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Abstract: - By interposing a layer with low horizontal stiffness but with high damping characteristics between 
the structure and his foundation, an aseismic isolation system partly decouples the building structure from the 
horizontal components of the earthquake ground motion and thus diminishes the structural demand.  

As a result of the lateral flexibilization, the natural period of the former fixed-base structure undergoes a 
jump and the new base-isolation structure has a new and larger natural period. This “period-shift” can extract a 
structure away from the dominant period of the earthquake ground motion and thus can avoid the destructive 
effects given by the system resonance. 

The dynamic behavior of the materials and devices of the isolating layer governs the performance of 
base-isolation system. The dynamic properties, such as horizontal stiffness and damping capacity determine the 
filtering role of the isolating layer and, finally, the structural dynamic response. But all of materials and devices 
used in an isolating layer systems exhibit, more or less, a nonlinear behavior. In addition, all site soils materials 
have the well-known nonlinear mechanical characteristics, which affect the dynamic structural response. Thus, 
in the dynamic response evaluation of a base-isolated system the nonlinear behavior of both isolator and site 
layers must taken into account. 

This paper presents a method for the necessary period-shift determination by using the dynamic linear 
or/and nonlinear magnification functions. For the nonlinear magnification functions determination we shall use 
a nonlinear Kelvin-Voigt model (NKV model) for base-isolated structure, which is able to model the effects of 
the soils and isolating layer nonlinearity on the shape and resonant magnitude of the magnification functions. 
Thus, we shall obtain a proper tool for modeling the resonant peak dispersion, which is a very important 
condition for a correct period-shift evaluation and therefore for a correct isolation design. 
 
Key-Words: - Earthquake engineering, Nonlinear dynamics, Seismic base-isolation 
 
 
1 Introduction 

Passive base isolation systems are one of the 
most successful and widely implemented 
technologies for seismic hazard mitigation. In the 
last decade several base isolation systems have 
developed for seismic protection of the structure 
with the special destinations as hospitals, emergency 
communication centers, fire stations, traffic 
management centers, bridges, historical buildings, 
etc. [10], [14], [17]. The performance of the base 
isolated buildings in different parts of the world 
during earthquakes in the recent past established 
that the base isolated technology is a viable 
alternative to the conventional earthquake resistant 
design of a large category of buildings. 

In the past decades, the field of dynamics 
behaviour of the base-isolated systems has received 
a lot of attention. An increasing amount of papers 
have been dedicated to several theoretical and 

experimental aspects [1-3], [6-9], [12-13], [16], 
[18], [20-24].  

Although it is well-known that these isolation 
systems may exhibit nonlinear behavior, they are 
often linearly modeled in engineering practice, as 
prescribed in some building codes. But, this linear 
assumption can lead to an unrealistic representation 
of the dynamic response. 

The fundamental concept of the base isolation 
systems is to partly uncouple the building structures 
from the damaging components of the earthquake 
input motion by introducing a flexible interface 
between the structure and his foundation. Thus, one 
can limit the amount of forces that are transferred to 
the superstructure and the structural demand can be 
diminished. 

However, this excellent strategy is not suitable 
for all buildings and for all emplacements. 

In terms of structure and site natural periods and 
in terms of correct period-shift evaluation, this 
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positive period-shift can extract the structure away 
from the characteristic period contents of earthquake 
ground motions or, contrary, can throw the 
structural ensemble into resonant conditions.  
      Because the first condition (connected from 
structural and site natural periods) is self-evident, 
there will be further presented some remarks 
regarding the nonlinear effects given by mechanical 
properties of the isolated and site layers upon the 
correct period-shift evaluation. 

We shall focus on two main objectives. The first 
is to present a method for the necessary period-shift 
determination based on linear and/or nonlinear 
magnification functions and the second objective is 
to evaluate the effects of the nonlinear behavior on 
the shape and amount of the magnification 
functions. 

