
Bending beams, a computer-aided approach  
 

CARMEN E. EISINGER-BORCIA 
Institute of Solid Mechanics - Romanian Academy 

15, Constantin Mille St., Bucharest, 010141 
ROMANIA 

c_eisinger@yahoo.com  

Abstract: This paper presents a new general computer-aided (CA) way for optimization of bending beams that is an example 
of using the CA capabilities to obtain a large quantity of data to receive new qualitative information. Our method is obtained 
combining two new results based on the CA approach: (1) the computer-aided method of obtaining the influence coefficients 
for bending a beam and (2) the State Matrix Strategy- a quasi-optimization tool. The CA method of obtaining the influence 
coefficients stands for any statically determined or undetermined straight beam of a constant cross section under all the 
combinations of loading and boundary conditions. The extension to a non-constant cross section is easy to obtain. The 
adopted model for the bending beam is an n-lumped beam unrelated to how big is n. The flexibility of this mathematical 
model synergistically completed by the Mathematica® software symbolic calculus capabilities, allows us to determine the 
values of the design parameters that optimize the elasto-dynamic behavior of bending beams, according to predefined criteria, 
static and dynamic as well. 
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1  Introduction 
 The interest for bending beams is self-evident: 
the bending beams are everywhere in our inside 
and/or outside vicinity, in constructions and 
industry, as well (fig. 1). 

 

 
 

Fig.1 The bending beams around us. 
 
 My interest in the bending beams starts with a work 

on dynamics of the multi-bodies branched systems 
described as “a number of branches with a common 
driver” (fig. 2) where the main camshaft driver works 
as a bending beam with a number of forces acting on 
[4]. The lumped beam model gives a suitable 
description of the bending of the main camshaft 
driver. For a real system with n branches, we need 
(n+1)-lumped masses: one mass for each ramification 
and an additional one to describe the motor. 
   

 
Fig.2 The main camshaft driver works as a bending beam. 

 
Since the study of the bending behavior of a lumped 
beam uses the influence coefficients [2], for a real 
mechanism with n branches, a (n+1) square influence 
coefficients matrix is to be known and this is a 
problem. It is well known that the specialty literature 
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3 Bending beam – equations, 
solution 

[3] offers computing methods for only a very small 
number, n, of concentrated masses and not for any 
type of boundary conditions. Thus, finding a way to 
compute influence coefficients matrix for a lumped 
beam with any finite number, n, of concentrated 
masses and in any boundary conditions, appears to be 
very challenging. 

In the classical notations from the bending 
beams theory [7]:  

( )T T x= : the shear force;  
( )M M x= : the bending moment;  

( )z z x= : the elastic deflection; In this paper, our response to this challenge is 
presented. We chose to do this by using a computer-
aided (CA) method starting from the initial 
parameters method [1, 3, 4 and n2]. 

( ) dzx
dx

θ = θ = : the slope (of the elastic deflection). 

the generally accepted sign convention is shown in 
Fig.3. The moments were considered to be positive 
in a clockwise sense and the external forces in the 
descendent sense of the vertical axis. 

 
  

2  Flexibility influence coefficients  
In the literature, the concept of influence 

coefficients denotes both the stiffness influence 
coefficients and the flexibility influence coefficients, 
which are intimately related - they describe the 
manner in which the mechanical system deforms 
under the forces. We deal only with the flexibility 
influence coefficients, which will be named, the 
influence coefficients [6, 8, n2].  

  

     To define the influence coefficients, let us 
consider a simple discrete system, consisting of  
masses  occupying the position 

n
im , 1,ix i = n  and 

being in equilibrium.  
 Forces jF  act upon each mass  (this can be 

assumed without loosing generality) so that the 
masses undergo displacements . Thus, the 
flexibility influence coefficient  is the 

displacement of the point 

im

iz

ije

ix  due to a unit force, 
, applied at1jF = jx . 

