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Abstract: - The paper presents considerations concerning static and dynamic stability of metallic bunker on  
environmental engineering. There are presented theoretical considerations and experimental results concerning the shock 
wave velocity / dynamic pressure, the shock wave influence on the bunker’s walls deformation and long term stability. 
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1 Introduction 
The Air Blaster Devices (ABD) are used extensively 
to prevent the blockage of bulk material in the 
bunker, and to determine the flow of bulk materials 
from storage bunker/hopper/silo/bin. 
     The bulk materials are represented by solid or 
powder material (for large electro-thermal plants, for 
metal moulding; for cement plants; raw materials for 
metallurgy), viscous materials in food industry, or 
dust filtering system for belt conveyors. 
     In a National Research Institute in Craiova were 
made several ABD consisting in 0,012m3, 0,020 m3, 
0,050 m3, 0,100 m3, and 0,150 m3 vessel capacity. 
     The raw material type and the bunker’s dimension 
determine the size and the number of ABD on the 
bunker’s walls that can be made in metallic structure 
or in concrete structure (Fig.1 to Fig.6). 
     In principle, the ABD is composed in a pressured 
gas vessel  with a special electrical pneumatic fast 
valve due to the compressed gas initial stocked into 
the vessel can be supersonic velocity discharged.[12] 
 

 
Fig. 1. Small and large capacity ABD mounted  
on the metallic wall of dozing weighting bunker  

for raw materials storage in cement plant 

     In order to optimize the compressed air consume, 
to decrease the initial investment costs and 
maintenance costs, and to decrease the dynamic 
loads in the walls of the bunker, there were made 
small and large capacity air blaster devices with two 
opposite pneumatic fast valve (Fig.2).[10,12] 
 

 
Fig.  2. Small capacity ABD with two opposite   

electro-pneumatic fast valve (mounted on metallic 
wall of bunker for sand storage in cement plant) 

 

 
Fig. 3. Large capacity ABD mounted on the 

metallic wall of bunker for coal storage  
in large electro-thermal plants 
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Fig.  4. Small capacity ABD mounted on the wall 

of coal dust filtration system for belt conveyor  
in large electro-thermal plants 

 

 
Fig.  5. Small capacity ABD mounted on the 

metallic wall of bunker for sand storage  

in metal moulding plant 
 

 
Fig. 6. Small capacity ABD mounted on the 

metallic wall of bunker for viscous raw  
materials processing in beer plant 

     The ABD utilizing have to consider for each 
industrial application both the bulk material properties 
(density, granulation, humidity, adhesive properties 
with the bunker’ walls, abrasion, corrosion, storage 
time period, properties changes due to storage 
temperature) and the characteristics of the metallic 
bunker (size, geometrical configuration, nominal bulk 
material quantity into the bunker, rigidity elements, 
wall thickness, real period of exploitation, wear grade 
due to the corrosion and abrasion conditions, 
maintenance quality).  
     The most important parameter for a safety static 
and dynamic stability of the bunker is the walls 
thickness, which could be reduced due to corrosion 
and abrasion conditions, atmospheric factors, and 
low maintenance quality.  
     The efficiency of this method for bulk materials 
unblocking has to consider the environmental 
protection during the entire duty fife of the bunker. 
 
 
2  Consideration concerning the shock 
    wave velocity          
Technical applications usually called air cannon 
/air blaster are based on the expanding effect of the 
compressed gas wave shock discharged with high 
velocity from a storage vessel. During this fast 
process, the gas flow is characterized by high rate 
pressure variation; therefore there is no heat 
exchange with the outside environment, and the 
flow process can be considered adiabatic [4, 6].  
     For adiabatic process, with Bernoulli equation 
for compressible fluids, it results:  
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where po and ρo are the initial parameter of the 
gas; p and ρ are the final parameter of the gas;  
k is the adiabatic coefficient; vo is the initial gas 
velocity ( in the storage vessel vo = 0) . 
     In contrast with slow / static adiabatic  
transformations, which are isentropic (the 
entropy S is constant), the dynamic adiabatic 
transformations are irreversible, then it take place 
with entropy increasing by means of the internal 
heat stored by gas due to viscosity.  
     Neglecting the viscosity force, it can be 
considered that the motion is isentropic, this 
hypothesis being admissible for air blaster discharge 
phenomena. 
     When the compressed gas (initial parameter     
po, ρo, To) is discharging from a storage vessel 
through a nozzle in the atmosphere (characterized 
by parameter pat, ρat, Tat), the gas velocity is 
determined with relation [4, 6]: 
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     Considering the initial parameter and the final 
parameter of the blasting air (k = 1,4 ;  po = 5 - 10 bar; 
pat = 1 bar; To = Tat = 293 °K), the velocity of the 
pressured discharged gas is presented in Table 1.[4,6]  
                                                                  Table 1 