In a base-isolated structural system, the large 
differences between mechanical characteristics of 
the structural materials and isolator materials allow 
us to treat the base-isolated system as a two-degree-
of-freedom system (2dof system), see [7], [11], [16]. 
Accepting this hypothesis, in chapter 2 we will 
present such a 2dof system. Using this 2dof model 
one can prove that the first fundamental frequency 
of the base isolated buildings is close to the 
frequency of the sdof system constituted by rigid 
superstructures mounted on flexible base isolators. 
Therefore, the isolated building tends to behave 
globally as a rigid body and all the deformability 
processes are located at the isolating layer.  

Accepting these approximations and considering 
the linear behavior of the isolating layer, in chapter 
3 such a linear sdof model (Kelvin-Voigt model) is 
used for giving a first estimation of necessary 
period-shift. In this aim, we shall use the 
magnification function ability to illustrate the 
resonance behavior, see also [7], [11]. 

However, the real behavior of the isolating layer 
is a nonlinear one. Thus, for a correct assessment of 
the period-shift amount a nonlinear sdof model is 
needed. For this reason, in chapter 4 a nonlinear 
sdof model obtained by the extension of the linear 
Kelvin-Voigt model in nonlinear domain will be 
presented, see [4], [5], [6].  This nonlinear Kelvin-
Voigt model (NKV model) is able to describe the 
essential characteristics of the dynamic nonlinear 
behavior – the strain dependency and hysteretic 
damping capacity. In addition, the NKV model is 
suitable to the equivalent linearization process. 

Using the NKV model, in chapter 5 we will 
present the effects given by the nonlinear properties 
of the isolating layer. The dispersion of the 
nonlinear magnification function peaks proves that 
the linear estimation of the necessary period-shift 
must be corrected, [7]. 

Finally, chapter 6 contains some remarks on 
soils nonlinearity effects. Based on experimental 
data and numerical simulation, the enlargement 
tendency of the period-shift is pointed out, [4], [7]. 

 
 

2 Two-degree-of-freedom model for 
base-isolated structure 
Let us consider a structure isolated from its base 

by a certain isolation system.  
Due to large differences between mechanical 

characteristics of the structural and isolator 
materials, a two-degree-of-freedom (2dof) 
simplified model can be used to predict the dynamic 
response of such a base isolated structure (Fig. 1) 
[7], [16]. 

The superstructure is assimilated to a single 
degree of freedom (sdof) system (characterized by 
the mass sm , damping sc  and stiffness sk

bm bc

,   and  g b s

) mounted 
on the base assimilated to another sdof system 
(characterized by the mass , damping  and 
stiffness ). bk

If x x x

     ;     b b g s s gx u x x

 are the ground, base and 
superstructure absolute displacements, the base and 
superstructure displacements relative to the ground 
are: 

u x= − = − . (1)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 bx  

 sx  

 
 

Fig.1 2dof model for a base-isolated structure 

 
The motion equations for this 2dof system are:  

 cb 

 mb 

 cs 

 kb 

 ks 

 ms 

 gx&&  

 gx  
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( )
( ) (

b b s s b b g b

s s s s b s s b

m x m x c x x k

m x c x x k x x

⎧ + + − +⎪
⎨

+ − + −⎪⎩

&& && & &

&& & &

( )
)

0

0
b gx x− =

=
(2)

where the x&

s b g

 denotes the time derivative. 
      Since 

     ;     b b g sx u x x= + = u u x+ +

( )b s gm m x= − + &&

 (3)

the system (2) becomes: 

( )
( )

b b s s b b b b b

s s b s s s s s g

m u m u u c u k u

m u u c u k u m x

⎧ + + + +⎪
⎨

+ + + = −⎪⎩

&& && && &

&& && & &&
 (4)

or, in matricial form: 

gx+ +Mx Cx Kx&& & = −Mδ&&

0
0
b

 (5)

where the mass, damping and stiffness matrices are, 
respectively: 

   ;   

0
                 

0

s b s

s s s

c
c

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦

δ }
x& x&&

b

s

m m m
m m

k
k

+⎡ ⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

M C

K
 (6)

 is a position vector: , x is the 

displacement vector and ,  
denotes the time derivatives of the displacement 
vector. 

