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Abstract:-The  aim  of  this  work  is  the  calculation  of  the  dynamic  loads  and  stresses  acting  on  wind  
turbine blades in order to predict fatigue.   
The  prediction  of  the  dynamic  behaviour  of  the  rotor  constitutes  one  of  the  most  important  processes  
in  the design of wind turbine, this analysis is useful in estimating the energetic performance of this machine, as  
well  as  in  predicting  the  structural  problems  such  as  fatigue  failure,  which is  the  major  cause  of  wind 
turbine breakdown.  
In the first  part of this work the  blade  element  theory  is  used  to  calculate  aerodynamic  loads  for  small  
wind  turbine  blades.  This method can also estimate the power coefficient and the total power extracted by the 
turbine.  
In the next part of the work, modal analysis of the blades is carried out in order to compute frequencies and 
mode shapes. These parameters are useful for dynamic load estimation.  
At last, dynamic stresses are computed for the root region of the blades, using finite element modelling.  
The resulting curves of stress vs. time, obtained for different wind speeds, are used for fatigue analysis in order 
to make an optimal choice of blades resistant to fatigue and being energetically efficient.   
In both modal and stress analysis two different approaches are utilized and their results are compared.  
 
 
Keywords: Wind Energy, structural dynamics, Aerodynamics, fluid mechanics and Numerical Analysis.  
 
1 Introduction 
The use of renewable energies such as wind energy 
is an essential priority for sustainable development 
in many developing countries, especially in some 
specific rural regions such as the southern part of 
Algeria (Sahara region). In this very vast area, the 
huge distances between localities and the scattering 
of the population make any connection to the utility 
electric grid very costly. 

Small wind turbine technology can be a 
meaningful contributor to long-term economic 
growth by assuring independence in energy supplies 
and providing benefits to local economy. Moreover 
wind is a clean non-polluting energy source and the 
electricity generated by this mean is becoming 
economically efficient compared to other sources. 

Rotor  blades  are  the  most  flexible  part  of  
the  wind turbine,  and  their  dynamic  behaviour  
has  a  great influence on the overall performance of 
the turbine.  
These blades are exposed to cyclic loading making 
them vulnerable to cumulative fatigue damage.  
The prediction of the dynamic behaviour of the 
blades constitutes one of the most important  

 
processes in the design of wind turbines [1], since it 
can prevent structural problems such as blade  
fatigue  which  is one  of  the  major  concerns  of  
the  designers  [2].  
Moreover  this  analysis  can  help  improving  the 
energetic  performance  of  the  turbine  and  making  
a substantial  reduction  of  the  system  cost  of  
energy [3].   

In the first part of this work, an aerodynamic 
modelling is made using two aerodynamic theories, 
the first one is the axial momentum theory and the 
second is the blade element theory.  
In the first theory the flow is considered to be 
completely axial, while in the second theory, the 
effect of wake rotation is included.  
When both theories are combined, the equations 
defined by the two models can be solved to provide 
the aerodynamic loads.  

In the second part of this work a modal analysis 
is performed in order to calculate frequencies and 
mode shapes of the blades. Dynamic analysis is also 
carried out with the aim of computing alternating 
stresses applied on the blades. These dynamic 
stresses are used to estimate the blade fatigue.  
For both modal and dynamic analysis two different  
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techniques are used and their results are compared.  
In the first approach a numerical solution of the 
blade motion equation is performed. In this case, a 
blade of simple geometry is used and considered as 
a continuous system.  
The second approach is a finite element modelling 
of a real blade having a complex geometry.   
The result of finite element modelling agrees well 
with that obtained by the first approach.  

It should be noted that the deformation of blades 
depends on the Loads applied on these components. 
Conversely, this response to the loads (the 
deformation) influences the aerodynamic loads.  
The interaction between the load and the 
deformation is known as Aeroelastic phenomenon, 
which is one of the most challenging problems in 
the design and development of wind turbines. This 
case gives rise to a great computational complexity 
[4]. 

Finally, the  fatigue  of  the  blades  is estimated  
in order to prevent blade breakage which is one of 
the major causes of  wind  turbine  failure. However  
the  difficulty  in predicting  fatigue  is  in large part 
due to an insufficient  knowledge of the dynamic  
behaviour  of the rotor [3].  
 