po  [bar] 5 6 7 
ρo  [kg/m3] 5,946 7,135 8,324 

v  [m/s] 465,8 485,6 501 
po  [bar] 8 9 10 
ρo  [kg/m3] 9,522 10,713 11, 903 

v  [m/s] 513,2 523,6 532,4 
 

     Qualitative and quantitative evaluation of 
characteristic dimensions of the round free jet permit 
to determine the main manufacturing dimensional 
parameters of convergent - divergent nozzle which is 
able to direction the compressed air shock wave to 
the bulk material inlet the bunker: b - distance from 
the jet pole; xo - length of initial zone; α - angle of jet 
action (Fig. 7). 
     The theoretical considerations concerning the air 
discharge from the stocking vessel take into account the 
similitude with the flow process into a round free jet. 
     This free jet is a gas current that freely penetrates 
(with no wall restriction) into an environment of the 
same or different gas (the flow in jet is generally 
turbulent, particles of the discharged gas getting out its 
limits, with neighbouring gas particles taking their 
place; a mass gas transfer with the exterior is 
achieved). The jet's range is the length where the 
kinetic energy of gas is not greater then the viscosity 
forces and therefore the swirling flow disappears.   

 
Fig. 7. Circular jet geometry 

     The characteristic dimensions of a jet circular are: 
initial velocity vo; shape of the discharge nozzle; length 
of the initial zone xo;  jet range xlim; convergence angle 
of the initial zone αo;  the enlarging jet border angle α; 
gas debit in initial section Qo ; jet pole b; jet radius Rgr. 
     The initial section of the discharging nozzle is the 
circular section in which the medium velocity vo of the 
jet is realized.  
     The environment velocity ve can be equal to zero, 
bigger or smaller than vo; for ve = 0, the jet is 
considered to be free. 
     The velocity in the jet's axe vx depends by the initial 
velocity vo and by the distance x. For x < xo, the 
velocity vx = vo, and for x > xo the velocity vx depends 
of distance x. The velocity in the transversal jet section 
vy is the velocity at distance x and at the level y, 
depends by the velocity vx and level y. Theoretical and 
experimental researches determine the relation: 

       ( )[ ]22/3/1/ groy Ryvv −= ,                            (3) 
where Rgr is the jet’s radius limit for x > xo. 
     Due to the symmetric axial jet law, the impulse has 
the same value in any section. Using the notation vy 
the velocity in a certain point, I the impulse, and mo 
the masse passing through the elementary surface dA 
from the jets section in the time unity, it obtained: 
       2222 ooo

R

o y RvydyvI gr πρρπ == ∫ ,           (4)  

here the jet’s radius limit Rgr is obtained with the 
relation: 
       ( )xoogr vvRR /3,3= ,                         (5) 
where Ro is the jet’s source radius. 
     The medium velocity of jet vm is determined 
knowing that the medium flowing velocity in a section 
A is obtaining from the continuity equation: 
       )/(/ 2

grm RQAQv π== .                             (6) 
     Because in the initial section the velocity value is 
obtained with the relation )/(/ 2

oo RQAQv π== , 
with relation (4) is obtained ( )oxom vvvv /2,0/ = .    
     Using the above presented relations, for initial 
storage pressures in the vessel po = 5 - 10bar, the 
following results were obtained for free circular jet:  
the jet range xlim = 1,1 - 2,3m; the conical jet border 
angle α = 60 - 70°; the jet diameter Dgr = 1,4m for 
jet range xlim = 1m, and Dgr = 2,5m for jet range            
xlim = 2,3m; the medium velocity vm in the jet 
transversal section up to equivalent velocity of 
80…100km/h. 
     These theoretical considerations determined a 
new air blaster technical application which takes into 
account the important role held by wind action in the 
fruits harvest, whose velocity/intensity determines 
the falling /dropping of the fruits. [7, 9]  
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     An unconventional and ecological equipment was 
designed to replace the effect of the windblasts, with 
orientated air blaster shock waves (with adjustable 
velocity / intensity), which replace the velocity and 
orientation of strong winds. 
     This new ecological equipment is proposed to 
replace the traditional harvesting machines which 
produce strong vibrations to the tree. During 
harvesting with the traditional vibration machines, 
the vibrations cause severe damage to the roots of 
the tree, and the scratching of the tree trunk causes 
the premature drying of the tree. [7, 9]  
     Fig.8 presents the main component of the 
experimental equipment for Modular Equipment for 
Nuts Harvesting by Pneumatic Impulses, made in 
Unconventional Equipment and Technologies for the 
Agro-Food Industry Laboratory, at the Faculty of 
Horticulture in the University of Craiova. [7, 9] 
 