{1 0 T=δ

{ }T
b su u=x

Assuming the structure together with its base as 
a perfectly rigid body mounted on isolators, a single 
degree of freedom model with the circular 
frequency results 

2 b
b

t

k
m

ω =

tm

 (7)

where is the total mass: . t b sm m m= +
       Also, assuming the structure with fixed base 
another sdof system result, with the circular 
frequency: 

2 s
s

s

k
m

ω =  (8)

By introducing the frequential ratio: 
2

2
b

s

ω
ε =

ω
 (9)

and the mass ratio: 

b

s

m
m

μ =  (10)

the dynamic matrix  becomes: 2= −D K Mp

2

1 1

1 1

+ μ⎡ ⎤ε −⎢ ⎥μ μ⎢ ⎥= ω
+ μ + μ⎢ ⎥−ε⎢ ⎥μ μ⎣ ⎦

D s  (11)

The fundamental frequencies of 2dof system 
result now as the eigenvalues of the dynamic matrix 
in the form: 

( )( )

( )( )
( )( )

2
2
1,2

2

1 1

1 1 42 1
1 1

sp

⎡ ⎤μ + ε +
⎢ ⎥μω ⎢ ⎥= ⎢ ⎥μ + ε − ε⎢ ⎥+

μ μ + ε −⎢ ⎥⎦

m

m

(12)

⎣

By developing the term under the square root in 
a binomial series, the fundamental frequencies of 
the 2dof system become  

( )( )

2 2 2
1

2 2
2

1
1 1

1 1

s b

s

p

p

ε
≅ ω = ω

ε + ε +
μ + ε +

≅ ω
μ

{ }

, (13)

see [21], and the normalized form of the 
fundamental modes are: 

1 21 1    ;   1
1

T
T μ⎧ ⎫= ε + = −⎨ ⎬

ε +⎩ ⎭
X X . (14)

Since ω << ωs b

1

 the frequential ratio ε has small 
values. In these conditions, the first fundamental 
frequency of the 2dof model is given in a large 
proportion by the isolating layer frequency ≅ ωbp . 
This means that the first fundamental frequency of 
the base isolating building is close to the frequency 
of the sdof system constituted by rigid 
superstructure mounted on a flexible base isolator 
and the isolated building tends to behave globally as 
an sdof system.  

The modal participation factors are, [14]: 
T
i

i T
i i

L =
X Mδ

X MX
 (15)

thus, by the replacement of the appropriate 
fundamental modes values (14) are 

( ) ( )
( ) ( )1 22 2

1 1
   ;   

1 1
L L

μ + ε + ε ε +
= =
μ + ε + μ + ε +

 (16)

and by a series development they become: 

1 21 1   ;   1
1 1

ε ε
= − ≅ = <<

μ + μ +
L L . (17)

These relations show that the participation 
factor for the first mode approaches the unity, which 
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means the sdof behavior too. The participation 
factor for the second mode is very small, therefore 
even if the second fundamental frequency 2p  is 
within the range of high spectral acceleration, the 
smallness of the participation factor ensures that the 
second mode is not highly excited by the ground 
motion. 

In these conditions, the quasi-rigid structural 
behavior hypothesis becomes acceptable and the 
2dof system can be reduced to an sdof system where 
the dynamic behavior is governed by isolated layer 
characteristics (Fig.2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  A simplified model for a base-isolated structure  

 
 

3 Linear assessment of necessary 
period-shift  
For a qualitative evaluation of the necessary 

period-shift value, one can consider the structure 
with fixed base as a linear sdof subjected to 
harmonic abutment accelerations (Fig. 2): 

( ) 0 sing gx t x t= ω&&

0
g

&&
 (18)

where x&&

0
gk x mx⋅ = − &&

2 2 0
0 0 0 g

 is the acceleration amplitude (usually 
connected by peak ground accelerations - PGA) and 
ω is the pulsation of the excitation.   