 
2 Aerodynamic Calculation 
Wind turbine aerodynamic analysis is mainly 
concerned with the prediction of rotor loads and 
power output. This analysis is one of the first and 
most critical steps in designing rotors and has, 
consequently, received a great deal of attention from 
a number of researchers. 
Because of the complexity of the unsteady three-
dimensional flow field around the rotor, the use of 
some simplification hypotheses are necessary [5]. 
Different approaches are used to carry out this 
analysis ranging from very complex unsteady three-
dimensional models to simple one dimensional 
analysis. 
So far, the blade element/momentum (BEM) 
formulation is the most widely used technique for 
such analysis, since it has demonstrated its 
capabilities for the conception and the design of 
turbines operating under normal flow conditions [6]. 

The objective of this part is to estimate the 
aerodynamic loads, which are essential to design 
wind systems. These loads are required for 
predicting and analyzing wind system energetic 
performance and for structural design as well. 
In this aerodynamic modelling two aerodynamic 
theories are used, the first one is the axial 
momentum theory and the second is the blade 
element theory. 

2.1 The axial momentum theory 
In this simple one-dimensional model, airflow is 
assumed to be incompressible, completely axial and 
rotationally symmetric. 
This model applies the principles of mass and 
momentum conservation on the annular control 
volumes surrounding the flow as shown in figure 1. 

 
Fig.1 Annular control volume 

 
Applying the conservation of mass to the control 
volume yields: 

0 0 1 1 i iV A  =V A = V A  =V A                        (1) 
The thrust force T at the rotor disc can be found, by 
applying the conservation of linear momentum to 
the control volume in the axial direction: 

.

0 1 0 1( ) (T m V V AV V Vρ= − = − )                  (2) 
Where ρ  is the density of the air. 
Bernoulli’s equation can be applied to obtain the 
pressure difference across the rotor plane: 

2 2
0 1

1 (
2

)p p V V′− = ρ −                                 (3) 

The thrust is given as:  

   2 2
0 1

1 (
2

T V V= Αρ − )                                   (4) 

The velocity of the flow through the rotor disc is 
found to be the average of the upwind (free stream) 
and downwind velocities: 

         0

2
V VV 1+

=                                          (5) 

The power extracted from the wind by the rotor is: 
.

2 2 2 2
0 1 0 1

1 1( ) ( )
2 2

P m V V VA V Vρ= − = −     (6) 

The power coefficient, CP, is defined as the ratio of 
available power of wind to that extracted by the 
turbine, and defined as: 

                
3

0
1
2

p
PC
V Aρ

=                               (7) 

Introducing the axial interference factor, a, which is 
defined as the fractional decrease in wind velocity 
between the free stream and the rotor plane: 
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                                   (8) 0(1 )V a= − V
The trust expression of equation (4) becomes: 

2
0

1 4 (1 )
2

T AV aρ= a−                    (9) 

The power extracted by the rotor is: 
3

0
1 4 (1 )
2

P AV a aρ= 2−

i

                 (10) 

The expression of Cp becomes: 
                             (11) 24 (1 )pC a a= −

 
 
2.2 The blade element theory 
This analysis uses the angular momentum 
conservation principle, taking into account the blade 
geometry characteristics, in order to determine the 
forces and the torque exerted on a wind turbine. 
This method is known as blade element theory [8]. 

The control volume used in the previous one-
dimensional model can be divided into several 
annular stream tube control volumes, which split the 
blade into a number of distinct elements, each of 
length dr (fig.2). In this case, the differential area of 
annular ring at station i, , is defined as: idA

2i idA r drπ=  
In this theory it is assumed that there is no 
interference between these blade elements and these 
blade elements behave as airfoils. 

