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Abstract: The paper presents a plastic deformation method for thin plates made of stainless steel, plastic deformed 
by pressured nitrogen blasting combined with impact fluid substances. There are presented experimental results 
for comparative values of deformation velocities obtained by different initial pressured nitrogen blasting, 
respectively by pressured nitrogen blasting combined with several quantities of impact fluid substances. 
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1. Introduction 
In the present stage of technological development, a 
new method of metal plate plastic deformation 
process by shock waves gazes blasting, combined 
with impact substances (pulverulent / fluid), comes 
to complete, but not to replace, the diversity of high 
velocity deformation procedures: explosive 
substances, exploding wires in gasses, electro-
hydraulic or magneto-hydraulic impulses, Dynapac 
hammer [1, 2, 3]. 
     Designed for the first time in a Romanian R&D 
Institute, this new method was developed to produce 
parts for medium and low voltage special electric 
motors. Several types of tight lid for bearings made 
from Carbon Steel plates were obtained. Due to the 
elastic proprieties of the circular edge of the part 
obtained using this deformation method, this tight 
lid is used in the same time as safety Seger ring for 
the bearings.  
     In the last years, this new plastic deformation 
method was improved to obtain spherical segment 
shaped plates made from porous materials, specially 
designed to protect the molecular sieves in the air 
filtration and drying modules (components of 
pressure swing adsorption oxygen generator 
systems) [5,6,7,9].  
     In principle, the new plastic deformation process 
using pressured gazes blasting and impact 
substances, is based on the physical phenomenon of 
compressed gas discharged from a pressured vessel. 
     A special convergent-divergent nozzle was 
designed to obtain 350÷720m/s discharge velocity.   
The pressured gaze’s shock wave combines the 
impact substances (pulverulent / fluid), which are 

accelerated to the circular plate embedded in the 
contour of an open die. A plastically deformed part 
is obtained with no punch die action [5,7, 9].  
     In order to estimate the performance of this new 
plastic deformation process, an experimental 
research method was designed for simultaneous 
determination of the maximum transverse 
deformation, and of the deformation velocity of the 
thin plate deformed by gazes blasting shocks 
combined with different quantities of impact 
substances (quartz; water). 
 
2. Theoretical considerations concerning 
    the blasting shock wave velocity          
Technical equipment functioning, usually called 
air cannon /air blaster, is based on the expanding 
effect of the compressed gas wave shock 
discharged with high velocity from a storage 
vessel.  
     During this fast process, the gas flow is 
characterized by high rate pressure variation; 
therefore there is no heat exchange with the outside 
environment, and the flow process can be 
considered adiabatic.[5,7]  
     For adiabatic process, from the Bernoulli 
equation for compressible fluids, it results:  
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where po and ρo are the initial parameter of the 
gas; p and ρ are the final parameter of the gas;  
k is the adiabatic coefficient; vo is the initial gas 
velocity (in the storage vessel vo= 0) . 
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     In contrast with slow / static adiabatic  transfor-
mations, which are isentropic (the entropy S is 
constant), the dynamic adiabatic transformations are 
irreversible (it take place with entropy increasing 
due to the internal heat stored in gas due to viscosity 
forces).  
     Neglecting the viscosity force, this motion can 
be considered an isentropic one, this hypothesis 
being admissible for gas blaster discharge 
phenomena.  
     When the compressed gas is discharging from a 
storing vessel (initial parameter po, ρo, To) through a 
nozzle in the atmosphere (characterized by 
parameter pat, ρat, Tat), the gas velocity is determined 
with relation: 
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     Considering the initial parameter and the final 
parameter of the gas ( k = 1,4; po = 5-25 bar;          
pat = 1 bar; To = Tat = 293 °K), the velocity of the 
pressured air discharged from the storing vessel is 
presented in Table 1. 

                                                                   Table 1 
po  [bar] 5 6 7 

ρ  [kg/m3] 5,946 7,135 8,324 

v  [m/s] 465,8 485,6 501 

po  [bar] 8 9 10 

ρ  [kg/m3] 9,522 10,713 11, 903 

v  [m/s] 513,2 523,6 532,4 

po  [bar] 15 20 25 

ρ  [kg/m3] 16,564 22,327 28,778

v  [m/s] 584,6 623,8 687,5 
 

     Using the same method is possible to obtain ρ 
and v values for different initial pressured nitrogen.  
     The theoretical considerations concerning the gas 
discharge from the stocking vessel take into account 
the similitude with the flow process into round free jet. 
     Qualitative and quantitative evaluation of 
characteristic dimensions of the round free jet permit 
to determine the main manufacturing dimensional 
parameters of convergent - divergent nozzle which is 
able to direction the compressed gas shock wave to 
the embedded plate : b - distance from the jet pole; 
xo-length of initial zone; α-angle of jet action (Fig.1). 
     This free jet is a gas current that freely penetrates 
(with small friction forces to conical wall restriction) 
into an environment of the same or different gas (the 

