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Abstract: - In this paper, an equilibrated homogenization model for the limit analysis of running bond masonry 

walls is revised. Assuming brickwork under plane stress condition and adopting a polynomial expansion for the 

2D stress field, a linear optimization problem is derived on the elementary cell in order to recover the 

homogenized failure surfaces of the brickwork. Different models of higher accuracy can be obtained by 

increasing ad libitum the degree of the polynomial approximation. The homogenized failure surfaces so 

obtained are then implemented in a FE limit analysis code for the evaluation of collapse loads and failure 

mechanisms of entire masonry structures. Both upper and lower bound homogenized limit analysis approaches 

are used for treating a meaningful structural case consisting of a two storey panel seismically loaded. A 

comparison with a pushover analysis conducted with a standard commercial code shows the efficiency of the 

technique presented with respect to: 1) accuracy of the results; 2) reduced number of finite elements required; 

3) reduced time required for the simulations. 

 
Key-Words: Masonry, Homogenization, Limit analysis, FEM 

 

1 Introduction 
Masonry is a composite material constituted by 

bricks jointed together with mortar. The great 

amount of possible combinations generated by the 

geometry, the arrangement and the mechanical 

properties of the constituent materials complicates 

its study to a great extent, especially in the inelastic 

range.  

From an experimental point of view, the 

difficulties in performing advanced testing are quite 

large, due to the innumerable variations of masonry, 

the large scatter of in situ material properties and the 

impossibility of reproducing it all in a specimen. 

Therefore, most of the advanced experimental 

research carried out in the last decades concentrated 

in regular textures of brick / block masonry, with 

particular emphasis on running bond pattern. 

Another important aspect that deserves particular 

consideration in the study of brickwork structures is 

related to the fact that historical city centers are 

often constituted by ancient masonry buildings. 

Many efforts have been done by researches in order 

to better understand their behavior to horizontal 

seismic actions. For instance, earthquake surveys 

have demonstrated that the low tensile strength of 

masonry elements combined with an insufficient 

interlocking of perpendicular panels leads to 

overturning collapses of the perimeter walls under 

seismic horizontal acceleration and combined in- 

and out-of-plane failures.  

Therefore, the evaluation of the ultimate load 

bearing capacity of masonry buildings subjected to 

horizontal loads is a fundamental task in their design 

and safety assessment. Simplified limit analysis 

methods are usually adopted by practitioners for 

safety analyses and design of strengthening, but 

codes of practice, as for instance the recent Italian 

O.P.C.M. 3431 [1], require a static non linear 

analysis for existing masonry buildings, in which a 

limited ductile behavior of the elements is taken into 

account, featuring failure mechanisms such as 

rocking, shear and diagonal cracking of the walls. 

In this framework, many researchers tried to 

develop a number of different numerical approaches 

(see [2] for a comprehensive review), all based on 

micro-modeling, macro-modeling or 

homogenization, with the aim of obtaining reliable 

tools to predict masonry behavior at failure. 

The present paper focuses exclusively on the 

analysis of running bond masonry structures making 

use of homogenization techniques, which has been 

receiving a growing interest from the scientific 

community. 

In particular, the approach based on the use of 

averaged constitutive equations seems to be the only 

one suitable to be employed in a large scale finite 
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element analysis [3]. In fact, heterogeneous 

approaches based on a distinct representation of 

bricks and joints seem to be limited to the study of 

panels of small dimensions, due to the large number 

of variables involved in a non linear finite element 

analysis. On the other hand, alternative strategies 

based on macro-modeling (see Lourenço et al. [4]) 

have the drawback of requiring a preliminary 

mechanical characterization of the model, which 

usually is obtained from experimental data fitting 

[4]. 

In this framework, homogenization techniques 

can be used for the analysis of large scale structures. 

Such techniques take into account at a cell level the 

mechanical properties of constituent materials and 

the geometry of the elementary cell, allowing the 

analysis of entire buildings through standard finite 

element codes. Furthermore, the application of 

homogenization theory to the rigid-plastic case [5] 

is particularly indicated for a simple but reliable 

structural analysis, requiring only a reduced number 

of material parameters and providing significant 

information at failure (e.g. limit multipliers, collapse 

mechanisms, stress distribution). 