 
Fig.2 Annular stream tube control volumes 

 
The differential rotor thrust, dT, at a given span 

location on the rotor (at a specified r) can be derived 
from the previous theory using equation (9):  

                              (12) 2
04 (1 )dT a a V rdrρ π= −

In the previous model, it was assumed that airflow 
doesn’t rotate. However, the conservation of angular 
momentum implies the rotation of the wake if the 
rotor is to extract useful torque. Moreover, the flow 
behind the rotor will rotate in the opposite direction 
[8], as shown in figure 3: 

 
Fig.3 Wake rotation 

 
 
The effect of wake rotation will be now included. In 
describing this effect, the assumption is made that 
upstream of the rotor, the flow is entirely axial and 
that the flow downstream rotates with an angular 
velocity ω . 
The conservation of angular momentum can be 
applied to obtain the differential torque at the rotor 
disc, dQ, resulting in: 

32 r rdQ V dπρ ω=                      (13) 
The total torque is: 

                         (14) 3

0

=2Q
R

V r drπρ ω∫
The differential extracted power is given by the 
expression: 

                    (15) 3d =2 V r dP πρΩ ω r

r r

The total extracted power is: 

3

0

2=
R

V dP πρΩ ω∫                      (16) 

In order to calculate P and Q, the wake angular 
velocity ω  has to be known. Introducing, for this 
purpose, the tangential interference factor a′  
defined as: 

            aω ′= Ω                             (17) 

 
Fig.4 Blade element section at radius r 
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The differential lift and drag forces are: 
                                    (18) .LdL C dq=
                                   (19) .DdD C dq=

With: 
21 1

2 2
dq W dA W cdrρ ρ= = 2           (20) 

Where CL   and  CD  are lift and drag coefficient. 
The components of the resulting force are: 

                                    (21) .x xdF C dq=
                                    (22) .y ydF C dq=

Where: 
cos siny L DC C Cφ φ= +                  (23) 

sin cosx L DC C Cφ φ= −                  (24) 
The following relation can be derived from figure 4:  

0(1 )tan
(1 )

a V
a r

φ −
=

′+ Ω
                            (25) 

 Where: 
             α φ β= −                       (26) 

The differential thrust and torque can now be 
derived as follows: 

21
2y ydT BC dq BC W cdrρ= =          (27) 

21
2x xdQ BC dqr BC W crdrρ= =         (28) 

Equating the thrust in equations (12) and (27)  as 
well as the torque in equations (13) and (28), will 
yield to the expressions of the both interference 
factors: 

                2
1

4sin 1
y

a

C
φ

σ

=
+

                         (29) 

              
1

4sin cos 1
x

a

C
φ φ
σ

′ =
−

                      (30) 

Whereσ  is the local solidity, defined by the 
following formula: 

                           
2
cB

r
σ

π
=                                (31) 

In order to estimate the loads applied on the rotor, 
an iterative method should be used to determine the 
values of the interference factors. 
For each element at radius r, the following steps are 
carried out [9]: 

1. An initial reasonable guess of a and a′  is 
given. 

2. φ  and α  are then calculated using 
equations (25) and (26). 

3. CL  and CD are estimated as a function of α  
by approximation method. 

4.  and aa ′are finally calculated using 
equations (29) and (30). 

5. These steps are repeated till the successive 
values of and a converge. a ′

Once the local (differential) thrust and torque are 
known they may be integrated numerically, over the 
length of the blade, to determine the overall torque 
and thrust as well as the total output power.  
Table 1 lists the axial and the tangential loads and 
the torque at different blade stations. 
 

Table 1 Distribution of aerodynamic loads wind 
speed 15 m/s profile NACA 63-421 

 
Station 
 (r/R) 

 

 Axial force 
(N)  Tangential force 

(N)  Torque  
(N.m) 

0.16 86.02 221.24 206.30 
0.25 81.92 351.16 305.56 
0.34 73.37 466.19 372.82 
0.43 57.87 586.57 467.49 
0.51 35.67 764.83 724.62 
0.60 39.33 908.37 1120.22
0.69 83.60 998.27 1686.21
0.78 221.50 1012.80 2591.9 
0.87 211.31 1109.45 2746.15
0.96 169.79 1181.84 2434.31
1.00 140.04 1206.90 2100.65

                                                 
                            
3 Resolution of the Blade Motion 
Equation  
In this part of work, the mode shape functions as 
well as the dynamic stresses are calculated, using a 
numerical approach to solve the blade motion 
equation. In this case the blade is considered as a 
continuous system. 