flow in jet is generally turbulent, particles of the 
discharged gas getting out its limits, with 
neighboring gas particles taking their place; a mass 
gas transfer with the exterior is achieved).  
     The jet's range is the distance where the kinetic 
energy of gas is not greater then the viscosity forces 
and therefore no more swirling flow appears. 

 
Fig.  1 

 
      The characteristic dimensions of a jet circular 
are: initial velocity vo; shape of the discharge nozzle; 
length of the initial zone xo;  jet range xlim; 
convergence angle of the initial zone αo;  the 
enlarging jet border angle α; gas debit in initial 
section Qo ; jet pole b; jet radius Rgr. 
     The initial section of the discharging nozzle is the 
circular section in which the medium velocity vo of 
the jet is realized. The environment velocity ve can 
be equal to zero, bigger or smaller than vo and for ve 
= 0, the jet is considered to be free. 
     The velocity in the jet's axe vx depends by the 
initial velocity vo and by the distance x. For x < xo, 
the velocity vx = vo, and for x > xo the velocity vx 
depends of distance x. The velocity in the 
transversal jet section vy is the velocity at distance x 
and at the level y, depends by the velocity vx and 
level y.  
     Theoretical and experimental researches 
determine the relation: 

( )[ ]22/3/1/ groy Ryvv −= ,                                   (3) 

where Rgr is the jet’s radius limit for x > xo. 
      Due to the symmetric axial jet law, the impulse 
has the same value in any section. Using the notation 
vy the velocity in a certain point, I the impulse, and 
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mo the masse passing through the elementary surface 
dA from the jets section in the time unity, it 
obtained: 

2222 ooo
R

o y RvydyvI gr πρρπ == ∫ ,               (4) 

where the jet’s radius limit Rgr is obtained with the 
relation: 

( )xoogr vvRR /3,3= ,                 (5) 
where Ro is the jet’ source radius. 

     The medium velocity of jet vm is determined 
knowing that the medium flowing velocity in a 
section A is obtaining from the continuity equation: 

       )/(/ 2
grm RQAQv π== .                                   (6) 

     Because in the initial section the velocity value is 
obtained with the relation )/(/ 2

oo RQAQv π== , with 
relation (4) is obtained 

       ( )oxom vvvv /2,0/ =                                             (7)           

     Using the above presented relations, for initial 
storage pressure po in the vessel, were obtained 
results for the jet range xlim, the conical jet border 
angle α, the jet diameter Dgr for jet range xlim , the 
medium velocity vm in the jet transversal section. 
 
3. Experimental considerations concerning 
     the shock wave dynamic pressure 
In principle, the experimental installation for plastic 
deformation by gazes blasting and impact substance 
(Fig. 2) consists in a compressed gaze’s supply; a 
compressed gaze’s stocking vessel with quick 
discharge device (SVDD); impact particles dozing 
system; a modular die device with adjustable 
hydraulic action; a modular conical convergent-
divergent nozzle.[5,7,8]  
     The experimental installation for plastic 
deformation is connected with a complex data 
acquisition and processing system composed of 
pressure or displacement transducer; conditioning 
amplifier; measuring amplifier; acquisition interface 
(PCL Advantech) and computer [5,8 ].  
     In order to determine the dynamic pressure 
produce by the SVDD with stocking vessel 0,050 m3  

was made an experimental device, in principle, 
consisting in a conical nozzle (Ømax / Ømin = 300/100; 
h = 250) closed at the large base with a rigid metallic 
round flange, respectively in direct connection with 
the circular nozzle of the quick discharge device. 
     The size and the dimension of the conical nozzle 
are designed according the presented relations given 

for jet range xlim, conical jet border angle α, the jet 
diameter Dgr for jet range xlim. 
     On the rigid metallic round flange were disposed 
three pressure transducer connected with an 
amplifier device to a data acquisition system, 
respectively an acceleration transducer connected  
with another amplifier device and data acquisition 
system. 
 