Fig.3  Sign convention 
 

For a straight beam of constant cross section, 
hold the following equations between deflection, 
shear force, and bending moment: 

4

4

d
d

zf 1
x EI

= ,                       (3) 
    

1, 0,
, 1,

j k
ij i F F k j

e z i j n
= = ≠

= .=                                   (1) 3

3

d 1
d

z T
x EI

=  ,                    (4)  
Note that the flexibility influence coefficients 

have the appropriate units corresponding to the 

type of loading: [LF] for torsion, and [LF-1] for 
forces. For a linear system, using the principle of 
superposition, the flexibility influence coefficients 

allow to obtain the displacement at the point 

d
d
M T
x
=ije  .                         (5)  

where  
- E is Young's (elastic) module,  
- I is the second moment of area (area moment of 
inertia or second moment of inertia), of the constant 
cross section; I must be calculated with respect to 
the neutral axis (the centroidal axis perpendicular to 
the applied loading), 

ije

ix jFdue to all the forces  ( 1,j p= ) acting on the 
system, as: 

 
- f is an externally applied load.                                             (2) , , 1, .i ij jz e F i j p= =
 Eqs. (3) with the appropriate boundary 
conditions allows us to obtain the deflection  

In (2) and everywhere else in text, the repeated 
index stands for summation. ( )z z x= for any given external loading. The 

boundary conditions are to be written for each 
range: between any pair of externally concentrated 
forces/moments and for each portions of the beam 
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on which the distributed forces are applied. The 
relationships (4) and (5) serve as continuity 
conditions.   
     Looking for the homogenous solution of (3) of 
the form 

3 2

( )
3! 2!
x xz x A B Cx D= + + + , 

the slope, the bending moment and the shear force 
are:  

2

( )
2!
xx A Bxθ = + +C , 

( ) ( )M x EI Ax B= − + ,   ( )T x EI A= − . 

Denoting by index 0 the values at the 
point  (one of the ends of the beam), the values 
at of the bending moment, the shear force, the 
elastic deflection and the slope are: 

0x =
0x =

     

( )0 0M M= , ( )0 0T T= , , , ( )0 0z z= ( )0 0θ = θ

we used these values to obtain the integration 
constants as: 

0
1A T

EI
= − , 0

1B M
EI

= − , , . 0C = θ 0D z=

Therefore, the homogenous solution of (2) is:  
3 2

0 0 0
1 1( )

3! 2!H
x xz x T M x z

EI EI
= − − + θ + 0 .   (6) 

Since the relationship (6) connects the current 
values of the deflections to the loading and 
deflection parameters at the origin ( ), the 
method is known as “the initial parameters method”. 

( )z x
0x =

To obtain a general solution, the particular 
solutions, typical to each type of external loading, 
are to be added to the homogenous solution (5). To 
do this, let us consider the beam of length l  
( 0 x l≤ ≤ ) shown in Fig.4, under the following four 
external loading (one single load from each type is 
considered): 

(F1a)- a concentrated force,  P

(F1b)- a constant uniform distributed force, p  

(F1c)- a distributed force with linear variation, 

                         ( )( )p x a x b− −  

(F1d)- an external moment, Me . 

If the concentrated force  is acting in the 
section

P
x c= , the appropriate particular solution is:       

( ) ( )3

0,  if  

1 ,   if 
3!

c

x c
z x x c

P c
EI

<⎧
⎪= ⎨ −

≤⎪
⎩

x
             (7) 

 

 
Fig.4  Typical external loading 

 
Me  is acting in the section x d=If the moment , 

the appropriate particular solution is: 

( ) ( )2

0,  if 

1 , if  
2!

x d
z x x dd Me d

EI

<⎧
⎪= ⎨ −

x− ≤⎪
⎩

                 (8) 

 
pIf the constant distributed force  is acting on 

the portion ( , )x g h∈  of the beam section, the 
appropriate particular solution is:  

( ) ( )

( ) ( )

4

4 4

0,      if  

1 ,   if (9)
4!