The blade motion equation in the flapwise 
direction can be expressed by the following 
equation [10]:  

2 2 2

2 2 2( ) - ( )  Z Z ZEI G m F
x x x x t x
∂ ∂ ∂ ∂ ∂ ∂

+ =
∂ ∂ ∂ ∂ ∂ ∂

   (32) 

Where: 

²
L

x

G m  x  d= Ω∫ x  ,   t    is time  

F   the aerodynamic load. 
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3.1   Resolution of the free vibration 
Equation (Calculation of the blade mode 
shapes)  
The modal analysis is (Calculation of the natural 
frequencies and the mode shapes) is an essential 
step that precedes the dynamic analysis. 

The mode shapes can be calculated in case of 
free vibrations (if the blade is not exposed to 
external loads) using equation(32), which can be 
written as follows: 

2 2 2

2 2 2( ) - ( ) 0Z Z ZEI G m
x x x x t
∂ ∂ ∂ ∂ ∂

+
∂ ∂ ∂ ∂ ∂

=     (33) 

By taking Z=S(x). (t) ϕ and using the method of 
variable separation, a set of two ordinary differential 
equations is obtained: 

2 2
2

2 2( ) - (   ) -   d d S d dSEI G m S
dx dx dx dx

ω =  0   (34) 

                    
2

2
2 +    = 0  

t
d
d
ϕ ω ϕ                         (35) 

The boundary conditions of Eq. (34) are: 
     At the fixed end of the blade: 

Displacement = 0          (0) 0    S⇒ =         (36) 

 Slope = 0               0dS(0)
dx

⇒ =                   (37) 

     At the free end of the blade: 

  Bending moment = 0 0d²S(L)
dx²

⇒ =              (38) 

      Shear force = 0 0
3

3

dS (L)
dx

⇒ =                    (39) 

The numerical solution of (34) is complicated by 
its special boundary problem, having two initial 
values, at the fixed end  (Equations (36) and (37)),  
and two final values, at the free end (Equations  (38) 
and (39)). 
In order to start a numerical solution of Eq.(34), the 

initial values
d²S(0)

dx²
 and 

3

3

dS (0)
dx

 must be known. 

If a first guess of these values is made, a solution 
S(x) can be obtained using a numerical technique, 
but in this case the solution obtained doesn’t 
necessarily satisfy the given boundary conditions. It 
is obvious that different initial values will give 
different solutions. 

It has been verified that the predictor corrector 
method (Adam’s formula) can solve Eq.(34)  with a 
good convergence, while the Runge-Kutta method  
has failed to reach convergence [11]. In this case the 
Runge-Kutta method is used only as starting 
method.  
 

Taking:  

1 2
² (0)    and  x

²

3

3

d S dS (0)x
dx dx

= =  

Also: 

  1 2
² ( )( , )

²
d S Lf x x

dx
=                              (40) 

   
3

1 2 3

( )( , ) dS Lg x x
dx

=                             (41) 

This boundary condition problem can then be 
formulated as a problem of solving a set of two 
equations: 

           1 2( , ) 0f x x =                            (42) 
           1 2( , ) 0g x x =                            (43) 

Since the analytical expressions of the functions 
f and g are unknown but their numerical values are 
obtained by the predictor corrector method, the 
secant method can be used to obtain the root x1 from 
Eq.(40) and the root x2 from Eq. (41). This iterative 
Secant procedure is repeated using the new values 
of x1  and  x2  until convergence is reached. 

A Fortran computer program was implemented 
to perform these computations. 
 
Characteristics of the rotor: 
The rotor used has the following Characteristics 
Number of blades: 03 
Rotor Diameter: 10 m 
Profile: NACA63-421 
Maximum chord length: 0.6 m 
Average chord length: 0.4 
The three-blade rotor configuration appears to be 
the most industry-accepted configuration, since one 
of its advantages is lower blade fatigue. 
 