 
Fig. 2 

           The values obtained for the dynamic pressure 
pdin, the shock wave acceleration asw and the specific 
energy of the shock wave Esw, determined for usual / 
high initial nitrogen pressure po in the stocking vessel 
are presented  in  Table  2.                                  
                                                                        Table 2 
   po [bar] pdin [bar/s] asw [m/s2]   Esw  [J ] 
      5    165,5       49,8    174,2 
      6    209,7       62,3    256,4 
      7    302,3       69,5    314,7 
      8    389,9       78,9    405,6 
      9    464,6       92,2    492,7 
     10    533,2     105,8    572,3 
     15     697,4     167,4    726,8 
     20    805,7     232,7    845,5 
     25    987,5     303,2    995,1 
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4. Theoretical considerations concern 
    large deformations of circular 
    plate, produced by static load 
 
In the simple bending of circular plate problem, the 
deformations in the middle plan of the plate can be 
neglected in the situation of small deformations in 
comparison with the plate thickness.[10] 
     The large deformations of circular plate solving 
problem must take in consideration all the 
deformations produced by bending efforts in the 
middle plan of the plate. 
    The circular plate deformations produced by 
bending moment uniform distributed on the circular 
contour of the plate, determine a symmetrical 
surface in rapport with the centre of the deformed 
plate. In this situation, the displacement of a point 
situated in the middle plan of the plate has two 
components: a component u in the radial direction, 
and a component w in the normal plan of the plate.  
     The radial deformation is obtained with relation 

2 2

r
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ε
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                              (8) 

and the tangential deformation is obtained with 
relation 

t
u
r

ε = ,                                                                    (9) 

where r represents the radius of the circular plate. 
     Noting the radial stress Nr and tangential stress Nt 
and applying the Hooke law, is obtained 
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     These stresses must to be considered to 
determine the equilibrium equation in the plate 
element. The projection sum on the radial direction 
of all the forces stressing the considered element, 
determine the equation 

r
r t

dN
N N r 0

dr
− + =                                             (11) 

     The relation (11) represents an approximate 
solution to determine the elastic-plastic deformation 
of the round plate embedded on circular contour, 
stressed by a uniform distributed pressure, that must 

take in consideration the force Qr action which is 
distributed on the tangential plan of each normal 
elementary surface.  
     The second equilibrium equation is obtained 
taking in consideration the moments determined by 
all the forces in rapport with a normal axe on the 
radius 

3 2

r 3 2 2
d w 1 d w 1 dwQ D

r drdr dr r
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,                     (12) 

where D represents the bending rigidity of the plate.  
     The Qr average take into consideration the 
equilibrium of a circular interior zone (circular zone 
with r radius), described by the relation 

r

r r
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dw 1Q N pr dr
dr r

= − = − ∫                                   (13) 

     After introducing relation (13) in equation (12), 
and using the relations (10) for Nr and Nt , the 
equations (11) and (12) can be written as the 
following nonlinear equations 
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These nonlinear equations can be integrated starting 
from the centre of the plate, and increasing by small 
steps in radial direction. 
     For the central circular element is admitted a 
radial deformation given by the relation 

0
r 0

du
dr

ε
=

 =  
 

, 

and a uniform curve radius given by the relation 
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     With these values of the radial deformation and 
of the uniform curve radius to the centre of the 
plate, the radial deformation values u, and the 
(dw/dr) values in each tangent on the deformation 
curve, can be determined. In this manner, all the 
quantities in the right side of the relation (14) are 
known, and the values for (d2u/dr2) and (d3w/dr3) 
can be determined for any value of the radius r. 
     This method can be used to determine the 
transversal stresses of the circular plate (radius a) 
rigid embedded on the contour, stressed by a 
uniform distributed pressure. Due to this pressure, 
the deformation curve equation is supposed to be 
described by the relation 

22

0 2
rw w 1
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 
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,                                                (15) 
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where the deformation in the centre of the plate is 
determined with the cubic relation 

( )
4

2 2
0 0

paw 1 0,488 w / h
64 D

 = + 
                         (16)   