 
  Fig. 8. Experimental equipment for  

Modular Equipment for Nuts Harvesting 
                             by Pneumatic Impulses 
 

     In order to permit a maximum visibility during the 
harvest operations, this modular equipment was 
mounted in front of the tractor structure.  
      To optimize the blasting gas working parameter, a 
supplementary air compressor was mounted in the 
pneumatically circuit.  
      After two years of experiments made with this 
modular equipment on nutty fruits, on apple and plums 
for industrialization, there were observed no damages 
in the tree fruity branches.      

3 Consideration concerning the 
shock wave dynamic pressure 

In order to determine the dynamic pressure 
produce by ABD, was made an experimental 
installation, in principle, consisting in a conical 
nozzle (Ømax / Ømin = 300/100mm; h = 250mm) 
with a metallic round flange mounted at the large 
base, respectively in direct connection with the 
circular nozzle of the ABD’s vessel. 
      The size and the dimension of the conical nozzle 
are similar with the discharging zone in the bunker. 
On the metallic round flange were disposed three 
pressure transducer connected with an amplifier 
device to a data acquisition system, respectively an 
acceleration transducer connected with another 
amplifier device and data acquisition system.  
     The dynamic pressure pdin, the shock wave 
acceleration asw and the specific energy of the 
shock wave Esw, determined for initial compressed 
gas (air+nitrogen) pressure po in the ABD 0,050m3 
vessel capacity are presented in Table 2. [4, 5, 6]  

                                                               Table 2 
 po [bar]  pdin [bar/s]  asw [m/s2]  Esw  [J ] 
      5    582      28,5   86  
      6    634      37,3  104  
      7    697      49,4  143  
      8    776      61,2  197  
      9    845      74,8  265  
     10    938      85,6  323  

      

     In Fig. 9 are presented the dynamic pressure 
evolution (from maximum to zero) and the shock 
wave duration for an initial pressure in storage 
vessel po = 5 bar, for 0,8s total shock wave 
duration. [3, 5, 7]   

 
Fig. 9. Dynamic pressure evolution for 0,8s  
shock wave duration, produced by initial 

pressure po  = 5 bar in storage vessel   
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      In Fig. 10 are presented the dynamic pressure 
evolution and the shock wave duration for an 
initial pressure in the storage vessel po = 5 bar, for 
0,15s shock wave duration.  

 
Fig.  10. Dynamic pressure evolution for 0,15s 

shock wave duration, produced by initial 
pressure po = 5 bar in the storage vessel 

 

      In Fig. 11 are presented the dynamic pressure 
evolution and the shock wave duration for an initial 
pressure po = 8 bar, for 0,15s shock wave duration.  
      In Fig. 10 and Fig. 11 it is observed that during 
the 0,05s shock wave’s total evolution, the 
maximum dynamic pressure is followed by three 
reflected waves of the dynamic pressure, 
representing 30…60% in rapport with the 
maximum value of the incident shock wave.  
      The incident shock wave and the reflected 
shock wave energies determine the unblocking of 
the bulk material in the bunker, or cleaning the 
flexible elements in dust filtration system for belt 
conveyor in coal large plants. 
 