Results: 
The mode shapes obtained, using this approach, are 
represented by fig. 5 thru 7. 
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        Fig. 5 First flapwise mode shape 
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              Fig.6  Second flapwise mode shape 
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                Fig.7 Third flapwise mode shape 

 
 

3.2   Resolution of the forced vibration 
equation (Calculation of the blade 
dynamic stresses)  

The forced vibration of a blade subjected to 
aerodynamic load is expressed by the equation (32): 

2 2 2

2 2 2  ( ) - ( )  Z Z ZEI G m F
x x x x t x
∂ ∂ ∂ ∂ ∂ ∂

+ =
∂ ∂ ∂ ∂ ∂ ∂

 

The solution Z (the displacement) can be expressed 
as follows: 

                                         (44) 
=1

Z= S (x). (t) 
n

i i
i

ϕ∑
Where:  
Si     mode shape i 
n      the number of modes. 
These mode shapes verify the orthogonally property 
defined as [10]:  

0
. ( ). ( ). 0

L

i jm S x S x dx =∫                If     i≠j 

0
. ( ). ( ). ( )

L

i jm S x S x dx f i=∫            If    i=j 

In order to solve  (32) the response functions 
(t)iϕ  must be determined. If the expression of Z, in 

equation(44), is substituted into equation (32), the 
following expression is obtained:  

22

2 2
=1

(x) (x)(t) ( ) - (   )
n

i i
i

i

d S dSd dEI G
dx dx dx dx

ϕ   
⎡ ⎤
⎢ ⎥
⎣ ⎦

∑                     

2

2
=1

(t)+ S (x).
n

i
i

i
 Fm

t x
ϕ∂ ∂

=
∂ ∂∑          (45) 

According to equation (34) expression between 
brackets, can be replaced by , equation 2 ( )im S xω
(45) becomes: 

2
2

2
1

( ) 1( + ( )) (x)  = 
t

n
i

i i
i

d t Ft S
d m
ϕ ω ϕ

=

∂
∂∑ x

    (46) 

If equation (46) is multiplied by and 
integrated from 0 to L with respect to x ; taking the 
orthogonally property into account, one obtains:  

( )imS x

2
2

2 0

( ) 1+ ( ) = . (x)
t ( )

Li
i i

d t Ft
d f i x
ϕ ω ϕ ∂

∂∫ S dx         (47) 

When solving equation (47), the response functions 
( )i tϕ  and so the displacements Z can be 

determined.  
If the previous simplification appear to succeed 

in separating the modes since equation (47) contains 
only one mode, however the right member of this 
equation include the aerodynamic loads F, which 
depends on the shape of the blade (the displacement 
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Z) and thereby of all the modes. Thus each mode is 
dependent of the rest of the modes.  
This interdependence between the load and the 
shape of blade (deformation) can make the solution 
of equation (47) very complicated to accomplish.  
To start the resolution of equation (47), one should 
assume an initial blade form, such as a simple rigid 
(linear) deformation. Then the right member of this 
equation is computed for each mode. The equation 
(47) becomes: 

           
2

2
2

( ) + ( ) = C
t
i

i
d t t

d
ϕ ω ϕ i                     (48) 

Where Ci   is the value of the right member 
calculated for ith

  mode.  
Each value Ci will be supposed constant, for a small 
time interval ∆t. The solution of equation (48), In 
this case, will be [10]: 

0
02

C (1 cos ) cos sin  i t t tϕϕ ω ϕ ω ω
ω

′
= − + +

ω
 (49) 

Where 0ϕ   and 0ϕ′  are the initial values.   
The new response modes calculated, using 

equation (49), are used to determine the 
displacements Z (a new form of the blade) which 
allow the calculation of the aerodynamic load and 
thus the values Ci. This approach is repeated using 
the iterative formulas derived from equation (49): 

1 2

C (1 cos ) cos sin  ji
j jt t t

ϕ
ϕ ω ϕ ω

ω ω+

′
= − Δ + Δ + Δω

(50) 

1
C sin sin cos  i

j j jt tϕ ω ωϕ ω ϕ
ω+′ ′= Δ − Δ + tωΔ

(51) 
It should be noted that the subscript j, in this case, 
represents the calculation step number. 

At the beginning, this calculation procedure is 
repeated, until convergence is reached (in order to 
correct the initial form of the blade).  
Afterward, this calculation is carried out for each 
sequential step of time [11].  
The torsion motion equation is solved in a similar 
manner as the flapwise equation. 
 