    The last factor in the right side of the equation 
(16) represents the effect of middle surface 
increasing on the total deformation of the plate. 
     Supposing that the embedded plate can have a 
radial boundary slipping, the deformation in the 
centre of the plate can be determined with the 
relation 
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     Considering the general equations for radial and 
tangential deformations given by the relations (8), 
(9) and (10), it can be observed that if Nr = 0 on the 
contour, then the value on the contour of Nt become 
a negative one (Nt = Ehεt = Ehu/r). 
     This means that for transversal loads critical 
values, the boundary embedded contour might 
become instable (occurs the slipping of the plate in 
the embedded contour). 
     To prevent the slipping process on the embedded 
contour, Nadai proposed to determine the 
deformation in the centre of the plate using the 
following cubic relation in equation (14) [10] 
     An exact solution to determine the large 
deformation of a circular plate embedded on the 
contour, and stressed by uniform distributed 
pressure, is necessary to solve the equations  
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     Nadai proposed to admit that the deformation of 
circular plate embedded on contour have to take in 
consideration in relations (18) the approximate 
relation [10]  
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which become zero for r = 0 and r = a, in 
correlation with the conditions of the circular plate 
embedded on the contour. 
     The first of equation (18) solve the approximate 
value for u. Introducing these approximations for u 
and dw/dr in the second equation (18), the relation 

to determine the deformation in the centre of the 
circular plate is given by the relation          

3 4
0 0w w p a0,583 0,176

h h E h
   + ≈      

                    (20) 

     The first rapport in the left side of previous 
equation can be neglected (due to very small value 
in comparison with the second), and the deformation 
can be determined with relation 

3 4
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h E h
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                             (21) 

     This relation show that the deformation is not 
proportional with the load intensity, but depends 
with the p1/3 increasing.  
     The exact solution of the large deformations 
problem can by obtained taking in consideration that 
in the equations (18), the first one of these equations 
is equivalent to equation (11). 
     Taking in consideration the relation (13), the 
second equation (18) can be written as the following 
relation 
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r3 2 2
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r dr dr 2dr dr r
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     Considering the general relations for radial and 
tangential deformations, we obtain the relation 
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Introducing notations 

( )r r t
1 N N

Eh
ε ν= −                                              (24) 

and  

( )t t r
1 N N

Eh
ε ν= −                                             (25)  

in these equations, and using the relation (11), we 
can obtain the equation to determine the 
deformation in the centre of the circular plate 
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     These theoretical considerations permit to 
determine the deformation in the centre of the 
embedded circular plate, using the relation 
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     The radial tensile and the tangential tensile in the 
middle plan of the circular plate can be determined 
using the relations 

2
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     The radial tensile and the tangential tensile in the 
extreme fiber of the circular plate can be determined 
using the relations 

2
0

radef,rad a
hw

Eβσ =                                                 (30) 

2
0

tgef,tg a
hw

Eβσ =                                                    (31) 

     The coefficients in relations (27),…,(31), are [10]: 
- Rigid boundary       A = 0,47;  B = 0,17 
  - in the centre          97,0tgrad ==αα  ; 

                                  86,2tgrad == ββ  
  - on the boundary    14,0;47,0 tgrad == αα  
                                  32,1;4,4 tgrad −=−= ββ  

- Mobil boundary      A = 0,14; B = 0,17 
   - in the centre         ;5,0tgrad ==αα  
                                   86,2tgrad == ββ  

- on the boundary   33,0;0 tgrad −== αα  

                               32,1;4,4 tgrad −=−= ββ . 

     Using this method, the deformations w0 in the 
centre of the circular embedded plate (h = 1 mm;       
a =130 mm) made in AISI 316 stainless steel, 
produced by static pressure, are presented in Table 3. 

                                                                  Table 3 
p [bar] w0 [mm] p [bar] w0 [mm] 

10 10,8 60 22,3 
20 14,7 70 23,8 
30 17,3 80  25,1 
40 19,6 90 26,2 
50 21,2 100 27,4 

 
          To obtain spherical shaped the static pressure 
can be uniform distributed utilizing an elastic 
membrane made in very resistant material on the 
hydrostatic action; but this elastic membrane can not 
be used when the necessary to be deformed is 
punched.[2] 
     To evaluate the deformability of the plate with 
wpl,max = 22...25mm depth deformation, plastic deformed 
considering a rigid embedded boundary, the radial 
stress and the tangential stress were determined (Table 4).  
     In order to compare the theoretical method 
results, an analytical method based on the finite 
element method (FEM) was used [4]. 
    In Table 4 is observed that the values obtained 
using FEM are 4…10% smaller then the values 
obtained using the presented theoretical method (AM).  
  