Fig.  11. Dynamic pressure evolution for 0,15s 
shock wave duration, produced by initial 
pressure po = 8 bar in the storage vessel   

4 Consideration on elastic deformation 
     influence of bunker wall stability 
The analytical method takes in consideration the 
possible deformation of a bunker’s walls. To confer 
static stability of the metallic structure, the bunker’s 
walls are considered embedded squared plates. 
     The method described in this paper permits to 
evaluate each plate which is a part of the 
parallelepiped structure, considering each adjacent 
plate as a rigid boundary support (embedded 
boundary support).[1,3,4,11] 
     The method assumes that any angular 
deformation of the structure is similar with the 
angular deformation of the boundary support 
elements that represent assembled lateral edge and 
this deformation angle depends with the edge length. 
     Taking in consideration that the deformations 
plates loaded by compression stresses are smaller 
then the deformations produced by the bending 
moments, the method considers that the dimensions 
and the shape of each plate is not modified in their 
plane, and the edges shape of the parallelepiped 
bunker structure is not modified. 
     Under the external loads, each plate can be 
deformed in x and y planes, the total deformation 
can be described by wi(xy).    
     Considering that each plate contour is an 
embedded boundary support, the deformation on 
contour of each plate is given by the function 
(continuity condition) [1,3,11]:    
               iw 0= .                                                    (7) 
     The continuity conditions for the horizontal edge 
boundary and for the vertical edge boundary are 
given by the relations: 
               0ww
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where 2a1 · 2b1 , 2a2 · 2b2 , 2a3 · 2b3 , 2a4· · 2b4  and 
2a5 · 2b5 represent the dimensions of the bunker’s 
squared plates.  
     The deformation wi can be determined with the 
relation 

     '
i0ii www +=                                          (12)  

where wi0 is the elastic deformation produced by the 
plate’s weight, and the '

iw represents the same plate’s 
deformation produced by the moments on the 
boundary support. 
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     In order to determine the admissible pressure in 
the parallelepiped bunker (dimensions length a, 
width b, height c; walls’ thickness h; admissible 
strength of walls’ material σadm), the spatial structure 
must consider fixed edges and for each edge must be 
considered an embedded factor.  
     If for i plate the embedded factor Nk is 
considered, for the boundary plate on the same 
support has to be considered the embedded factor 

,
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the second plate’s dimensions on the normal 
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     According the symmetry conditions, results only 
three factors systems Ak,, Bk,, Ck. (k with no-par 
values) that can be determined (assuming the 
parameter  q = 1 and q = 3), with the relations: 
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where qξ are determined using the relation (13) and 

qα  şi qβ  are determined using the relations 
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and Rqk are determined with the relation 
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     The equation system to determine the embedded 
factors Ak,, Bk,, Ck  , have to consider the values for q 
= 1,3,5..., and r = 2,4,6..., respectively [3,11]. 
     For the horizontal edges a: 
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     For the horizontal edges b: 
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     For the vertical edges c: 
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     After several transformations there are obtained the 
following 6 equations (25-30): 
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     Knowing the bunker’s dimensions a,b and c, 
using the relations 13, 16, 17 and 18, can be 
determined Rij and 313131 ,,,,, ξξββαα ; then using 
the relations 25-30, the embedded factors A1, A3, B1, 
B3, C1, C3  are obtained. 
     The elastic deformation of each squared plate 
stressed by a linear distributed load is given by the 
relation
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where D represents the bending rigidity of the plate 
determined with the relation: 

         ( )2

3

112
hED
µ−

=                                            (32) 

     The maximum elastic deformation on the vertical 
plane of the bunker’s wall (waxc) is determined with 
the relation:  
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     The maximum elastic deformation on the vertical plane 
of the bunker’s wall (wbxc) is determined with the 
relation

( )
( )










×

+

++−
−

= ∑
∞

×
...5,3,1 4

4

4
4224

3

2

cb

c2
bqchq

a2
xaqsinc1536c5xc6x

Eh2
1pw π

π

π
µ

+













+








+−×

c2
qysh

c4
y

c2
qych

c2
qbth

c4
b

q
1 πππ
π

∑
∞










+






 +

⋅
⋅

+
−






 +

⋅





×





 +

⋅+
...5,3,1

q

b
cqch

b
xc

2
qch

c2
xc

b
cqsh

b
xc

2
qsh

b
yb

2
qsinA

π

π

π

π
π

+















 −

⋅
⋅

−
−







 −

⋅
+

b
cqch

b
xc

2
qch

c2
xc

b
cqsh

b
xc

2
qsh

π

π

π

π

(34)

−















 +

⋅






 +

⋅+

c
bqsh

c
yb

2
qsh

c
xc

2
qsinC q

π

π
π

.