1 ,  if 
4! 4!

x g

x g
z x p g x hg EI

x g x h
p h x

EI

⎧
⎪

<⎪
⎪ −⎪= ≤ ≤⎨
⎪
⎪ ⎡ ⎤− −⎪ − <⎢ ⎥
⎪ ⎢ ⎥⎣ ⎦⎩

 

If the distributed force with linear variation, 
( )( )p x a x b− − is acting on the portion ( , )x a b∈  of 

the beam section, the appropriate particular solution 
is: 

( )

( )

( )
( )

( )

5

5

4

0,   if 

1 ,  if 
5!

1 1
5!

1 , if 
4! 5

a

x a

x a
p a x b

EI
x az x p

EI b a

x b x b b x

<⎧
⎪

−⎪ ≤ ≤⎪
⎪⎪ ⎡ −= ⎨ × ⎢⎪ − ⎢⎣⎪
⎪ − ⎤−⎛ ⎞⎪− × + <⎜ ⎟⎥⎪ ⎝ ⎠⎦⎩

         (10) 

  For this non-homogeneous problem (with 
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 It is important to mention some facts related to 
the elastic deflection formula (12) which is not 
sensitive about:  

particular solutions (7) – (10)) the general solution 
is:  

( ) ( ) ( ) ( ) ( )c d g az x z x z x z x z x= + + + .          (11) 
− the number of lumped masses;  

In the real cases, the loading is a combination of 
different numbers (some could be zero, too) of 
loading from each type (F1a) – (F1d). Let us 
consider the non-homogeneous problem that 
describes a beam loaded by the following 
( ) external forces and/or moments: 

− the type and / or number of external loadings;  
− the number of intermediate supports;  
− the kind of boundary conditions;  
− the type of the studied case- statically determined 
or undetermined (the static determination of the 
reactions at the supports is not required as a separate 
step). 

1 2 3n n n n+ + + 4

(F2a)  concentrated forces,  ( ), acting 
on

1n iP 11,i n=

ix c= ; 
(F2b)  constant distributed forces, 2n pi  ( ), 

acting on the section
21,i n=

( , )i ix g h∈  of the beam;  
(F2c)  distributed force with linear variation, 3n

( )( )i ii
p x a x b− − 31,i n= , acting on the 

portion ( , )i ix a b∈ ; 
(F2d)   external moments, 4n Mei ( ), 

acting on the section 
41,i n=

x di=  of the beam.    

Using the relations (7) – (10), based on the 
superposition principle, the general solution is 
obtained combining the homogenous solution (6) 
with the particular solutions corresponding to each 
one of the external forces and/or moments (F2a) –
(F2d).  

1

2

3

3

4

3 2

3

1

4 4

1
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EI
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=

=

=

=

=
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0

)
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>

>

0T

T
 The elastic deflection formula (12) only depends 
on the initial parameters  that are to be 
established from the physical and geometrical 
aspects of each particular problem.  

0 0 0 0, , ,z Mθ

After analyzing all the possible combinations of the 
end conditions, we concluded that all the 
combinations of boundary conditions (free end, 
clamp end or supported end) can be grouped in five 
different categories described in Appendix 1. 
 We can use the relationship (12) to obtain the 
influence coefficients in any point , 1,x ii = n  on the 

beam remembering that the flexibility influence 
coefficients are defined by formula (1) as: “  is the 
displacement of the point

ije
xi due to a unit force 

applied at jx ”. 
 