In linear dynamics, a usual description of such 
sdof behavior is given by the linear Kelvin-Voigt 
model consisting of a mass m supported by a spring 
(with a stiffness k) and a dashpot (with a viscosity c) 
connected in parallel. The governing equation of the 
KV system is : 

mx c x+ ⋅ +&& &  (19)

see [11], or: 

2x x x xω = −ω &&

0ω

+ ζω +&& &  (20)

ζ  is 

the damping ratio: 

0
0

    ;    
2cr

k c c
m c m

ω = ζ = =
ω

0tτ = ω

where  is undamped natural pulsation and 

 
(21)

By using the change of variable  and by 
introducing a new "time" function 

0

( ) ( )x t x
⎛ ⎞τ

ϕ τ = = ⎜ ⎟ω⎝ ⎠

sinC K

 

 as in [5], one can obtain by eq. (20) a dimensionless 
form of the equation of motion: 

′′ ′ϕ + ϕ + ϕ = μ υτ  (22)

where ′ϕ denotes the time derivative with respect to 
τ and: 

2
0 0

0

2
0 0

2    ;   1

              ;   g

c kC K
m m

x

= = ζ = =
ω ω

ω
μ = υ =

ω ω

&&
 (23)

The steady-state solution of the equation (22) 
can be written as: 

( ) ( ), , ; sin( )ϕ τ υ ζ = μΦ υ ζ υτ −ψ  (24)

where ( );Φ υ ζ  is the magnification function:  

( )
( )max , ,

; τ
⎡ ⎤ϕ τ υ ζ⎣ ⎦

Φ υ ζ = =
μ

dynamic

static

x
x

max dynamicx

 

a ratio of maximum dynamic amplitude 
ϕ ≡  to static displacement staticxμ = . The 
analytical expression of this magnification function 
is: 

( )
( ) ( )2 22

1;
1 2

Φ υ ζ =
− υ + ζυ

2 /T

 
(25)

Usually, in the structural dynamics one uses the 
periods T instead of the pulsations ω . Because 
= π ω 0 0/ /T T and  υ = ω ω =

( )

, the magnification 
function in terms of period becomes: 

0 2 22
0 0

1; ,

1 2

T T
T T
T T

Φ ζ =
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− + ζ⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎢ ⎥⎣ ⎦

υ

0 021 rad/s    0.3 s

 
(26)

The magnification function in terms of 
dimensionless pulsation , (25) or period T ,(26) 
for a system with ω = ⇒ =T

ct
 and  

.ζ =  has typical aspects as there are depicted in 
Fig. 3. 

 gx&&  

 k=kisolator 

or  c=cisolat

 mb + ms 

 bx x  ≡

 xg 
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Fig. 3  The magnification function  

Now we can use the magnification function to 
illustrate the structural behavior before and after 
period jump, that is to illustrate the behavior 
differences between a structure with fixed base and 
the same structure but with an isolating layer.  

In order to exemplify the ability of the 
magnification functions to illustrate the resonant 
behavior of the base-isolated structure in the next 
we will present a comparative study of a structure 
with and without a base isolation. 

Let us consider the structure with the following 
mechanical characteristics [20]:  

30000 kg  ;  0.3 s  = = ;  0.5%ζ =

0.3 0.4 s= ÷

s sm T . (27)

We assume that such a structure is located on a 
usual site, composed, for example, by rocks or 
consolidated aluvionary deposits with 

. In these conditions, this structure 
becomes a proper candidate for isolated base 
technology. 

0T

As one can see in Fig.4, a small period-shift 
from the resonant period of 0.3 s up to the base-
isolated period of 0.5 s takes out the structure from 
the dangerous resonant zone and leads to a great 
reduction of the dynamic magnification amount. 

 
Fig. 4 A period-shift example 

4  Nonlinear Kelvin-Voigt model  

4.1 Nonlinear extending 
As we have seen in chapter 2, the mechanical 

characteristics of the isolated layer govern the 
dynamic response of the sdof model for base-
isolated structures. The experimental tests prove that 
all materials and devices used in isolated layers 
exhibit, more or less, a nonlinear behavior. 
Therefore, the sdof system of a base-isolated 
structure must be a nonlinear one. 