Table 4 
Tangential 
stress  tgσ  
[N/mm2] 

Radial 
stress radσ  
[N/mm2] 

Fibre 
position 

[mm] 

AM FEM AM FEM 
Internal  
z = 0,5 

155 147 203 191 

Central z = 0 -22 -19 42 39 
External  
z = -0,5 

-103 -96 -121 -112 

 

 
5. Theoretical  considerations  concern 
    large deformations of circular 
    plate, produced by impulsive load 
Starting from the theoretical studies for impulsive 
loads deformation processes, it was developed a 
mathematical method for plastic deformation by gas 
blasting combined with impact quantities. 
     This model is based on the hypothesis theory 
which takes into account that the external forces 
deformation energy is consumed to exceed the 
bending strain energy and the stretch strain energy 
plate deformation energy, described by Lagrange 
equation: [1,5] 
( )∫ ∫ =−+ 0WWW pcinext ∆∆∆                         (32) 

     The external forces energy variation is achieved 
due to the direct shock wave action produced by the 
gas blasting combined with the impact substance 
effect 
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where tm is the moment when is achieved the 
maximum wave pressure pmax on the deformed plate. 
     The kinetic energy variation could be described 
with relation:  
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where ρm and Vm represent the density and the 
volume of the deformed material;w=w(r;t) 
represent the depth of the deformation; u=u(r;t) 
represent the radial displacement. 
     The potential energy variation could be 
described with the relation:  

( )∫ ⋅⋅+⋅= mcfcfradradpot dVW ε∆σε∆σ∆          (35) 
where σrad and εr represent the radial tensile stress, 
and the radial deformation, respectively; cfσ and εcf 
represent the circumferential tensile stress, and the 
circumferential deformation, respectively. 
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     The relations between tensile stresses are based 
on the following hypothesis: the deformation of the 
material’ volume is proportional with the medium 
normal tensile; the value of the tensile depends on 
the deformation value; the deviator functions of 
tensile are proportional with the deformations. 
     In hypothesis that the external forces are 
consumed by the resistance forces such as bending 
strain forces and the stretch strain forces, the 
specific radial and circumference deformation 
which are placed in the medium plane z, could be 
calculated with relations 

2

22

r r
wz

r
w

2
1

r
u

∂
∂
⋅−







∂
∂

+
∂
∂

=ε               (36) 

r
w

r
z

r
u

cf ∂
∂

−=ε                                          (37) 

     Corresponding with these deformations, the 
tensile are calculated with the relations [10] 
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ech

ech
2cf 1

1 ενε
ε
σ

ν
σ ⋅+⋅

−
= ,                        (39) 

where:  

( )1 / 22 2
ech r r cf cfσ σ σ σ σ= + ⋅ +                          (40) 

( ) ( )

( )

2 2 2 1 / 2
ech r cf2

2 1 / 2
r cf2

1ε [ ε ε ν ν 1 ]
1 ν

1 [ε ε ν 4ν 1 ]
1 ν

= + − + −
−

− ⋅ − +
−

         (41) 

     In the dynamic elastic deformation, the material 
is deformed according Hooke law, given by relation: 

ech d echσ E ε= ⋅ ,                                                  (42)                                                                  
where Ed is the dynamic elasticity modulus 
(presumed to be equal with the static one)[2,5]. 
     In the plastic deformation range, the material is 
deformed according the relation: 

( )( )i d i iσ E ε 1 f ε= ⋅ −          (43)                                                            

where f(εi) depends on cold-hardening characteristic, 
which is calculated for linear hardening with the 
relation:  

( ) i c
i

i

ε ε
f ε f

ε
−

= ⋅                                                (44)                                                       

where εc represents the relative deformation corres-
ponding to yield point;  εi represents the depth of the 
deformation w, and circumference deformation r, 
respectively;  fE represents the coefficient depending 
on elasticity material modulus: 

d p
E

d

E E
f

E
−

=                                                      (45) 

     The deformation velocity is calculated with the 
relation 

t
i

∂
∂

=
ε

ε&   ,                                                             (46)                   

where n represents the cold-hardening coefficient;  
K represents the dynamic tensile strength (experi-
mentally determined for each impulsive deformed 
material. 
     Notation m

rσ , m
cfσ and m

rε , m
cfε the tensile and the 

deformations at the moment tm , which correspond 
with the direct shock wave stopping action, after 
this moment the tensile and the deformations can be  
calculated with relation: 

( ) ( )m m m
r r r cf r2 cf

1σ σ ε ν ε ε ν ε
1 ν

 = + ⋅ − + ⋅  −
            (47)      

( ) ( )m m m
cf cf cf r cf r2

1σ σ ε ν ε ε ν ε
1 ν

 = + ⋅ − + ⋅ −
            (48) 

     To establish the deformation values and the 
tensile values in each point of the deformed 
material, for every moment of the deformation 
process, it can be given an equation system, using 
the following notations: 

2 2
1 1 1 1

r z w R ur ;  z ;  w ;  h ;  n h
R h h h R

= = = = = .     

