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Abstract: - An original approach to compute the longitudinal tensile break stress of multiphase composite 
materials with short fibers reinforcement is presented. The most obvious mechanical model which reflects a 
multiphase composite material is a pre-impregnated material, known as prepreg. In the class of prepregs the 
most known are Sheet- and Bulk Molding Compounds (SMCs and BMCs). The model is seen as consisting of 
three phase compounds: resin, filler and fibers, model that is reduced to two phase compounds: substitute 
matrix and fibers. The Sheet Moulding Compounds reinforced with discontinuous and almost parallel fibers, 
subjected to longitudinal tensile loads, presents a specific note by the existence of a shear mechanism between 
fibers and matrix. This shear mechanism transfers the tensile load through the fibers. The Young’s moduli for 
the substitute matrix and for the entire composite are computed and a comparison between the theoretical 
approach and the experimental data is accomplished. The paper presents also an original homogenization 
method to predict the elastic properties of these materials. The upper and lower limits of the homogenized 
coefficients for a 27% fibers volume fraction SMC are computed. It is presented a comparison between the 
upper and lower limits of the homogenized elastic coefficients of a SMC material and the experimental data. 
The estimation model used as a homogenization method of these heterogeneous composite materials, gave 
emphasis to a good agreement between this theoretical approach and experimental data. 
 
Key-Words: - Prepregs, Sheet Molding Compounds, Substitute matrix, Homogenization, Heterogeneity, 
Estimation method, Elliptic equations, Elastic coefficients. 
 
 
1 Introduction 
The most obvious mechanical model which features 
a multiphase composite material is a pre-
impregnated material, known as prepreg. In the 
wide range of prepregs the most common used are 
Sheet- and Bulk Molding Compounds. A Sheet 
Molding Compound (SMC) is a pre-impregnated 
material, chemically thickened, manufactured as a 
continuous mat of chopped glass fibers, resin 
(known as matrix), filler and additives, from which 
blanks can be cut and placed into a press for hot 
press moulding. The result of this combination of 
chemical compounds is a heterogeneous, anisotropic 
composite material, reinforced with discontinuous 
reinforcement [1], [2], [3]. 

A typical SMC material is composed of the 
following chemical compounds: calcium carbonate 
(36.8% weight fraction); chopped glass fibers 
rovings (30% weight fraction); unsaturated 

polyester resin (18.4% weight fraction); low-shrink 
additive (7.9% weight fraction); styrene (1.5% 
weight fraction); different additives (1.3% weight 
fraction); pigmented paste (1.3% weight fraction); 
release agent (1.2% weight fraction); magnesium 
oxide paste (1.1% weight fraction); organic 
peroxide (0.4% weight fraction); inhibitors (0.1% 
weight fraction). The matrix (resin) system play a 
significant role within a SMC, acting as compounds 
binder and being “embedded material” for the 
reinforcement. To decrease the shrinkage during the 
cure of a SMC prepreg, filler (calcium carbonate) 
have to be added in order to improve the flow 
capabilities and the uniform fibers transport in the 
mold. For the materials that contain many 
compounds, an authentic, general method of 
dimensioning is hard to find. In a succession of 
hypotheses, some authors tried to describe the 
elastic properties of SMCs based on ply models and 
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on material compounds [4], [5], [6]. The glass fibers 
represent the basic element of SMC prepreg 
reinforcement. The quantity and rovings’ orientation 
determine, in a decisive manner, the subsequent 
profile of the SMC structure’s properties. There are 
different grades of SMC prepregs: R-SMC (with 
randomly oriented reinforcement), D-SMC (with 
unidirectional orientation of the chopped fibers), C-
SMC (with unidirectional oriented continuous 
fibers) and a combination between R-SMC and C-
SMC, known as C/R-SMC. 

The following informations are essential for the 
development of any model to describe the 
composite materials behaviour [7]: the thermo-
elastic properties of every single compound and the 
volume fraction concentration of each compound. 

Theoretical researches regarding the behaviour 
of heterogeneous materials lead to the elaboration of 
some homogenization methods that try to replace a 
heterogeneous material with a homogeneous one 
[8], [9], [10]. The aim is to obtain a computing 
model which takes into account the microstructure 
or the local heterogeneity of a material. The 
homogenization theory is a computing method to 
study the differential operators’ convergence with 
periodic coefficients [11], [12]. This method is 
indicated in the study of media with periodic 
structure like SMCs and BMCs. The matrix- and 
fillers elastic coefficients are very different but 
periodical in spatial variables. This periodicity or 
frequency is suitable to apply the homogenization 
theory to the study of heterogeneous materials. 
 
