
DYNAMICAL BEHAVIOR OF FOUNDATIONS IN LINEAR AND 
NONLINEAR ELASTIC CHARACTERISTIC HYPOTHESIS 

 
ADRIAN LEOPA1, SILVIU NĂSTAC1 

1Research Center for Mechanics of the Machines and Technological Equipments 
University “Dunarea de Jos” of Galati, Engineering Faculty of Braila 

Calea Calarasilor nr. 29, 810017, Braila 
ROMANIA 

 leopa.adrian@ugal.ro, www.ugal.ro  
 
 

Abstract: This study presents a viewpoint regarding dynamic behavior of the technological equipment 
foundation who works in the production process with shocks and vibration. In this way was analyzed the 
variations of three cinematically parameters acceleration, velocity and movement, as well as a frequency 
response of the vertical movement of the foundation. These analyses were made by comparison for the two 
considerate hypotheses: linear and non-linear elastic characteristic of the viscous-elastic system. 
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1 Introduction 

There is a permanent worldwide interest to 
identify new control and effect reducing methods 
due to undesirable actions generated by vibrations 
and shocks over the generic and constructions’ 
environment. There is a major economical and social 
interest concerning the development of reliable 
vibration protection systems. Developing and 
implementing the equipment and procedure to 
increase the monitoring equipment quality of 
vibration protection systems represents the main goal 
of this project (it could prevent the undesirable 
consequences of vibrations and shocks).  
      There are many categories of vibrations and 
shocks generating technological equipments 
(working at specified level) in Romania. Undesirable 
effects over the generic and constructions’ 
environment have been noticed (vibrations and 
structure noise in the nearby buildings). Every 
machine in function, becomes a source of vibration 
generator, able to disseminate vibration in the 
environment either in structural shape (through 
connections), or in radial shape. 

Also, the negative effects of the vibration or the 
human factor felt along with overtaking of the limit 
level both below the appearance of exposure 
duration, and of vibration values, which appearances 
leads to professional decays.  

The knowledge and evaluation of the shock and 
vibration influences on environment become a 
priority in European society sustainable 
development. In this way, European Directive 
44/2002 establishes minimal requirements, in order 

to limit the level exposure of transmitted vibration on 
human or environment. 

A multitude of technological equipments utilize 
shocks and vibration in the production process [4], 
such as forging hammer (figure 1) or press with 
eccentric (figure 2). 

 

 
Fig. 1 Forging hammer 

 
 Every machine in function, becomes a source of 

vibration generator, able to propagate vibration in the 
environment either in structurall shape (through 
connections), or in radial shape. 
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Fig. 2 Press with eccentric 

 
Due to peculiarity of production process, this 

equipment propagates shocks and vibration to 
environment, wherefore is necessary to implement a 
vibration protection system (figure 3), able to 
decrease the effect impact on the environment. The 
whole system is placed in a vat foundation with 
protection aim against agents like water, fire or dross 
goal. In time the vibration protection system, that is 
based on viscous-elastic type, suffering damage that 
produce system malfunction. These damages are 
recognized by non-linear characteristics of the 
viscous-elastic vibration protection system. The 
nonlinearities are identified through monitoring in 
time the fundamental frequency of the viscous-
elastic system. 

 

 
 

 
Fig. 3 Mounting viscous-elastic system under 

technological equipment foundation 
 
 
2 Theoretical problem formulations 

In this chapter, will be develop a generalized 
theoretical model, capable to characterized both 
linear and non-linear characteristics of the viscous-
elastic system in the mathematical approach.  In this 
way will consider that foundation of the 
technological equipment like forging hammer is 
placed on the four identically viscous-elastic 
elements and it has one plane of symmetry, figure 3. 
The mathematical model was developed for two 
cases of rigidity characteristic: linear and non-linear 
expressions. 
 
 
2.1 Generalized model 

It is considered a rigid body in the inertial system  
OXYZ that is considered fix and a reference system 
attached on rigid [1], with the origin placed in its 
mass centre Cxyz, figure 4.  