     Taking into account the limit conditions 
considered for the material which is embedded on 
circular form, given by the relations: 
 ( ) ( )1

1 r
1

w
w r,t 0; 0; n r ;t 0

r
∂

= = =
∂

      (49)                  

the results could be written as relations (50): 
k m

1 i 1 1i 1 j 1 j
i 1 j 1

w (r,t) a (r ) w ;  n(r ;t) b (r ) c (t)
= =

= ⋅ = ⋅∑ ∑ .(50) 

     Replacing relations (50) in relations (37) and 
(36), we obtain the equation system (51) and (52):  

( )
( )( )

( )
( )( )

( ) ( )

2
m kj 1 i 12

r j i
j 1 j 11 1

2 k2
1 i i 12 i 11

b r a r1∆ε h c t w t
r 2 r

h z w t a r
r

= =

=

  ∂ ∂  = ⋅ + ⋅ −∑ ∑ ∂ ∂    

∂  − ⋅∑  ∂

 

(51) 

( ) ( ) ( )
( )( )m k i 12 1

cf j j 1 i
j 1 i 11 1 1

a rz1∆ε h c t b r w t
r r r= =

 ∂
 = ⋅ − ⋅∑ ∑

∂  
 (52) 

      
     Replacing relations (51) and (52) in relation (35), 
and then in relation (1), where ( ki ,1=  and mj ,1= ), 
we obtain a differential equations system (53): 
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Substituting σr and σcf in previous relations, it must 
be taken account that for each step of integration, it 
is necessary to control if the deformation process is 
elastic, or a plastic one.  
     The equations system (24) and (25) can be 
solved utilizing Runge-Kutta method, and permit to 
establish the radial and the circumference tensile   
(σr ; σcf) for each point of material thickness and for 
every range of stress deformations. 
     In order to compare the experimental results, an 
analytical method based on the finite element 
method (FEM) was used [4]. In Table 5 is observed 
that the values obtained using FEM are 3…7% 
smaller then the values obtained using the presented 
analytical method (AM). 

   Table 5 
Circumferential 

stress  cfσ  
[N/mm2] 

Radial 
stress radσ  

[N/mm2] 

Fibre 
position 

[mm] 

AM FEM AM FEM 
Internal  
z = 0,5 

183 174 244 232 

Central  
z = 0 

-33 -29 54 48 

External  
z = -0,5 

-126 -117 -145 -136 

 
 
6. Experimental   considerations   concerning  

         the deformation depth / velocity 
In order to determine the maximum transverse 
deformation, the permanent transverse deformation 
respectively, the mobile part of 3 displacement 
transducers were mounted in the control node 1N, 
11N and 21N of the circular plate part (Fig. 3).[5] 

 
Fig. 3 

 
     The deformation velocity was analytically 
determined by means of the acquisition and 
processing data system for each value of initial 
representative pressure p0 inlet the stocking vessel. 
     For each parameter combinations between 
deformable circular plate / initial pressure p0 in the 
stocking vessel / quantity of impact particles, at the 
acquisition start command, it was used a triggering 
signal, from the control coil of the electro-pneumatic 
valve (due to the controlled supersonic gazes 
discharge is obtained). 
     The maximum transverse deformation velocity in 
each control node was analytically calculated and 
graphically represented by means of the data 
acquisition and processing system, for each initial 
representative pressure p0 for which the porous 
material has significant deformations. 
     Spherical segment shaped plates with circular punches 
achieved respecting the technologically parameter 
described in this paper, are made for a filtration 
equipment to obtain different concentrated fruit juice. 
     For the experiments described in this paper there 
were used circular discs made on AISI 316 stainless 
steel (1 mm thickness; Do = 130 mm; Ф0,8 punch;      
40 punches/cm2). According to the filtration stage 
where is necessary to be mounted, the spherical 
segment shaped plates plastic deformed by this 
method, must have the final dimensions                  
Dp = 110mm, w pl, max = 22...25mm.  
     To avoid energy losses due to the round punches 
in the material, each circular part is covered on both 
sides with very thin plastic material (PVC). 
     In order to compare the experimental results, an 
analytical method based on the finite element 
method (FEM) was used.  
     FEM takes into account the following hypothesis: 
the large specific deformations must consider the 
isotropic hardening of the material; the deformable 
thin plate is considered as PLANE 2D axial-
symmetrical elements, with GAP contact element 
with no friction. 
     In the dynamic nonlinear analysis, for a quick 
convergence, the Newton - Raphson method was 
used and, as an integration method, the Newmark 
method with Rayleigh amortization factor for 
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maximum 0,4s time range, divided in an increment 
DTmin =1E-6 and DTmax=5E-4 [4].  
     The synthetic comparison between the maximum 
transverse deformation velocity values, on the 
plastically deformed stainless steel part obtained 
sing only pressured nitrogen blasting shock wave 
produced by initial pressure p0=10bar, experi-
mentally determined with Hottinger transducers 
placed on three nodes of the round disc, and the 
analytically obtained values with FEM, is presented 
in Table 6. 