 
2 Tensile Behaviour Model of a SMC 
Material 
A SMC material can be regarded as a system of 
three basic compounds: resin, filler and 
reinforcement (fibers). We can consider the resin–
filler system as a distinct phase compound called 
substitute matrix, so a SMC can be regarded as a 
two phase compound material (fig. 1). This 
substitute matrix presents the virtual volume 
fractions  for resin and  for filler. These 
virtual volume fractions are connected to the real 
volume fractions  and , through the relations: 
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It is known that during the manufacturing 

process of a SMC, there is dependence between the 

production line speed and the fibers plane 
orientation on its advance direction. So, this 
material can be assumed to have the fibers oriented 
almost parallel to the production line of the SMC. 
Due to the longitudinal tensile loading, the SMC 
strain (εC) is identical with the substitute matrix 
strain (εSM) and fibers strain (εF), see fig. 2. 
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Fig.1. Schematic representation of resin-filler 
system 

 
Assuming the fact that both fibers and substitute 
matrix present an elastic linear behaviour, the 
respective longitudinal stresses are: 

,CFEFFEF εεσ ⋅=⋅=    (2) 

.CSMESMSMESM εεσ ⋅=⋅=    (3) 
The tensile force applied to the entire composite is 
taken over by both fibers and substitute matrix: 

SMPFPP +=      (4) 
or: 
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where σC is the medium tensile stress in the 
composite, AF is the net area of the fibers transverse 
surface, ASM represents the net area of the substitute 
matrix transverse surface and SMAFACA += . 

The ratio: F
C

F V
A
A

=  is the fibers volume fraction 

and FSM
C

SM VV
A

A
−== 1  represents the substitute 

matrix volume fraction, so that (5) becomes: 
).1( FSMFFC VV −⋅+⋅= σσσ   (6) 

Taking into account (2) and (3) and dividing both 
terms of (6) through εC, the longitudinal elasticity 
modulus for the composite is: 

).1( FSMFFC VEVEE −⋅+⋅=   (7) 
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Fig. 2. Schematic representation of stress-strain 
behaviour of a SMC material 

 
Equation (7) shows that the value of the longitudinal 
elasticity modulus of the composite is situated 
between the values of the fibers- and substitute 
matrix longitudinal elasticity moduli. In general, the 
fibers break strain is lower than the matrix break 
strain, so assuming that all fibers present the same 
strength, their break lead inevitable to the composite 
break. According to equation (6), the break strength 
at longitudinal tensile loads of a SMC material, is: 

),1(' FSMFbFbC VV −⋅+⋅= σσσ   (8) 
where σbF is the fibers break strength and σSM’ 
represents the substitute matrix stress at the moment 
when its strain reaches the fibers break strain (εSM = 
εbF). 

Assuming that the stress-strain behaviour of the 
substitute matrix is linear at the fibers break strain, 
(8) becomes: 

).1( FbFSMFbFbC VEV −⋅⋅+⋅= εσσ   (9) 
The estimation of the substitute matrix longitudinal 
elasticity modulus in case of a heterogeneous 
material like SMC, obtained by mixing some 
materials with well defined properties, depends both 
on the basic elastic properties of the isotropic 
compounds and the volume fraction of each 
compound. If we note down Er the basic elastic 
property of the resin, Ef the basic elastic property of 
the filler, Vr the resin volume fraction and Vf the 
filler volume fraction, the substitute matrix 
longitudinal elasticity modulus can be estimated 
computing the harmonic media of the basic elastic 
properties of the isotropic compounds, as follows: 
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A SMC material reinforced with discontinuous 
almost parallel fibers, subjected to longitudinal 
tensile loads, presents a particularity by the 
existence of a shear mechanism between fibers and 
matrix, mechanism that transfer the tensile load to 
the fibers. Due to a difference between the substitute 
matrix longitudinal strain and the fibers strain, a 
shear stress along the fiber-substitute matrix 
interface occurs. 