 
4  CA way to acquire the flexibility 
influence coefficients  
The results obtained in the former section stay at the 
base of our CA way to obtain the matrix of the 
flexibility influence coefficients for a lumped beam 
with any finite number, , of concentrated masses, 
under all the combinations of loading and boundary 
conditions, unrelated to how big is .  

n    (12) 

n
This method has been created as a routine with the 
following important procedural steps: 
(S1)  Problem analysis in order to establish the 

loading conditions, the boundary conditions (at 
the ends of the beam), as well as the conditions 
at the intermediate supports;  

(S2)  Removal of the intermediate supports and their 
replacement by the intermediate reactions that 
will be treated as a part of the loading; 

where the notation is defined by: nx< −α >

            (13)  ( ) ,   if ,
0,        if .

n
n x xx

x

⎧ −α ≥ α⎪< −α > = ⎨
< α⎪⎩

(S3)  Computation of the terms appearing necessary 
in the conditions established for step S1 and 
writing the conditions. Thus, we obtain a set of 
algebraic equations in which the unknowns are 
the values of the initial parameters, 

 The relationship (12) establishes the elastic 
deflection,  for a straight beam of constant 
cross section under the external loading (F2a)-(F2d) 
with respect to the initial parameters .  

( )z z x=

0 0 0,  , ,  z M 0Tθ , and the intermediate reactions; 
0 0 0,  , ,  z Mθ
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(S4) Solving the equations established in step S3 
and obtaining the intermediate reactions in terms 
of initial parameters; 

(S5)  Deflection determination in terms of values of 
the initial parameters ( 0 0 0,  , ,  z M 0Tθ ) from the 
eq. (12);   

(S6) Determination of the shear force and the 
bending moment in terms of values of the initial 
parameters ( ) using the equations 
(3) and (4). 

0 0 0,  , ,  z Mθ 0T

.

(S7) Determination of the matrix of the flexibility 
influence coefficients from the deflection 
computed at the step S5 using the equation (1). 

 
Beside the influence coefficients this routine allow 

us to obtain the deflection, the shear force and the 
bending moment for both statically determined and 
undetermined beams with constant section (the 
extension to variable section beams, is reachable). 

 
 

5 Use of the flexibility influence 
coefficients in bending beam design 
Based of this routine, a MATHEMATICA®[10] 

software has been developed to obtain the matrix of 
the flexibility influence coefficients for a lumped 
beam with any finite number, , of concentrated 
masses, under all the combinations of loading and 
boundary conditions, unrelated to how big is . The 
flowchart is schematically described in Appendix 3.  

n

n

In the Appendix 2 can be seen the calculated 
matrix of the flexibility influence coefficients for a 6-
lumped masses beam shown in Fig. 5. 

The easier way to obtain results stimulated us to 
extend this software to execute all the computations 
that are usually performed in the static and dynamic 
analysis of a bending beam and to verify the static 
or/and dynamic performance criteria. 
 So, after obtaining the displacement, the shear 
force and the bending moment, with appropriate 
fitting, the shear force and bending moment diagrams 
can be drawn. This way, all the static performance 
criteria can be verified. For example, in Appendix 2, 
the value of the area of the bending moment diagram 
is given. 
 Since the flexibility influence coefficients allow 
us to write the motion equation for the bending beam,  

                          (14)  
1

, 1,
n

k k kj j k
j

m z c z F k n
=

+ = =∑
the dynamic analysis can be made. The stiffness 
influence coefficients, , , 1,jkc j k n= , are intimately 
related to flexibility influence coefficients, 

, , 1,jke j k n= . The matrices are inverse one to 

other: 1[ ] [ ]jk jkc e −= .  
Denoting by [e] the matrix of flexibility influence 
coefficients, , , 1,jke j k n= , and by [m] the diagonal 

matrix of the lumped masses , the 
product matrix [e] [m] represents the dynamic 
matrix of the n-lumped bending beam. Easy to 
compute, after the determination of the matrix of 
flexibility influence coefficients, the dynamic matrix 
allows obtaining the eigenvalues and the 
eigenvectors. So, any criteria based on the 
eigenfrequencies domain or on the gap between 
them can be also verified- see example in the 
following section.  

, 1,km k n=

Important to note that our 
MATHEMATICA®[10] software gives us, beside 
common numerical results, the symbolic ones, too. 
For example, in Appendix 2 can be seen the 
expression of the dynamic matrix for a 6-lumped 
masses beam shown in Fig. 5, depending on: 
Young's (elastic) module, E, second moment of area 
matrix, I, section area, AR and density, RO. 