 

 
Fig. 4 The rigid in the inertial system OXYZ 
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The translational movements of the mass centre C 
are determinate by X, Y, Z coordinate toward fixed 
system OXYZ, and the rotary movements are 
describe by angular movements ϕx, ϕy and ϕz of the  
Oxyz system. 

In order, to calculate the movement of point A of 
the rigid toward Cxyz system when the rigid make 
an instantaneous rotation, as the case from figure 5.  
The rigid rotation Δϕ can be the result of 
infinitesimal rotation sum. 

Using the second kind Lagrange equation is 
obtained the differential equation system for the 
movement. The general form of the second kind 
Lagrange [1] equation is: 
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Fig. 5 Instantaneous rotation of the rigid 

 
The metrical expression on the second kind 

Lagrange equation is like: 
 

Aq Bq Cq f+ + =  (2) 
 
Where: 

[ ]1 2 3 4 5 6, , , , , , , , , ,
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vector of generalized coordinates; 
 

[ ]1 2 3 4 5 6, , , , , , , , , ,
TT

x y zq q q q q q q X Y Z ϕ ϕ ϕ⎡ ⎤= = ⎣ ⎦  - the 

vector of generalized velocities; 
 

[ ]1 2 3 4 5 6, , , , , , , , , ,
TT

x y zq q q q q q q X Y Z ϕ ϕ ϕ⎡ ⎤= = ⎣ ⎦  - the 

vector of generalized accelerations; 
 
f - the vector of generalized forces; 
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A  - inertial matrix; 
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B  - damping matrix; 
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C  - rigidity matrix; 
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In this way will consider that foundation of the 

technological equipment like forging hammer is 
placed on the four identically viscous-elastic 
elements [4], and it has one plan of symmetry, figure 
6.  

 

Fig. 6 The physical model 
 
This presented model has a general character, and 

the possible rigid movements are: on direction OX – 
forcing lateral vibration, on direction OY - forcing 
longitudinal vibration, on direction OZ - forcing 
vertical vibration, ϕx - forcing pitching vibration, ϕy 
- forcing rolling vibration, ϕz - forcing turning 
vibration. 

 The principal axes of the elastic supports are 
parallel with the references axis. In this case, the 
movements corresponding to the six degree of 
freedom are decoupled in two possibilities: coupled 
movements that are characterized by the coordinate 
Y, Z and ϕx variations and coupled movement that 
are characterized by the coordinate Y, ϕy and ϕz 
variations. 

 
 

2.2 The coupled mode “YZϕx” 
Forwards, will be analyzed the coupled model 

characterized by the coordinate Y, Z and ϕx 
variations because the movement on OZ direction is 
a very important factor in propagation vibration from 
technological equipment.  
 
2.2.1 The linear elastic characteristic hypothesis  

The rigidity on OZ direction of the viscous-elastic 
element on which is the foundation placed of the 
technological equipments, have constant value.  

The shape of linear elastic characteristic of the 
viscous-elastic system is presented in figure 7. 
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Fig. 7 The shape of elastic characteristic 
 
The mathematical model [4] that characterized 

this dynamically system is: 
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where m is foundation mass, k is rigidity of the 
viscous-elastic element, c is damping of the viscous-
elastic elements, J is inertia moments of the 
foundation block. 

Analyze of this system will be made by 
evaluating three cinematically measure: - 
acceleration, velocity, movement, and frequency 
response.  

The excitation force is on OZ direction, applied 
point being eccentrically toward mass centre figure 
3. The most utilize shape for loading force in the 
theoretical dynamical modeling are: rectangle shape, 
triangle shape and half sine shape.  