The normal stress distribution in a 
discontinuous fiber can be computed, considering an 
infinitely small portion dx at the distance x from one 
fiber end (fig. 3) [13]: 
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where: σF  is the fiber longitudinal stress at the 
distance x from one of its end, dF  is the fiber 
diameter and τi represents the shear stress at the 
fiber-substitute matrix interface. Assuming τi 
constant, σF = 0 at the distance x = 0 and integrating 
(12), we get: 
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The maximum fiber stress can be reached at a 

distance 
2
Tlx =  from both fiber ends, lT being the 

load transfer length and represents the fiber 
minimum length in which fiber maximum stress is 
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reached [13]: 

.2max
Fd
Tl

iF ⋅= τσ               (14) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Stresses distribution in a discontinuous fiber 

 
From (14) we may compute a critical fiber length 
for given dF and τi: 
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Taking into account the normal stress distributions 

also near the fiber ends (for 
2
Tlx 〈 ) then a medium 

stress in fiber can be computed: 
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If the fiber length is greater than its critical length 
(lF > lcritical), replacing σmax F = σbF and lT = lcritical , 
the longitudinal break strength of a SMC material 
can be computed as follows: 
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3 A Homogenization Method  
We consider Ω a domain from R3 space, in 
coordinates xi, domain considered a SMC composite 
material, in which a so called substitute matrix 
(resin and filler) is represented by the field Y1 and 
the reinforcement occupies the field Y2 seen as a 
bundle of glass fibers, (fig. 4). 

Let us consider the following equation [14]: 
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or under the equivalent form: 
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In the case of SMC materials that present a periodic 
structure containing inclusions, aij(x) is a function of 
x. If the period’s dimensions are small in 
comparison with the dimensions of the whole 
domain then the solution u of the equation (19) can 
be considered equal with the solution suitable for a 
homogenized material, where the coefficients aij are 
constants. 

In the R3 space of yi coordinates, a 
parallelepiped with  sides (fig. 4) is considered, 
as well as parallelepipeds obtained by translation 
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can be defined, where η is a real, positive parameter. 
Notice that the functions aij(x) are ηY-periodical in 
variable x (ηY being the parallelepiped with  
sides). If the function f(x) is in Ω defined, the 
problem at limit can be considered: 
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Similar with equation (20), the vector ηp  can be 
defined with the elements: 
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For the function  an asymptotic development 
will be looking for, under the form: 
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where ui(x,y) are Y-periodical in y variable. The 
functions ui(x,y) are defined on Ω x R3 so that the 
derivatives behave in the following manner: 
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Fig. 4. Domains- and inclusions’ periodicity 
definition of SMC composite materials [14] 
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xxu i ,  are compared in two 

homologous points P1 and P2, homologous through 
periodicity in neighbour periods, it can be notice 

that the dependence in 
η
x  is the same and the 

dependence in x is almost the same since the 
distance P1P2 is small (fig. 5). Let us consider P3 a 
point homologous to P1 through periodicity, situated 
far from P1. The dependence of ui in y is the same 
but the dependence in x is very different since P1 
and P3 are far away. For instance, in the case of two 
points P1 and P4 situated in the same period, the 
dependence in x is almost the same since P1 and P4 
are very close, but the dependence in y is very 
different since P1 and P4 are not homologous 
through periodicity. The function uη depends on the 
periodic coefficients aij, on the function f(x) and on 

the boundary Ω∂ . The development (24) is valid at 
the inner of the boundary , where the periodic 
phenomena are prevalent but near and on the 
boundary, the non-periodic phenomena prevail [15], 
[16]. 
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Fig. 5. Physical meaning of SMC inclusions’ 
periodicity [14] 

 

Using the development (24), the expressions 
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The function f(x) presented in equation (22) can be 
written in the following manner: 
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The terms η-1 and η0 will be: 
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Equation (31) leads to the homogenized- or 
macroscopic equation. For this, the medium 
operator is introduced, defined for any function 
Ψ(y), Y-periodical: 

∫=
Y

,dy)y(
Y
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where Y  represents the periodicity cell volume. To 
obtain the homogenized equation, the operator (32) 
is applied to equation (31): 
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According to the operator (32), the second term of 
the left side of the equation (33) becomes: 
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Due to Y-periodicity of  and the fact that 1
ip n  is the 

normal vector at the boundary of Y, the relation (34) 
is equal with zero. So, the equation (33) becomes: 
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With help of relation (28), the equation (30) can be 
written as follows: 
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The solution u1(y) of equation (37) is Y-periodical 
and to determine it is necessary to introduce the 
space . The 
equation (37) is equivalent with the problem to find 
a solution  that verifies: 
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for , then from the problem’s linearity (38), 
its solution can be written under the form: 
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where c(x) is a constant as a function of x. 