It is also important to note that this work can 
contribute to the engineering education development 
[13]. 

 
 

6 Study case 
Let us consider, as an example, the beam with a 
fixed end at A, a free end at B, supported in the 
points b1, b2, b3 and loaded by external concentrated 
forces F1, F6  that act in the points a1, a6  as shown in 
Fig. 5. The positions of the lumped masses m1- m6 
are a1-a6 . 
 

 
Fig.5  Beam example. 

 
The numerical results computed for the 

particular bending beam of length 10 and  
{b1, b2, b3}= {2, 5, 8} 

{a1, a2, a3, a4, a5, a6}= {1, 1.5, 3, 6, 8.5, 9} 
are presented in Appendix 2.   
These computed results are: 

-Eij: the matrix of the flexibility influence 
coefficients; 

-DEF: the dynamic matrix;  
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-Fr: the eigenfrequency vector. 
 
A qualitative analysis was also done. We 

checked the sensibility of the eigenfrequencies to 
variation of b1, b2, b3 (the supports positions) and a1, 
a6 (the external concentrated forces positions). The 
results are synthesized in Tables 2a and 2b.   
From Table 2a it is easy to observe that the minimal 
eigenfrequency, w1, is almost insensible to variation 
of b1, b2, a1, a6 and it is weakly sensible to variation 
of b3.  

Table 2a: The sensibility of the minimal  
eigenfrequency to variation of 

 supports/ forces positions 
                w1  
Average STDEV 

b1 1.29 0.001 
b2 1.29 0.023 
b3 1.76 0.496 
a1 1.66 6.11E-05 
a6 1.75 0.455 

 
Table 2b: The sensibility of the maximal  

eigenfrequency to variation of  
supports/ forces positions 

                w6  
Average STDEV 

b1 10.32 1.84 
b2 10.66 0.073 
b3 10.65 0.0004 
a1 10.78 1.997 
a6 9.30 2.19E-05 

 
From Table 2b is easy to observe that the maximal 
eigenfrequency, w6, is insensible to variation of b2, 
b3 and a6 but it is strongly sensible to variation of 
b1 and a1. The variation of the maximal 
eigenfrequency, w6, in respect with b1 and a1 are 
shown in the Fig.6. 

 
Fig.6  The variation of the maximal eigenfrequency 

in respect with  a1 and b1 

(a1∈ [0.1 , 0.9], b1∈ [1.5 , 2.5]) 
 
More than this qualitative analysis, we can 

proceed to optimization. 
 
7  CA quasi-optimization 
Our CA quasi-optimization method is an example 

of using the CA capabilities to obtain a large 
quantity of data in order to receive new qualitative 
information. 

The word "optimization" is not used in its strict 
mathematical meaning; for information about 
optimization in the classical meaning see [5, n3], for 
example.  

In our view, the design optimization can be 
made comparing and choosing the “best fit” from a 
large enough set of calculated data. If the quantity of 
data and comparisons is large enough, we can get 
the combination of parameters that suits our needs: 
the fulfillment of predefined criteria. 

The easy way to obtain the information allows 
us to repeat the calculation for a large number of 
variants of the model (the variants differ by design 
or value of one parameter at least). For each run, the 
defined measures are to be calculated and stored for 
further comparison. By measures we mean the 
output data that have been chosen to be stored. If the 
results are numerical solutions, a large storage 
memory is needed. In this case the statistical 
measures have to be used.   

The increased capability of computers to obtain, 
to save and to compare a large number of different 
cases synergistically combined with the 
Mathematica®[10] software symbolic calculus 
capabilities and the statistical representation of the 
results, allowed us to developed a tool for design 
optimization: “The State Matrix Strategy, a quasi-
optimization tool”[9].  

For this work, several terms and definitions have 
been introduced. 