 
3.3 Resolution of the torsional motion 
equation (calculation of angular 
displacements and shear stress)  
The forced torsional movement is governed by the 
following equation [10]: 

2
2

2( ) ALGJ C C
x x t

θ θ θ ∂∂ ∂ ∂
− − Ω = −

∂ ∂ ∂ ∂x
          (52) 

 

C      the moment of inertia per unit length. 
Ω     the angular velocity . 
θ      the twist angle . 
LA        the aerodynamic moment. 
G.J   the torsional rigidity . 
 
The solution of this equation is form: 

      
1

( ). ( )
n

i i
i

Q x tθ φ
=

=∑                          (53) 

Q (x)  the mode shape of torsion. 
φ (t)  the response mode. 

The free (natural) vibration of the torsional 
motion can be expressed by the following equation: 

2
2

2( )
x x

GJ C C
t

∂ ∂θ ∂ θ θ
∂ ∂ ∂

0− − Ω =          (54) 

Using similar approach the torsional mode 
shapes can be obtained, Fig. 8 thru10 represent the 
torsional mode shapes (Equation (54) can be solved 
in a similar manner as (34) (bending equation.)) :  
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              Fig.8 The second torsional mode shape 
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                 Fig.9 the first torsional mode shape 
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Fig.10 The Third torsional mode shape 

The mode shapes verify the property of 
orthogonality defined as follows [10]:  

0
( ). ( ). 0

L

i jQ x Q x dx =∫                if   i≠j 

0
( ). ( ). ( )

L

i jQ x Q x dx f i=∫           If   i=j 

 
If this solution (53) is substituted in the 

equation(52) and by taking account of the mode 
orthogonality, one obtains: 

2
2

2 0

( ) 1+ ( ) = . ( )
t . ( )

L
i

t i i
d t Lt

d C f i x
φ ω φ ∂

∂∫ A Q x dx                        

(55) 
The method of solving equation (55) is similar to 
that of equation (47). 
 
 
3.4 Equation of coupled movement 
The two equation (bending - torsion) must be 
coupled in order to determine the overall stresses 
and displacements. This can be done using the 
equation of Brooks [10], which has the form: 

2 2 2 2

2 2 2 2( )- ( ) (x , ,  )Z Z ZEI G m Ft F
x x x x t t

∂ θθ
x∂

∂ ∂ ∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂ ∂ ∂
           

(56) 
Where: 
Ft:  is a known function. 
In this equation the effect of torsion on bending is 
taken into account.  
The particular difficulty encountered in the 
resolution of the coupled equation is due to the fact 
that the wind load depends upon the shape of the 
blade (deflection), since this load is a function of the 
incidence angle; on the other hand the load deforms 
the shape of this blade. This interdependence 

between the aerodynamic load and the blade 
deflection is a source of nonlinearity that 
complicates the numerical resolution. 
To overcome this difficulty an initial deflection is 
supposed, and then an iterative method is used to 
correct this shape (as explained above). In this 
approach, the computation time can cause serious 
problems [11].   
Some obtained results are given bellow: 

Results: 
Curves of dynamic stresses are represented by fig.11 
and fig.12 for wind speed of 3 m/s. 
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Fig.11 Maximum normal stress at the fixed end                 
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           Fig.12 Maximum shear stress at the fixed end 
 
 
4 Finite Element Modelling of the 
Blade  
The method used in this part is a finite element 
modelling of a real blade with complex geometry 
[12]. This blade is twisted, with a variable chord 
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length and having a complex shape at the root 
region.  

Characteristics of the rotor: 
The rotor used has the following Characteristics 
Number of blades: 03 
Rotor Diameter: 10 m 
Profile: NACA63-421 
Maximum chord length: 0.6 m 
Average chord length: 0.4 
Maximum twist angle: 14° 

After the geometrical modelling and meshing of 
this blade, the following figure is obtained (fig.13): 

 
Fig.13 Geometry modelling of the blade 

 

 

4.1 Calculation of the mode shapes and 
frequencies of the blades 
The modal analysis of the rotor is carried out giving 
the following results: 
Table 2 gives the first three bending frequencies.  

