thin Rotating Disc along the Radius R for Angular Speed   
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Figure 5: Strain Rates in a Thin Rotating Disc along the Radius R for Angular Speed   1.02 =Ω
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Figure 6: Strain Rates in a Thin Rotating Disc along the Radius R for Angular Speed   12 =Ω
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Figure 7: Strain Rates in a Thin Rotating Disc along the Radius R for Angular Speed   52 =Ω
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Figure 8: Strain Rates in a Thin Rotating Disc along the Radius R for Angular Speed   102 =Ω
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