b
bqsh

c
yb

2
qch

b2
yb

c
bqsh

c
yb

2
qsh

c
bqch

c
yb

2
qch

b2
yb

























 −

⋅
⋅

−
+






 −

⋅
+






 +

⋅
⋅

+
−

π

π

π

π

π

π

 

     The pressure determined by the bulk material 
stored in the bunker can be determined with the 
approximative relation 
       Hbbm R55p ⋅≈ ρ ,                                           (35) 
where bmρ  represents the bulk material density, and 
RHb represents the hydraulic radius/factor of the 
bunker, determined with relation 
       RHb = Ab / Bb ,                                                 (36) 
where  Ab is the transversal area of the bunker, and 
Bb is the bunker’s perimeter. 
     In order to establish the correctitude of the 
described analytical method to determine the elastic 
deformation of the bunker’s walls, a new made 
bunker for coal storage was chosen. 
     The bunker’s shape presented in Fig.3 is an 
irregular pyramid with maximum height cmax   = 12m, 
variable length amin/amax  =1,5/7,5m, and variable width 
bmin/bmax  = 3/6m; walls’ thickness h =10mm. 
     To prevent the material’s blocking, on three sides of 
the bunker 0,050m3 and 0,150m3 capacity ABD are 
placed on 4 height equal levels (clevel  = 3m).  
     An experimental method was set to measure the 
elastic deformation of the walls when the bunker 
contains bulk material that is blocking the bunker, 
and when the material in the bunker is free to flow 
with no hazard of bunker blocking. 
     This experimental method permits to determine 
the supplementary elastic deformations produced by 
the shock waves during the bunker unblocking 
process, too. 
     In Table 3 are presented the values obtained for 
the elastic deformation waxc of vertical plane ca × , 
determined using the analytical method (ALM), and 
the experimentally method (EXM), respectively. 
                                                                     Table 3 

Elastic deformation waxc [mm]Level a [m] 
      ALM       EXM 

1 1,5 2,4 2,8 
2  3 4,1 4,6 
3 4,5 5,7 6,3 
4 7,5 7,3 8,1 
    

        In Table 4 are presented the values obtained for 
the elastic deformation wbxc of vertical plane cb× , 
determined using the analytical method (ALM), and 
the experimentally method (EXM), respectively. 
                                                                    Table 4 

Elastic deformation wbxc  [mm]Level b [m] 
        ALM          EXM 

1 3 1,9 2,1 
2 4 3,6 4,2 
3 5 4,8 5,4 
4 6 6,2 7,0 
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     In Table 3 and Table 4 can be observed that the 
experimentally method values are 10-15% larger 
then the values obtained with analytical method. 
     In Table 5 are presented the supplementary elastic 
deformations the shock waves during the bunker 
unblocking process (waxc,s and wbxc,s) on ca × and 

cb× squared plates, produced by several initial 
pressure shock waves during the bunker unblocking 
process. The table presents also the total deformation 
of the wall experimentally determined wtot.    
                                                                        Table 5 

Supplementary deformation [mm] Level p0[bar] 
 waxc,s   wtot,bxc  wbxc,s  wtot,bxc 

1  6 
 8 
10 

1,1 
1,4 
1,8 

 3,9 
 4,2 
 4,6 

0,9 
1,1 
1,4 

3,0 
3,2 
3,5 

2  6 
 8 
10 

2,2 
2,6 
2,9 

 6,8 
 7,2 
 9,5 

1,8 
2,1 
2,5 

6,0 
6,3 
6,7 

3  6 
 8 
10 

3,1 
3,6 
4,2 

 9,4 
 9,9 
10,5 

2,6 
3,2 
3,9 

8,0 
8,6 
9,3 

4  6 
 8 
10 

4,6 
5,0 
5,6 

12,7 
13,1 
13,7 

4,3 
4,6 
5,1 

   11,3 
   11,6 
   12,1 

      
 

      In Table 5 can be observed that the total 
deformation of the wall is comparable with the wall’s 
thickness and this confirm the justness of the small 
deformation theory which was used [1,11]. 
     In the same time is observed that the wall 
thickness decreasing due to the corrosion and 
abrasion common action can determine the 
deformation increase that cause important damages of 
the bunker structure which could determine high 
impact problems on the environment. 
 