Knowing the expression of u1 as a function of u0, 
from the expressions (28) with (40), the 
homogenized coefficients can be computed: 
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Applying the medium operator (32), the relation 
(41) can be written: 
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Therefore, the relation (33) becomes an equation in 
u0 with constant coefficients: 
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4 Problem Solution for a SMC 
Material 
For a composite material in which the matrix 
occupies the domain Y1 and presents the coefficient 

 and the inclusion occupies the domain Y1
ija 2 with 

the coefficient  separated by a surface Γ, the 
equation (21) must be seen as a distribution. 

2
ija

In the case of a SMC composite material which 
behaves macroscopically as a homogeneous elastic 
environment, is important the knowledge of the 
elastic coefficients. Unfortunately, a precise 
calculus of the homogenized coefficients can be 
achieved only in two cases: the one-dimensional 
case and the case in which the matrix- and inclusion 
coefficients are functions of only one variable. For a 
SMC material is preferable to estimate these 
homogenized coefficients between an upper and a 
lower limit. 

Since the fibers volume fraction of common 
SMCs is 27%, to lighten the calculus, an ellipsoidal 
inclusion of area 0.27 situated in a square of side 1 
is considered. The plane problem will be considered 
and the homogenized coefficients will be 1 in matrix 
and 10 in the ellipsoidal inclusion. In fig. 6, the 
structure’s periodicity cell of a SMC composite 
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material is presented, where the fibers bundle is 
seen as an ellipsoidal inclusion. 

Fig. 6. Structure’s periodicity cell of a SMC 
material with 27% fibers volume fraction 

Let us consider the function f(x1, x2) = 10 in 
inclusion and 1 in matrix. To determine the upper 
and the lower limit of the homogenized coefficients, 
first the arithmetic mean as a function of x2-axis
followed by the harmonic mean as a function of x1-
axis must be computed. 

The lower limit is obtained computing first the 
harmonic mean as a function of x1-axis and then the 
arithmetic mean as a function of x2-axis. If we 
denote with (x1) the arithmetic mean against x2-
axis of the function f(x1, x2), it follows: 
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The upper limit is obtained computing the harmonic 
mean of the function (x1):

.
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To compute the lower limit, we consider (x2) the 
harmonic mean of the function f(x1, x2) against x1:
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The lower limit will be given by the arithmetic 
mean of the function (x2):
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Since the ellipsoidal inclusion of the SMC structure 
may vary angular against the axes’ centre, the upper 
and lower limits of the homogenized coefficients 
will vary as a function of the intersection points 
coordinates of the ellipses, with the axes x1 and x2 of 
the periodicity cell (fig. 7). 

Fig. 7. ± 30° angular variation of the ellipsoidal 
inclusion

The following micrographs (fig. 8) make obvious 
this angular variation of the fibers’ bundles and the 
extreme heterogeneity and the layered structure of 
these materials as well as the glass fibers and fillers 
distribution. The micrographs show that there are 
areas between 100 – 200 m in which the glass 
fibers are missing and areas where the fibers 
distribution is very high. 
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Fig. 8. Micrographs of various SMCs taken in-plane 

and perpendicular to their thickness [15] 

5 Results 
Typical elasticity properties of the SMC isotropic 
compounds and the composite structural features are 
presented in table 1. 
 
Table 1. 

Property UP 
resin 

Fiber  
(E-glass) 

Filler  
(CaCO3)

Young modulus E 
[GPa] 3.52 73 47.8 

Shear modulus G 
[GPa] 1.38 27.8 18.1 

Volume fraction 
[%] 30 27 43 

 
According to equations (10) and (7), the 
longitudinal elasticity moduli ESM (for the substitute 
matrix) and EC (for the entire composite) can be 
computed. A comparison between these moduli and 
experimental data is presented in fig. 9. 