The contact duration was determinate by inelastic 
collision of the Hertz theory of impact. In this way, well 
consider the collision masses like two spheres with r1 and 
r2 radius.  The collision force P, are depending by 
compression x, followed: 

 
2/3

1 xcP ⋅=  (8) 
 
where  
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The expression for υ is:  
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Where 1/ν is Poisson constant, 0,3 value for steel 
material and G is elastic shear modulus with 

 for steel. In the forging hammer case, two 
masses are considered the ram and anvil block. In 
this case, 
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on the other hand 
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The k1 constant is calculate followed: 
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The contact duration: 
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xT max9432.2=  (15) 

 
With the max x expression obtain 
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The equation system was resolved with Runge – 

Kutta method with 10-5 value of absolute error. 
Shape of curves from the three cinematically 
measures are presents in the next figures 8, 9 and 10. 

The excitation of the system is half-sine shock 
pulse (figure 8), with contact duration on T=0.005 s. 
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Fig. 8 The shape of half-sine shock 
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Fig. 9 The shape of rectangle shock 
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Fig. 10 The shape of triangle shock 
 
The solving system was made in the next 

numerical value hypothesis: P=900⋅104N; k0=2.5⋅109 
N/m; cy=2.5⋅106 Ns/m; m=100⋅103 kg; kz=8⋅109 N/m;  
cz=2.1⋅106 Ns/m; J=77⋅104 kgm2; e=0.02 m; n1=3m; 
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n2=3m; h=1.5m. The solution of the system (7) leads 
to the evolution determination in time for three 
cinematically parameters: acceleration, velocity and 
movement - on OZ direction [3], figures 11, 12 and 
13. 
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Fig. 11 Movement on OZ direction 
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Fig. 12 Velocity on OZ direction 
 
These three cinematically measures are 

quantitative criteria for evaluating the vibration 
effects on the human structure or on environment. 
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Fig. 13 Acceleration on OZ direction 

 
Eliminating the time between movement and 

velocity expressions, it is obtained the 
characteristically curve or movement trajectory 
(figure 8). 
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Fig. 14 The phase plan representation 
 
From the figure 14 we observe that movement is 

damping and stabilized because the amplitude of 
movement don’t have an increasing infinite value. 

In the figure 15 is presented the movement on OZ 
direction in the frequency representation. From this 
representation we observe that dominant frequency 
domain is around on 97Hz value. 

Another analyze in frequency response is power 
spectral density, figure 16. The goal of spectral 
estimation is to describe the distribution (over 
frequency) of the power contained in a signal, based 
on a finite set of data.  

Because the elements on which is the foundation 
placed have viscous-elastic characteristic; these 
elements dissipate hysteretic energy with W=5093 J, 
figure 17. 
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Fig. 15 The system response in frequency domain 
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Observe a diminution of the dissipate energy in 
the non-linear elastic characteristic of the viscous-
elastic system by comparison with the linear case, 
this fact is explained by the decrease of the 
movement on OZ direction in for the non-linear case. 
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Fig. 16 Power spectral density 
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Fig. 17 The hysteretic characteristic 
 
 
 
2.2.2 The non-linear elastic characteristics 
hypothesis 

The rigidity on OZ direction of the viscous-
elastic element on which is placed the foundation of 
the technological equipments, have the nonlinear 
expression [2] followed: 

 
kz=k0(1+β·x2

OZ)                               (18) 
 

The shape of non-linear elastic characteristic of 
the viscous-elastic system is presented in figure 18. 
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Fig. 18 The shape of elastic characteristic 
 

The mathematical model can be writing, as follow:  
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(19)

The solving system was made in the next numerical 
value hypothesis: P=900⋅104N; k0=2.5⋅109 N/m; 
cy=2.5⋅106 Ns/m; m=100⋅103 kg; kz=8⋅109 N/m;  
cz=2.1⋅106 Ns/m; J=77⋅104 kgm2; e=0.02 m; n1=3m; 
n2=3m; h=1.5m; β=2 ⋅108m-2. 

The solution of the system (19) leads to the 
evolution determination in time for three kinematics 
parameters: acceleration, velocity and movement - 
on OZ direction [3], figures 19, 20 and 21. 
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Fig. 19 Movement on OZ direction 
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Fig. 20 Velocity on OZ direction 
 
Time history of kinematics parameters enable 

effects characterization of transmitted vibration to 
the environment, comparative with established limit 
of effectual standard. 