 Using the same method that describes the 
nonlinearity by strain or displacement dependence 
of the material parameters, we assume that the 
damper viscosity c and the spring stiffness k are 
functions of the displacement x, [4], [6]: 

( ) ( )   ;    c c x k k x= = . (28)

(Using these dynamic material functions, )c x  
and ( )k x , the differential equation of the nonlinear 
sdof system can be written as an extension of eq. 
(19): 

( ) ( ) gmx c x x k x x mx+ ⋅ + ⋅ = −&& & &&  (29)

or by extension of the eq. (20): 

( ) ( )2
0 02 n gx x x k x x x+ ω ζ ⋅ + ω ⋅ = −&& & &&

0t

. (30)

Using the same change of variable τ = ω
( )0( ) ( ) /x t xϕ τ = = τ ω

 and 
the "time" function  one 
obtains for eq. (29) or eq. (30) another form: 

( ) ( ) sinC K′′ ′ϕ + ϕ ⋅ϕ + ϕ ⋅ϕ = μ υτ  (31)

where  
2

2 2
0 0

1 1( )      ;      ( )=x x∂ϕ ∂ ϕ′ ′′ϕ τ = = ϕ τ =
∂τ ω ∂τ ω

& &&

( ) ( )

(32)

and 

( ) ( )

( ) ( ) ( ) ( )
( ) ( )

0

2
0

2

=
0 n

c x
C C x x

m
k x k x

K K x k x
m k

ϕ ≡ = = ζ
ω

ϕ ≡ = =
ω

. (33)

The transformed amplitude μ and the normalized 
pulsation υ remain in the same linear form: 

0

2
0 0

     ;     gx ω
μ = − υ =

ω ω

&&
. (34)

The solution of the equation (31) can be written 
like as eq. (24): 
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( ) (, , ,ϕ τ υ μ = μΦ υ μ)sin( )υτ −ψ  (35)

Thus, in this nonlinear case, the solution ( ), ,ϕ τ υ μ

Φ υ

 
and the magnification function  become  
dependent on the load through the transformed 
amplitude μ. 

( ),μ

For a given amplitude μ and a relative pulsation 
υ, the nonlinear equation (31) can be numerically 
solved using a computer program [5] based on 
Newmark algorithm [15]. After this, using a known 
solution and a known excitation, the nonlinear 
magnification function was obtained first in term of 
normalized pulsation υ and after then in terms of 
period: 

( ) ( ) ( )
0 0

. .
. .

μ=
=

Φ ct
T ct

T,           μ=
ω =

Φ υ = Φ υ μ ⇒ct
ct

 (36)

like as in the example in Fig.5, where some 
nonlinear magnification functions for rubber are 
presented.  

 

Fig. 5  Typical non-linear magnification functions           
(resonant column test with rubber sample)  

 We can see in Fig. 5 that the peak amplitudes 
of the nonlinear magnification functions depend on 
the excitation amplitude, have a decreasing resonant 
amount and occur at different periods situated after 
the linear resonant period. In this example where a 
material with softening stiffness was tested, the 
resonant peaks are displaced towards long periods. 
But, the experimental tests upon materials or 
devices with the hardening stiffness show peak 
displacements towards short periods [6], [11], [18] . 

Such a peak dispersion  has been already met at 
isolator materials or devices used for base-isolated 
structures [6], [11]. This nonlinear behavior affects 
the entire response of the base isolated system, 
including the period-shift determination [7] . 

 

4.2 Hysteretic damping modeling 
The definition and utilization of the nonlinear 

Kelvin-Voigt model are based on the equivalence 
hypothesis between the hysteretic and viscous 
material damping [4]. For this reason, it is necessary 
to verify the capabilities of this viscoelastic model 
to describe the hysteretic damping. 

Several methods use the experimental registered 
hysteretic loops for the damping evaluation and 
determine the damping ratio as: 

1
4

Δ
ζ =

π
W

W
 (37)

where W is the maximum stored energy and ΔW is 
the energy loose per cycle represented by the area 
enclosed inside the hysteresis loop (Fig. 6) [5], [11].  

 

 

Fig. 6  Damping evaluation from hysteresis loop 

By another method, the hysteretic loop is built 
from the skeleton curve by applying the Masing rule 
that postulates that the superior and inferior 
branches can be obtained from the skeleton curve by 
multiplying by a factor 2 in both directions [11].  

To verify the capabilities of the non-linear 
Kelvin-Voigt equation (31) to model a hysteretic 
loop we will use an inverse path.  Starting from 
given dynamic material functions of the NKV 
model we can build the hysteretic loops for a certain 
deformation levels. Then, the damping ratio value ζ  
for a certain deformation level will be obtained with 
a hysteretic method and compared with the 
experimental value at the same deformation level, 
[5].  