The state matrix is a mN × pN matrix, where: 

mN  is the number of the chosen measures and pN  
is the number of the critical points (the special 
points in which are to be computed different 
measures). Since the state matrix components could 
be: all kinds of numbers, matrix, functions and even 
messages, the word "matrix" is used here with an 
extended meaning.  

0

2

4

6

8

10

12

14

16

A point in the mN × pN space is named behavior 
point. After each run, a behavior point is achieved.  

w6(a1),  STDEV=1.997

w6(b1),  STDEV=1.847

The behavior map is a set of behavior points 
obtained when all the design parameters cover its 
utilization domains.  
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The utilization domain of a design parameter is 
a predefined domain in which the parameter may 
vary without the state matrix exceeding given 
admissible limits.  

The influence of any parameter on the behavior 
of the studied model can be observed and analyzed. 

Generally, we can consider: 
 design changes and/or number of 

constructive parameters;  
 changes in the mass distribution, the 

damping level, the mean frequency;  
 supplementary design conditions;  
 changes in the dynamic model; 
 any particular parameter relevant for the 

studied case. 
In our terms, to perform the optimization means to 

define the state matrix component, to create and store 
the behavior map and to select the solution- the 
combination of design parameters for which all 
predefined criteria are fulfilled. 

 
As all the information used for further comparison 

is stored in the specially created state matrix, it gives 
the name of the method. 

For a bending beam, the computer-aided quasi-
optimization strategy follows the following steps: 
i.  define the problem – geometric and mechanic 

description of the bending beam; 
ii.   identify all the parameters that can change their 

value; determine their utilization domains; choose 
the appropriate design parameters set;  

iii. establish the collection of the input data sets – each 
set describes a relevant combination of  design 
parameters; 

iv. define the objective - a set of static and/or 
dynamic criteria that have to be fulfilled; 

v. define the critical points appropriate for the 
problem and for the objective; the 
results/measures obtained in these points have to 
be stored; 

vi. obtain the state matrix that carries the 
information about each acceptable variant; 

vii. obtain the behavior map by repeating step (vi.) 
for each input data set established at (iii.); 

viii. get (automatically) the optimal combination of 
values of the design parameters for which the 
objective is reached. 

      
Based on these eight procedural steps, we 

developed a MATHEMATICA® software.  
We exemplify “The State Matrix Strategy, a quasi-

optimization tool“ in the case of the beam studied in 
section 6 with F1= F6 = 2000N as the external 
loading. 

The optimization problem was: “to find the 
supports positions (b1, b2, b3) and the external 
concentrated forces positions (a1, a6) that minimize 
the value of the maximal eigenfrequency”.  

The definition of the problem – geometric and 
mechanic description of the bending beam- was 
made in section 6. 

As design parameters we choose the positions: b1, 
b2, b3, a1, a6; the utilization domains for these design 
parameters are: 

a1∈ [0.1 , 0.9] 
a2∈ [9.1 , 9.9] 
b1∈ [1.5 , 2.5] 
b2∈ [4.5 , 5.5] 
b3∈ [7.5 , 8.5] 

 
The objective was: "to minimize the value of the 

maximal eigenfrequency”. 
We found that the minimal value of the maximal 

eigenfrequency (w6 = 9.3 Hz) is obtained for:  
b1 = 2, b2 = 5, b3 = 8, a1= 0.5, a6 = 9.5. 
 
 
8  Conclusions 
This paper presents a CA way for the 

optimization of straight beams bending (statically 
determined or undetermined) with a constant cross 
section under all the combinations of loading and 
boundary conditions. The extension to a non-
constant cross section is easy to obtain.  

This CA optimization way was created based on 
two CA approaches: (1) the computer-aided method 
of obtaining the influence coefficients for a bending 
beam and (2) “The State Matrix Strategy- a quasi-
optimization tool”.  