 
Table 2 blade natural frequencies  

Mode 
number 

Frequency ω  
(Hz) 

(Motion Eq) 

Frequency ω  
(Hz) 

(FEM) 
First mode 9.40 8.37 

Second  
mode 

15.81 
 

14.94 

Third mode 57.36 62.74 

The blade mode shape deformations obtained by 
FEM are given by fig.14 thru 16. 

 
 

Fig.14 First mode shape deformation 
 

 
 

Fig.15 Second mode shape deformation 
 
 

 
 

Fig.16 Third mode shape deformation 
 
The flapwise mode shape curves are given by fig.17 
thru 19 
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   Fig.17 First flapwise mode shape  

 

 
     Fig.18 Second flapwise mode shape 

 

 
   Fig.19 Third flapwise mode shape  

 
 

4.2 Dynamic stress calculation using finite 
element modelling 
The results obtained previously (such as loads from 
aerodynamic calculations and mode shapes and 
frequencies from the modal analysis) are combined 
to compute dynamic forces. These forces are 
required to calculate the dynamic stress. 

A dynamic analysis of the rotor using finite 
element modelling is carried out. The following 
results of the dynamic stresses, at the root region of 
the blade, are obtained for different wind speeds 
(fig.20 thru fig.29): 

 

Fig.20 Equivalent alternating stress at the blade root 
Profile NACA63-421 Material composite (wind 

speed 4 m/s) 

 
Fig.21 Equivalent alternating stress at the blade root 

Profile NACA63-421 Material composite (wind 
speed 7 m/s) 
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Fig.22 Equivalent alternating stress at the blade root 
    Profile NACA63-421 Material composite (wind 

speed 11 m/s) 

 
Fig.23 Equivalent alternating stress at the blade root 
    Profile NACA63-421 Material composite (wind 

speed 15 m/s) 
 
 
 
 

 
Fig.24 Equivalent alternating stress at the blade root 

Profile S809 Material composite 
(wind speed 7 m/s) 

 
Fig.25 Equivalent alternating stress at the blade root 

Profile S809 Material composite (wind speed 15 
m/s) 

 
Fig.26 Equivalent alternating stress at the blade root 

           Profile NACA63-421 Material Aluminium 
(wind speed 4 m/s)  

 
Fig.27 Equivalent alternating stress at the blade root 

           Profile NACA63-421 Material Aluminium 
(wind speed 7 m/s)  
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Fig.28 Equivalent alternating stress at the blade root 

           Profile NACA63-421 Material Aluminium 
(wind speed 11 m/s)  

 
              Fig.29 Equivalent alternating stress at the 

blade root 
           Profile NACA63-421 Material Aluminium 

(wind speed 15 m/s)  
 
 
5 Blade Fatigue Calculation  
The fatigue of the blades is estimated based on 
Miner theory, which can be applied in the case of a 
machine part operating under alternative stress 
having variable amplitude. 
This theory is known as «the linear 
cumulative damage rule » or « Miner’s rule.  »  
It assumes that every operating cycle consumes a 
percentage of the part life. Hence the total wear of 
the part can be estimated by adding up the 
percentage of life consumption by each overstess 
cycle. Miner theory is stated mathematically as 
follows [13]:  
If stresses with amplitudes 1σ , 2σ , ..., kσ  are 
applied to a machine part for a total number of 
cycles  n1 , n2 , ...., nk  respectively and if  the lives 
(the allowable number of cycles) corresponding to 

these stresses are : N1, N2,..., Nk  then failure may 
occur if :  

           1 2

1 2

..... 1k

k

n n n
N N N

+ + + =                (57) 

Miner cites numerous tests that showed if the 
loading were random, equation (57) would usually 

give conservative predictions (i.e. 1i

i i

n
N

>∑ ) 

In this work a three-blade wind turbine is used 
with a NACA profile. The values of ni are calculated 
for the lifetime period from the statistical 
distribution of wind speed (fig.30), while the values 
of Ni are taken from the endurance limit curve [14]. 
 