                Tabel  6 
  Maximum transverse deformation velocities 
            in control nodes of the disc, [m/s] 
                         (control radius, [mm]) 
   1N 
   (0) 

  11N 
  (25) 

   21N 
   (50) 

   31N 
   (55) 

  41N 
  (60) 

Experimental Method 
   1,7     1,5     1,3       -      - 
                  Analytical Method (FEM) 
  1,62    1,41    1,22    1,16   1,02 

     In Table 6 can be observed that the values 
obtained using FEM are 6…8% smaller then the 
values determined using experimental method.  

       The maximum transverse elastic deformation and    
the transverse plastic deformation in control nodes 
of the deformed plate, obtained using only nitrogen 
blasting shock wave produced by the consecutive 
increasing of the initial pressure po from 7,5 bar to  
25 bar, are presented in Table 7. The experimental 
method concerned in three transducers placed on 
three control nodes of the plate (1N; 11N; 21N).  
                                                                      Table 7 

 Transverse plastic deformation
    in control nodes of the plate 

        (control radius, [mm])   po 
[bar] 

wel,max 
[mm]     1N 

     (0) 
     11N 
     (25) 

    21N 
    (50) 

  7,5   8,3     6,2       5,8      5,5 
   8   9,2     7,3       6,8 6,4 
  8,5  10,1     8,1       7,7      7,2 
   9  10,8     8,9       8,6      8,2 
  9,5  11,7     9,8       9,5      9,2 
  10  12,2    10,2       9,9      9,5 
  15  16,7    14,5      12,4     11,3 
  20  21,3    19,8      18,1     16,5 
  25  26,8    24,7      23,5     21,6 

  
     In Table 7 is observed that only using an initial 
nitrogen pressure p0 = 25 bar is possible to be obtained 
plastic deformation depth more then 22 mm. 
       The maximum transverse elastic deformation 
and  the transverse plastic deformation in control 
nodes 1N; 11N; 21N of the deformed plate,  

produced only by nitrogen blasting shock wave 
produced by the consecutive increasing of the initial 
pressure po from 9bar to 40bar, obtained using FEM, 
are presented in Table 8.   
     Comparing the values presented in Table 7 and 
Table 8 can be observed that the FEM values are    
5…10 % smaller then the values determined by 
experimental method.  
     In Table 8 can be observed that using only initial 
pressure larger then 25 bar is possible to obtain 
plastic deformed plate with 22,8…32,2mm central 
depth deformation.      

   Table 8 
 FEM plastic deformation in 

control nodes of the plate 
(control radius, [mm])   p o 

[bar]
wel,max
[mm]     1N 

     (0) 
     11N 
     (25) 

  21N 
  (50) 

   9  10,2     8,1       7,5    6,8 
  9,5  11,1     9,2       8,7    8,1 
  10  12,5     11,7       10,9    9,8 
  15  15,3    13,8      11,7   10,9 
  20  19,4    18,4      17,1   16,0 
  25  24,6    22,8      21,2   20,1 
  30 27,4    26,2      24,8   23,6 
  35 30,2    28,5      27,3   26,4 
  40 33,5    32,2      30,9   29,5 

     In Fig.4 is presented the FEM for maximum 
elastic deformation wel,max for the transverse plastic 
deformation in control nodes of the plate, using 
initial nitrogen pressure 9,5 bar. 

  
Fig. 4 

 
     The representative experimental data for 
transverse plastic deformation in 1N, 11N, 21N 
control nodes of the disc, obtained using initial 
nitrogen pressure 9,5 bar are presented in Fig. 5.  