We will illustrate this method using the material 
function obtained from torsional resonant column 
test performed upon rubber sample (Fig.7). 
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The restoring force of the nonlinear Kelvin-

Voigt torsional model is: 

( ) ( ) ( )
( ) ( )

, ,

            
el damQ Q Q

k c

θ θ = θ + θ θ

= θ ⋅θ + θ ⋅θ

& &

&

( ) ( )elQ kθ = θ ⋅θ

0 sin

 (38)

where  is the skeleton curve 
equation. 

For a certain amount of the excitation 
M M t= ω

0 cos tθ = θ ω

0 sin tθ = θ ω ω&

 the displacement response θ (after 
the dropping the transitory part) has the form: 

, (39)

and, then: 

. (40)

Therefore, by eliminating the time t between 
this two equations, (39) and (40), it follows: 

2
0θ = ±ω θ − θ& , (41)

and the restoring force (38) becomes: 

( ) ( ) ( ) 2
0Q k cθ = θ ⋅θ ± θ ⋅ω θ − θ

2.076 %

( ) ( )elQ kθ = θ ⋅θ

0θ

0θ

, (42)

where the sign "+" is for the superior branch of the 
hysteretic loop and the sign "-" for the inferior 
branch. 

For the deformation level  the 
hysteretic loop given by eq. (42) is illustrated in Fig. 
8. 

0θ =

For comparison, the Masing hysteretic loop for 
the same tested rubber, at the same amplitude level, 
built using the same skeleton curve 

 is given in Fig. 9.  
As we can see in Figs. 8 and 9, the geometrical 

aspect of these hysteretic loops is different. 
However, the damping value is directly connected 

with the loop area and not with its form. 
Fortunately, the loop area differences are not so 
obvious.  

This can be proved by computing the damping 
ratio for different amplitudes  and for each kind 
of hysteretic loop.  

The results for different  levels of such 
calculus, together with the corresponding ζ  
experimental values, are given in Fig. 10. As we can 
see in this figure a reasonable accuracy for NKV 
model was obtained. 

Therefore, we can conclude that the viscous 
NKV model can be used for damping evaluations of 
the hysteretic materials. 

 

 
 

 
 

Fig. 7 Torsional material function of a rubber sample 

Fig. 8  NKV hysteresis loop 

Fig. 9  Masing hysteresis loop 
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. 
4.3 Linearization 

In many engineering problems the generation 
and solving of large nonlinear systems is not 
justified. Also, in structural mechanics there are 
efficient computational methods, based upon of the  
linear body hypothesis, which is correct for the 
structures itself but is inadequate for the materials 
that work together with these structures (soils for 
example). There is the case of base-isolated 
structures too. For the base-isolated structures, the 
linear assumption is correct for a superstructure but 
incorrect for an isolated layer. 

 This reason justifies the attempt to replace the 
NKV nonlinear equation (31) by an equivalent 
linear one: 

sinυτc k′′ ′ϕ + ⋅ϕ + ⋅ϕ = μ ⋅%%  (43)

provided that no large difference between the non-
linear and equivalent linear solutions occur. 

By using a global linearization method in [5] the 
equivalent linear stiffness and damping coefficients 

 and   were obtained in the form: c% k%

( )

( )

0

2
0

1 d

2 d ,

m

m

m

m

c c

k k

ϕ

ϕ

= ϕ ⋅ ϕ
ϕ

= ϕ ⋅ϕ ⋅ ϕ
ϕ

∫

∫

%

%

 (44)

where: 

( ) maxmaxmϕ = ϕ τ = μΦ =
2

2

4

μ

c k - c%% %

m

c% k%

c% k%

. (45)

Because the integration limit ϕ  is function in 
terms of   and , from eqs. (44) a nonlinear 
system of two algebraic equations for the unknowns 

 and  is obtained. 