 
5.1 Fatigue calculation of aluminium alloy 
blades 
In the case of aluminium alloy blades, the 
operating life time is assumed to be ten years.  
The probability so that the speed of the wind is 
included in a given interval is estimated using the 
curve of fig.30. This data is used in the calculation 
of the number of cycles ni completed, under this 
speed, during ten year of operation. The amplitude 
of the stress is estimated from the curve of dynamic 
stresses, corresponding to this speed. Finally the 
allowable number of cycles Ni (lifetime) is 
determined from the fatigue strength curve.   
As example, the probability so that the speed of the 
wind is in the vicinity of 7 m/s ( ) is 0.05, 
in this case the number of cycles carried out is: 

6 V≤ ≤ 8

70.05  3600  24 365 10 . 2.4 10
2i

x x x x Vn x
R

λ
π

= =  

This calculation is repeated for different speed 
ranges. The results of this calculation are given in 
table 3. 
The wear ratio is estimated by the formula (57)  as 
follows: 

6 5

7 5

7.6 x10 4.1x10 0.972
5x10 5x10

i

i i

n
N

= + =∑  

According to the rule of miner these blades can 
resist fatigue for ten years of operation, since the 

ratio
i

i

i

n
N∑  is lower than 1. 

 
 
5.2 Fatigue calculation of composite material 
blades 
In the same manner, it’s deduced that blades of 
composite material and having the same profile can 
resist fatigue for twenty years of operation.  
The results of this calculation are given in table 4. 
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Fig.30 Statistical distribution of wind speed 

(Site: Constantine, Algeria) 
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Fig.31 Statistical distribution of maximum wind 

speed(Site: Constantine, Algeria) 
 

 
 
 
 

Table 3 Fatigue calculation (aluminium alloy blades) 
Wind Speed (m/s) 4 7 11 15 

Stress amplitude  (Mpa) 10 30 80 175 

ni (cycles of operation) 4.7 x107 2.4 x107 7.6 x106 4.1x105

Life Ni (cycle) infinite infinite 5x107 5x105

 
 

Table 4 Fatigue calculation (composite material blades) 
Speed of wind (m/s) 4 7 11 15 

Stress Amplitude (Mpa) 24 30 40 64 

ni (cycles of operation) 9.4 x107 4.8 x107 1.5x106 8.2x105

Life Ni (cycle) infinite infinite 1010 108

 
 
6 Conclusion  
In this work the blade element theory was used to 
calculate aerodynamic loads for small wind turbine 
blades. This method can also estimate the power 
extracted by the turbine. 

A modal analysis of rotor was performed using a 
finite element modelling in order to compute the 
frequencies and the mode shapes of the blades. 
These parameters are necessary for the dynamic 
load calculation. 
The modal analysis was also carried out in a 
different way using the blade motion equation. 
The result of finite element modelling agrees well 
with that obtained by the other approach, since the  
 

 
corresponding frequencies have close values and the 
mode shapes are similar. 
The resulting mode shapes were also compared with 
those obtained by Baumgart [15], the corresponding 
modes have similar shapes. 

At last, dynamic stresses were calculated for the 
root region of the blades using finite element 
modelling. This region is a highly loaded and 
structurally complex area. 
These obtained dynamic stresses were used to 
estimate the blade fatigue, in order to make an 
optimal design of blades that resist fatigue and being 
energetically efficient.  
The fatigue calculation has shown, according to 
Miner rule, that a rotor made of composite material 
and having a NACA63-421 profile can withstand 
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fatigue failure for duration close to 20 years with an 
operating speed exceeding 15 m/s.  
In order to make conservative estimation of fatigue, 
one can use the statistical distribution of maximum 
wind speed (fig. 31) 

The interdependence between the aerodynamic 
load and the blade deflection known as Aeroelastic 
phenomenon, is the most challenging problems in 
the design of wind turbines since it causes a great 
deal of computational complexity.  

The minimum cost of energy is the criterion 
actually used to optimize blade geometry rather than 
maximum annual energy production. The 
optimization of wind turbine based on Minimum 
cost of energy requires a multidisciplinary method 
that includes aerodynamic and structural models for 
blades along with a cost model for the whole turbine 
[16]. 
This work can be a part of a global optimization 
study aiming to minimize cost and structurral 
problems of wind turbine while maximizing its 
energetic performance. 
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