In practice, due to technical reasons, the fraction 
of each isotropic compound is expressed as percent 
of weight, so that the dependence between volume- 
and weight fraction can be determined: 

SM

F

ρ
ρ

ψ
ψ

ϕ
⋅

−
+

=
11

1
,              (51) 

where φ and ψ are the volume- respective the weight 
fraction, ρF as well as ρSM are the fibers- respective 
the substitute matrix density. 
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Fig. 9. Young moduli ESM and EC for a 27% fibers 

volume fraction SMC material 
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From fig. 9, it can be noticed that the Young 
modulus for the entire composite is closer to the 
experimental value unlike the Young modulus for 
the substitute matrix. This means that the rule of 
mixture used in equation (7) give better results than 
the inverse rule of mixture presented in equation 
(10), in which the basic elastic property of the filler 
and the filler volume fraction can be replaced with 
fibers Young modulus and fibers volume fraction, 
appropriate for a good comparison. 
According to equations (47) and (50), the upper and 
lower limits of the homogenized coefficients for a 
27% fibers volume fraction SMC material are 
computed and shown in table 2.  
 
Table 2: Upper and lower limits of the homogenized 
coefficients for a 27% fibers volume fraction SMC 
material [17] 

Angular 
variation of the 

ellipsoidal 
inclusion 

Upper limit a+ Lower limit a_ 

0° 2,52 0,83 
± 15° 2,37 0,851 
± 30° 2,17 0,886 

 
The results presented in table 2, show that the upper 
limit of the homogenized coefficients decreases with 
the increase of angular variation of the ellipsoidal 
inclusion unlike the lower limit which increases 
with the increase of this angular variation. 

The material’s coefficients estimation depends 
both on the basic elasticity properties of the 
isotropic compounds and the volume fraction of 
each compound. If we write PM, the basic elasticity 
property of the matrix, PF and Pf the basic elasticity 
property of the fibers respective of the filler, φM the 
matrix volume fraction, φF and φf the fibers- 
respective the filler volume fraction, then the upper 
limit of the homogenized coefficients can be 
estimated computing the arithmetic mean of these 
basic elasticity properties taking into account the 
volume fractions of the compounds: 

.
3

PPP
A ffFFMM ϕϕϕ ⋅+⋅+⋅

=+             (52) 

The lower limit of the homogenized elastic 
coefficients can be estimated computing the 
harmonic mean of the basic elasticity properties of 
the isotropic compounds: 

,

P
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P
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P
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⋅
+

⋅

=−             (53) 

where P and A can be the Young modulus 
respective the shear modulus. 

Fig. 10 shows the Young moduli and fig. 11 
presents the shear moduli of the isotropic SMC 
compounds as well as the upper and lower limits of 
the homogenized elastic coefficients. 
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Fig. 10. The Young moduli of the isotropic SMC 
compounds and the upper and lower limits of the 

homogenized elastic coefficients 
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Fig. 11. The shear moduli of the isotropic SMC 
compounds and the upper and lower limits of the 

homogenized elastic coefficients 
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6 Conclusions 
For the same fibers length (e.g. lF = 4.75 mm) but 
with a shear stress 10 times greater at the fiber-
matrix interface, it results an increase with 18% of 
the longitudinal break strength of the composite. 
Therefore, improving the bond between fibers and 
matrix by using a technology that increases the 
fibers adhesion to matrix, an increase of composite 
longitudinal break strength will be achieved. 

In the case of using some fibers with greater 
lengths (e.g. lF = 25.4 mm), the 10 times increase of 
the shear stress at the fiber-matrix interface leads to 
an increase with only 3% of the composite 
longitudinal break strength. Two SMC composite 
materials with same shear stress at the fiber-matrix 
interface (e.g. τi = 5 MPa) but with different fibers 
lengths, present different longitudinal break strength 
values, the composite with fibers length lF = 25.4 
mm exhibit an increase with about 16% of this 
strength. The computing model regarding the 
longitudinal tensile behaviour of multiphase 
composite materials like SMCs shows that the 
composite’s Young modulus computed by help of 
rule of mixture is closer to experimental data than 
the inverse rule of mixture. 

The presented results suggest that the 
environmental geometry given through the angular 
variation of the ellipsoidal domains can leads to 
different results for same fibers volume fraction. 
This fact is due to the extreme heterogeneity and 
anisotropy of these materials. The upper limits of 
the homogenized elastic coefficients are very close 
to experimental data, showing that the proposed 
homogenization method give better results than the 
computed composite’s Young modulus determined 
by help of rule of mixture. 

The proposed estimation of the homogenized 
elastic coefficients of pre-impregnated composite 
materials can be extended to determine elastic 
properties of any multiphase, heterogeneous and 
anisotropic composite material. 

Future researches will be carried out taking into 
account the filler’s particles size upon the 
homogenized elastic coefficients of these materials. 
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