Thus, for instance, if the material functions 
( ) ( )kc ϕ  and ϕ  have the exponential form: 

( ) ( )
( ) ( )

1 2 3

1 2 3

exp

exp ,

c a a a

k b b b

ϕ = − ⋅ − ϕ

ϕ = + ⋅ − ϕ
 (46)

as in the tested rubber sample, by Eqs. (44) and (45) 
the following system follows: 

( )

( ) ( )

2
1 3 2

3

2
2

1 3 2 2
3

2exp 0
4

4exp 0
4

m m

m m m

aa a
a k c
b kb b
b c k c

μ⎧ ϕ + ⎡ − ϕ ⎤ − =⎣ ⎦⎪
−⎪

⎨ μ⎪ ϕ − ϕ ⎡ − ϕ ⎤ − =⎣ ⎦⎪ −⎩

% %

%

%% %

% k%

c% %

c% k%

(47)

This system can be numerically solved, [19] for 
different amplitudes μ and the equivalent linear 
values for c  and  are obtained. Thus, using this 
method for tested rubber a set of equivalent linear 
constants  and k  was obtained (Table 1) and the 
corresponding linearized magnification functions 
are given in Fig. 11.  

Table 1 Equivalent linear constants 

μ   
410−  0.030 198 
45 10−⋅  0.038 195 
310−  0.046 188 
35 10−⋅  0.080 154 
210−  0.103 132 
25 10−⋅  0.181 69 
110−  0.205 55 
15 10−⋅  0.225 31 

1   0.227     50 

 

Fig. 10  Check of the damping modeling 

Fig. 11  Linearized magnification functions 
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The comparison between the linearized (Fig. 11) 

and nonlinear (Fig. 12) magnification functions 
shows a reasonable agreement between the shape 
and values of the magnification curves.  

Therefore, the equivalent linear systems can 
satisfactorily approximate the nonlinear response.  

As can see in Table 1 and Fig. 11 the equivalent 
linear constants  and  are, in fact, functions of 
normalized excitation amplitude μ:  and 

. Thus, apparently, the linearized NKV 
model is a nonlinear model too, containing the 
nonlinear characteristic functions 

c% k%

( )c c= μ% %

( )k k= μ% %

( )c c= μ% %

( )k k= μ% %

and 

 (Fig. 13).  

 
However, changing the variable θ of the 

nonlinear problem with the new variable μ is more 
convenient, because θ is an unknown of the 
analytical solving method while the amplitude μ is 
not.  

 

4 Effects of the isolator layer 
nonlinearity on the period-shift 
Many of dissipative materials and devices used 

in antivibratory isolation systems exhibit a strong 
nonlinearity. See, for example, the result of a 
resonant column test performed upon rubber sample 
in Fig. 14  according to [6]. Using data from [13] in 
Fig. 15 the softening behavior of a rubber bearing 
isolator is illustrated. In Fig.16 we show the 
hardening behavior of a rubber-pendulum isolator 
computed with data given in [18].  

 

Fig. 14  Softening behavior of a rubber sample 

 
Fig. 15 Softening behavior of an LRB isolator 

 
Fig. 16 Hardening behavior of an isolator 

Fig. 12 Nonlinear magnification functions 

Fig. 13  Equivalent linear characteristics in terms of 
normalized excitation amplitude μ 
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In chapter 3, a first approximation of the period-
shift amount was based on the linear magnification 
functions, therefore on the linear behavior 
hypothesis for the base-isolated structure. In the 
example given in Fig 4, obtained by a numerical 
simulation, a structure was taken out from resonant 
conditions by a period-shift from T  up to  

. 
0 0.3=

0 0.5 sT =
 s

To put into evidence the linear-nonlinear and 
softening-hardening differences, another numerical 
simulation study was performed using the same 
structure from chapter 3 but with a nonlinear 
isolated layer.  

The nonlinear behavior was modeled by the 
nonlinear Kelvin-Voigt model presented in chapter 
5 and  the nonlinear material functions ( )k k x=

(
 

and )c c x=   were built using a test performed 
upon rubber (see [6]) and experimental data 
obtained for different isolators given in the technical 
literature, [1], [8], [13], [21], [25] (Fig. 18). 
 