WSEAS TRANSACTIONS on
APPLIED and THEORETICAL MECHANICS

Adrian Rosca, Daniel Rosca
 and Vasile Nastasescu

ISSN: 1991-8747 9 Issue 1, Volume 3, January 2008



  

 
Fig. 5 

      In order to increase the depth of the plastic 
deformed part, it was necessary to increase the 
kinetically energy of the shock wave by introducing 
impact substance in combination with the nitrogen 
blasting shock wave. 
     To make spherical segment plates with small 
punches, plastic deformed at more then 22mm 
maximum depth, as impact substance were used 
several quantities of water (1dm3; 1,5dm3; 2dm3) 
accelerated  by  increasing  initial  nitrogen  pressure  
po = 7,5…25bar. 

      
     In Table 9 is presented the maximum deformation 
depth in the center of the plastic deformed plate using 
1dm3; 1,5dm3; 2dm3 water impact substances 
accelerated by initial nitrogen pressure po = 7,5…10bar 
(experimental method).  

             Table 9 
 Initial pressure inlet stocking vessel, [bar] 
  7,5   8,0   8,5   9,0   9,5   10 
     Maximum deformation in the center 
       of the plastic deformed plate, [mm] 
  Nitrogen blasting shock wave combined  
      with 1,0dm3 water impact substance 
  8,8   9,7  10,6  11,5  12,3  12,8 
  Nitrogen blasting shock wave combined  
      with 1,5dm3 water impact substance 
  9,4  10,5  11,4  12,4  13,0  13,7 
  Nitrogen blasting shock wave combined  
       with 2dm3 water impact substance 
 10,3  11,1  12,2  13,3  14,1  15,2 

 
     In Table 9 it can be observed that using an 
increasing quantity of water impact substance, it is 
possible to obtain larger values for the maximum 
depth (~ 25% for 1,0 dm3 water impact substance;    
~ 40% for 1,5 dm3 water impact substance; ~ 50% 
for 2,0 dm3 water impact substance) compared with 
the results obtained using only nitrogen blasting 
shock wave. It can be also observed that using these 
combinations is not possible to obtain plastic with 
more then 15,2mm depth deformation.  
     Fig. 6 presents the FEM results obtained for 
nitrogen initial pressure po=10bar shock wave 
combined with 1,5 dm3 water impact substance.  
     The FEM values are 4-9 % smaller then the 
values determined using experimental method. 
       

 
Fig. 6 
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     In Table 10 is presented the maximum 
deformation depth in the center of the plastic 
deformed plate using 1dm3; 1,5dm3; 2dm3 water 
impact substances accelerated by initial nitrogen 
pressure po = 15; 20; 25bar (experimental method). 

                                                                  Table 10 
Initial pressure inlet stocking vessel, [bar] 

15 20 25 
Maximum deformation in the center 
of the plastic deformed plate, [mm] 

Nitrogen blasting shock wave combined 
with 1,0dm3 water impact substance 

16,2 18,6 22,3 
Nitrogen blasting shock wave combined 

with 1,5dm3 water impact substance 
19,8 22,8 25,7 

Nitrogen blasting shock wave combined 
with 2dm3 water impact substance 
22,4 24,3 28,1 

                                                                   
     In Table 10 is observed that using high nitrogen 
pressure combined with water impact substance is 
possible to obtain stainless steel spherical segment 
shape with final central depth deformation larger 
then the technological imposed value 22mm.  

      
7.  Conclusion 
In the new high velocity deformation method 
presented in this paper, the contribution of the 
impact substances energy can be found both in the 
kinetic energy of the deformable plate, joined at a 
given moment (for a quantum time) with the mass of 
the impact substance, and in the same time, in the 
maximum dynamic pressure which interacts with the 
plate in the same quantum time. 
     Using usual initial nitrogen pressure po = 7,5…10bar, 
combined with 1dm3; 1,5dm3; 2dm3 water impact 
substances is possible to obtain 15,2mm maximum 
deformation depth for stainless steel spherical 
segment shaped. 
    Using high initial nitrogen pressure po = 15; 20; 25bar 
combined with 1dm3; 1,5dm3; 2dm3 water impact 
substance is possible to obtain stainless steel 
spherical segment shaped with final depth 
deformation larger then the technological imposed 
value 22mm. 
     The experimental research works show that the 
elastic maximal deformation is achieved in 
0,03÷0,06sec and the permanent plastic deformation 
is achieved in 0,2÷0,4 sec. Due to the velocity 
values is confirmed that the new method is a high 
velocity deformation method.  
     The deformation energy which characterizes this 
new plastic deformation method shows that the 

efficiency of the plastic deformation process by gas 
blasting shock wave and impact substances is 
comparable with the efficiency of the classical high 
velocity deformation methods, such as deformation 
by explosive powders, deformation by 
electromagnetic impulses, and deformation by 
exploding wires in gas. 
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