To obtain the influence coefficients, the beam is 
modeled by n- lumped masses that can be calculated 
even if the cross section is non-constant. Thus, the 
method can be used for bending beams with a 
constant or non-constant cross section. The software 
deals, at the moment, only with constant cross 
section beams. 

Beside the influence coefficients, the deflection, 
the shear force and the bending moment are 
reachable. So, analysis can be done and the static 
or/and dynamic performance criteria can be verified. 

The new terms used by “The State Matrix 
Strategy- a quasi-optimization tool” are explained 
here. 

As a study case, a beam with a fixed end at A, a 
free end at B, three intermediate supports and being 
modeled by 6-lumped masses, is studied. The 
optimization is performed by determining the 
location of the intermediate supports and the 
external concentrated forces that minimize the value 
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of the maximal eigenfrequency. 
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APPENDIX 1 

 
Table 1:The type of the of the initial parameters 0 0 0 0, , ,z M Tθ  

The boundary conditions at case  
A ( x = 0 ) B  ( x l= ) 

Type 

a 0, 0
0, 0

A A

A AM T
ω = θ =

≠ ≠
 

0, 0
0, 0

B B

B BM T
ω ≠ θ ≠

= =
 1 

 
 

 

b  0, 0
0, 0

A A

A AM T
ω = θ =

≠ ≠
 

0, 0
0, 0

B B

B BM T
ω = θ ≠

= ≠
 1 

 
 

c  0, 0
0, 0

A A

A AM T
ω = θ =

≠ ≠
 

0, 0
0, 0

B B

B BM T
ω = θ =

≠ ≠
 2 

 
 

d 0, 0
0, 0

A A

A AM T
ω = θ =

≠ ≠
 

0, 0
0, 0

B B

B BM T
ω ≠ θ ≠

= =
 1 
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e  0, 0
0, 0

A A

A AM T
ω = θ ≠

= ≠
 

0, 0
0, 0

B B

B BM T
ω = θ ≠

= ≠
 3 

 
 

f  0, 0
0, 0

A A

A AM T
ω = θ ≠

= ≠
 

0, 0
0, 0

B B

B BM T
ω ≠ θ ≠

= =
 4 

 
 

g  0, 0
0, 0

A A

A AM T
ω ≠ θ ≠

= =
 

0, 0
0, 0

B B

B BM T
ω ≠ θ ≠

= =
 5 

 
 

 
 

APPENDIX 2 
 

Study case-numerical results 
 

The results are obtained with our MATHEMATICA®[10] soft developed to obtain the matrix 
of the flexibility influence coefficients for a lumped beam with any finite number, , of 
concentrated masses, under all the combinations of loading and boundary conditions, unrelated 
to how big is . 

n

n
 
The input data for this case are: n = 6 , typb=1  
- b = {b1, b2, b3}: the supports positions; 
- a = {a1, a2, a3, a4, a5, a6}: the lumped masses positions; 
 

 
 
The output data:  
 - [OD1]    Eij: the matrix of the flexibility influence coefficients; 

 
 
 - [OD2] the elastic deflection as function of x∈ [1, 10]: 
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- [OD3] the shear force as function of x∈ [1, 10];: 

 
 
- [OD4] the bending moment as function of x∈ [1, 10]: 

  
 
- [OD5] the aria of the bending moment diagram:  

 
 

- [OD6]    the dynamic matrix;  

 
- [OD7]    Fr: the eigenfrequency vector. 

 
- [OD8]    The expression of the dynamic matrix depending on:  

Young's (elastic) module, Ey,  
second moment of area matrix, Iz,  
section area, AR and  
density, RO. 
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APPENDIX 3 
 

 
 

Mei, di, i=1, n4 

n1 

n2 
n3 
n4

Global Forces Intermediate Forces 

Replacement of 
the intermediate 

supports by reactions 

set of algebraic equations with unknowns : the initial 
parameters intermediate reactions 

intermediate 
reactions in 

terms of initial 
parameters

deflection, shear 
force, bending 

moment in terms of 
the initial 

parameters 

ije
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