 
5   Consideration on the shock wave 
     influence on bunker wall stability 

A global evaluation of bunker stability has to take into 
account the real thickness of the walls, which in principle, 
is reduced by the abrasion phenomena between bulk 
material and the walls, by the internal and external 
corrosion phenomena (determined by the bulk material 
chemical characteristics and by the atmospherically 
conditions) and low maintenance quality.  
     The real thickness of the walls is determined with 
drilling method for metallic bulk material inlet the 
bunker, and with ultrasonic method for nonmetallic 
material inlet the bunker. 
     To prevent the wall deformation due to the 
dynamic load produced by the shock wave, the 

ABD’s discharge pipe is assembled to the wall using 
a increasing rigidity element (round or square plate 
welded on the bunker’s wall are presented in Fig.1 - Fig. 6). 
     Many industrial applications need to determine 
the bunker’s stability stressed by the static loads 
produced by the material’s weight and by the 
dynamic loads produced by the ABD’s shock wave. [1, 3]  
      According with relations 33 and 34, the 
maximum bending moments in the median plane of 
the squared plate ( ca ×  or cb× ) can be determined 
using the relations:   
   2

max,y ap45,0M ⋅=  or  2
max,y bp45,0M ⋅= , (37) 

where p represents the pressure produced by the 
material stored in the bunker. 
     The equivalent strength in the wall material can 
be evaluated using with relation    

       adm2
maxy

ech h

M6
σσ ≤= .                             (38) 

     In FEM the theoretical considerations for static 
stress take into account the small deformation and 
the linear material deformability hypothesis. 
     In FEM the high velocity deformation theory for 
dynamic stress is based on elastic-plastically model 
of the material: the material has a linear elastic 
evolution up to the yield limit and for elastic - 
plastically deformation has to be considered the total 
Lagrange formulation. [2, 8]  
     The total Lagrange formulation analyzes admits 
large deformations and needs to consider the 
isotropic hardness of the material, especially due to 
the deformation velocity. [2] 
     In order to determine von Misses equivalent 
strength in the wall material, the nonlinear analyze 
for the elastic-plastically deformation of the metallic 
bunker wall has to consider the following 
hypothesis:  
- the dynamic load is represented by the dynamic 
pressure produced by ABD;  
- the adjacent corner zone of the walls is with axial-
symmetrical elements, with linear elastic deformation;  
- the deformable plate considered  two opposite 
sides embedded PLANE2D with linear deformation, 
with isotropic hardness of the material and GAP 
element contact, with no friction.  
     In the dynamic nonlinear analysis, for a quick 
convergence, the Newton - Raphson method was used 
and, as an integration method, the Newmark method 
with Rayleigh amortization factor for maximum 0,8s 
time range, divided in an increment  DTmin =1E-5 and 
DTmax=5E-3, was used too [2,4,5,6,7]. 
      The von Misses equivalent strength determined 
with FEM for the bunker presented in Fig.3 are 
presented in Fig. 12 and Fig. 13.  
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Fig. 12. The von Misses equivalent strength in 

bunker wall unblocked by four ABD symmetrical 
disposed (in lower level 2 ABD 0,050m3 capacity; 

in upper level 2 ABD 0,150m3 capacity),  
actuated by 8 bar initial pressure 

 

 
Fig. 13. The von Misses equivalent strength in 

bunker wall unblocked by seven ABD 
symmetrical disposed (in lower level 2 ABD 
0,050m3 capacity; in medium level one ABD 

0,050m3 capacity; in upper level 2 ABD 0,050m3 
capacity; higher level 2 ABD 0,150m3 capacity), 

actuated by 8 bar initial pressure 
 
 

6   Conclusion 
In many industrial activities due to bulk materials 
characteristics the storage or dozing process can be 
blocked into the bunker. To prevent the bunkers’     
blocking or to assure the flow continuity of the 
material from the bunker is usually used the Air 
Blaster Devices that are fixed on the bunkers’ walls. 
     The maximum values of the dynamic pressure of 
the shock wave produced by Air Blaster Device 

determine dynamic loads both to the bulk material 
inside the bunker, and to the bunker’s walls, too. 
     To prevent any damages on the bunker’s 
structure are necessary experimental measures to 
determine the ware degree of the bunker’s walls. 
     The real thickness of the walls is necessary to 
evaluate the static and the dynamic stability of the 
bunker using analytical and numerical methods to 
predict the over deformation of the bunker’ walls 
and to prevent environmental impact hazards. 
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