Eliminating time between velocity and movement 
permits obtaining - movement trajectory (figure 22), 
that shows the movement is damped and stabilized. 
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Fig. 21 Acceleration on OZ direction 
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Fig. 22 The phase plane representation 
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Fig. 23 The system response in frequency domain 
 
So, frequency responses have spectral 

components around of 97 Hz value (as in the case of 
linear rigidity), but appear dominant spectral 
components around of 120Hz value, figure 23. 
Distribution of the energy of the shock on spectral 
components is noticed by plotting the power spectral 
density (figure 24). Like in the linear case, the goal 
of spectral estimation is to describe the distribution 
(over frequency) of the power contained in a signal, 
based on a finite set of data. 
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Fig. 24 Power spectral density 

  
The energy dissipation is made by viscous 

amortization that is emphasizing by plotting the total 
forces viscous-elastic function of movement (figure 
25).  

The value of dissipate energies on a loop of 
movement is of W= 1341J. Towards the case of 
linear rigidity we observe a diminution of dissipate 
energy, explained by the diminution of movement 
amplitudes on OZ direction. 
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Fig. 25 The hysteretic characteristic 
 

 
3 Experimental researches 

This chapter presents the result of the 
experimental determinations made on forging 
hammer (2000 kg capacity) at Workshop in IUS – 
Brasov. The measurements were made simultaneous 
on anvil block and foundation vat between are placed 
the viscous-elastic systems for isolating and damping 
generated vibration during the technological process.   
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Fig. 26 Wave shape recorded on the anvil block 
 

Wave shape recorded on the anvil block and the 
spectral density are represented in figures 26 and 27, 
and wave shape recorded on the foundation vat and 
the spectral density are represented in figures 28 and 
29.  

From the frequency response representation 
observe a diminution of acceleration amplitude in the 
non-linear case beside the linear case, this fact 
explained by the isolating and damping properties of 
viscous-elastic system. 

Also, the difference between two cases is obvious 
by the dominant spectral component. 
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Fig. 27 Frequency response - anvil block 
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Fig. 28 Wave shape recorded on the foundation vat 
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Fig. 29 Frequency response – foundation vat 
 

The magnitude squared coherence estimate is a 
function of frequency with values between 0 and 1 
that indicates how well x corresponds to y at each 
frequency. In this instance, x represent signal 
recorded on anvil block and y represent signal 
recorded on foundation vat.  
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Fig. 30 Coherence 
 

From figure 30, observe the presence of the 
important non-linear character of transmitted signal 
from anvil block to foundation vat.  

This experimental study represents a reference 
point in monitoring activities of the technological 
equipment dynamical behavior. After on interspaces, 
by experimental measurements, well be analyzed by 
comparison the obtained dates with the initial dates. 
In this way, well be determining the level of 
nonlinearities of the viscous-elastic vibration 
protection system, corresponding with a level of 
damage.  
 
 
4 Conclusions 

This paper presents a theoretical model to 
characterize dynamically, a much diversified field of 
real technological situations in which equipments 
utilize shocks and vibration in the production 
process.  

In time representation, observe small difference 
between cinematically parameters variations for two 
considerate cases: linear and non-linear 
characteristic. 

It’s clearly that in the case of the non-linear 
elastic characteristic on OZ direction, the dynamical 
response system is different comparing to linear 
elastic characteristic on OZ direction case. 
Theoretically, the presence of nonlinearities 
characteristic in the viscous-elastic protection 
system, conducts inevitable to a dynamical response 
modification (frequency response). 

Practically, based on monitoring the frequency 
response of the technological equipment and 
detecting its modification, can determine level of 
elastic characteristic nonlinearities. In the same time, 
this study represents the beginning of experimentally 
research development regarding detection of damage 

in structure of viscous-elastic systems, based on the 
non-linear vibration technique. 
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