 
Fig.18 Nonlinear material functions used for simulations  

 The abutment excitation used in this simulation 
process was of harmonic type: 0 sing gx x t= ω&&&&  with 
the amplitude values corresponding to peak ground 
acceleration observed during some earthquakes [20]. 

In order to compare the linear-nonlinear results 
and hardening-softening behavior, we used the same 
nonlinear damping function ( )xζ =  whose  initial 
value coincides with the 5% linear damping ratio 
(

ζ

( )0 xζ = ζ 0 0.05x= = ). In addition, the initial value 
of stiffness functions was put in correspondence 
with the natural period of the isolated-base 
structure: 

0 0
0

2 2
0 0

20.5 12.56

30,000 12.56

T s
T

k m

π
= ⇒ω = =

= ω = × =

 rad/s

4733 kN/m
 

The simulation results are summarized in Fig. 
19. In chapter 3, using the linear KV model, a 

period jump from 0.3 s to 0.5 s seems to be 
sufficient to take out the structure from the 
dangerous resonance zone. But, the nonlinear 
characteristics of the isolator layer change the linear 
period-shift estimation and can lead either to a 
dangerous shortening shift in the case of hardening 
nonlinearity or to unnecessary shift  enlargement, in 
the case of  softening nonlinearity. 

This simulation proves that by neglecting the 
period-shift dispersion, the main purpose of the 
base-isolation technology (that the drawing out of 
structure from dangerous resonant zone) can be 
compromised. Also, by neglecting the nonlinear 
aspects, a base-isolated structure may be thrown in 
resonant conditions even if the structural and 
isolated layer natural periods are different. 

 
Fig. 19  Nonlinear period-shift dispersion 

 
 
5 Effects of the soils nonlinearity on 

the period-shift 
The strong dependence of the soils dynamic 

properties on strain or stress level produced by 
external loads is very well known, [4].  

This nonlinear behavior is met for all site 
materials – more pronounced for soft degradated 
materials (soils) and more reduced for rocks 
materials.  

For example, some nonlinear dynamic material 
functions for two extremely different site materials, 
one for a soft material (clay) in Fig. 20 and another 
for rock material (limestone) in Fig.21, are 
presented. Certainly, between these extremes there 
are a lot of site materials with an intermediary 
behavior. 

As one can see from these experimental results, 
all of the site materials have the softening 
nonlinearity type. 

Using these material functions, the nonlinear 
magnification functions are obtained by nonlinear 

WSEAS TRANSACTIONS on
APPLIED and THEORETICAL MECHANICS

Dinu Bratosin

ISSN: 1991-8747 142 Issue 4, Volume 3, April 2008



simulations, as we can see in Figs. 22 for clay, and 
in Fig.23 for limestone.  

Fig. 20  Material functions for a clay sample 

Fig. 21  Material functions for a limestone sample 

 

 
Fig. 22 Typical nonlinear magnification functions for clay 

Fig. 23 Typical nonlinear magnification functions for 
limestone 

As expected, it follows that the softening 
nonlinearity type of all site materials leads to the 
enlargement tendency of the period-shift, more 
pronounced at soils and more reduced at rocks.   

In addition, one can remark that all these site 
materials have a large damping capacity.  
 
 
6 Concluding remarks 
• The magnification functions proved to be a 

proper tool for the necessary period-shift 
assessment.  

• The period-shift from a fixed-base to an isolated 
base of the same superstructure depends on the 
nonlinear characteristics of the isolator and site 
layers.   

• The resonant amplitude peaks of the nonlinear 
magnification functions are displaced towards 
low periods for hardening stiffness materials 
and towards high periods for softening stiffness 
materials. 

• The peaks dispersion can lead to dangerous 
shortening or to unnecessary lengthening of the 
linear shift evaluation.  

• The linear shift estimation must be corrected 
due to the nonlinear characteristics of the 
isolator layer and site materials.  

• By neglecting the period-shift peak dispersion 
due to nonlinear effects and using only the 
linear calculus, the main purpose of the base-
isolation technology (the drawing out of 
structure from dangerous resonant zone) can be 
compromised. 

• In addition, by neglecting the nonlinear aspects, 
a base-isolated structure may be thrown in 
resonant conditions even if the structural and  
isolated layer natural periods are different. 
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