In this paper, the micro-mechanical model 

presented by the author in [5] for the limit analysis 

of masonry walls is reviewed and utilized for the 

analysis of a large scale structure subjected to 

seismic action. In the model, the elementary cell is 

subdivided in several sub-domains. For each sub-

domain, fully equilibrated stress fields are assumed, 

adopting polynomial expressions for the stress 

tensor components. The continuity of the stress 

vector on the interfaces between adjacent sub-

domains and suitable anti-periodicity conditions on 

the boundary surface are further imposed. In this 

way, linearized homogenized surfaces for masonry 

are obtained. Such surfaces are then implemented in 

a FE limit analysis code for the analysis at collapse 

of large scale walls. 

In Section 2, the basic concepts of 

homogenization applied to running bond textures 

are briefly reviewed, with particular attention to the 

coupled in- and out-of-plane case. 

In Section 3, the equilibrated micro-mechanical 

model employed for obtaining masonry 

homogenized surfaces is presented. 

Finally, in Section 4, an entire two storey 

masonry wall subjected to seismic loads is 

numerically analyzed with the model proposed, 

making use of a specifically crafted limit analysis 

FE code. Both upper and lower bound homogenized 

limit analyses approaches are performed and 

compared with a pushover analysis conducted by 

means of a standard commercial package. The 

comparison demonstrates the reliability of the 

method presented. 

 

 

2 Basic Concepts 
Let a masonry wall Ω  be considered, constituted 

by the periodic arrangement of bricks and mortar 

joints (Fig. 1). The periodicity allows to regard Ω  

as the repetition of a representative element of 

volume Y (REV or elementary cell). Let x=[x1, x2] 

be a frame of reference for the global description of 

Ω  (macroscopic scale) and y=[y1, y2, y3] a frame of 

reference for Y. We define (Caillerie [6]) the Y 

module as 






−×=

2
;

2

tt
Y ω  where 

3ℜ∈Y  is the 

elementary cell and 
2ℜ∈ω  represents the middle 

plane of the plate. The Y∂  boundary surface of the 

elementary cell (see Fig. 1) is defined as 
−+ ∂∪∂∪∂=∂ 33 YYYY l , where 







±×=∂ ±

2
3

t
Y ω . 

 
Fig. 1: Elementary cell used in finite element modeling. 

 
The basic idea of homogenization consists in 

introducing averaged quantities representing the 

macroscopic stress and strain tensors (denoted 

respectively as E  and Σ ), as follows: 

dY
V

Y

∫>==< )(
1

uεεE ; dY
V

Y

∫>==< σσΣ
1

 (1) 

where V stands for the volume of the elementary 

cell, ε  and σ  stand for the local quantities (stresses 

and strains respectively) and <*> is the average 

operator. 

According to Anthoine [7] and Cecchi et al. [8], 

the homogenization problem in the linear elastic 

range, in presence of coupled membranal and 

flexural loads, under the assumption of the 
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Kirchhoff-Love plate theory, can be written as 

follows: 
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(2) 

Where σ  is the microscopic stress tensor (micro-

stress), 
per

u is a ω -periodic displacement field, E is 

the macroscopic in-plane strain tensor, χ  is the out-

of-plane strain tensor (curvature tensor), a(y) 

represents a ω -periodic linear elastic constitutive 

law for the components (bricks and mortar), 

equation (2)(b). Equation (2)(a) represents the 

micro-equilibrium for the elementary cell with zero 

body forces, usually neglected in the framework of 

homogenization. 

Furthermore, in equation (2)(c), the micro-strain 

tensor ε  is obtained as a linear combination among 

macroscopic E and χ  tensors and a periodic strain 

field. E and χ  tensors are related to the 

macroscopic displacement field components 

U1(x1,x2), U2(x1,x2) and U3(x1,x2) by means of the 

classic relations ( )αββααβ ,,
2

1
UU +=E , with 03 =iE , 

and 
αβαβχ ,3U−=  with 03 =iχ , 2,1, =βα  and i 

=1,2,3. 

Macroscopic homogenized membrane and 

bending constants can be obtained solving the 

elastostatic problem (2) and making use of the 

classic relations: 

DχEBσM

BχAEσN
T +==

+==
*

3

*

y
 

(3) 

where A, B and D are the constitutive 

homogenized plate tensors. Usually, the elementary 

cell has a central symmetry, hence B=0. As a rule, a 

solution for problem (2) can be obtained using 

standard FE packages, as suggested for the in-plane 

case by Anthoine [7] and for the FRP reinforced and 

unreinforced in- and out-of-plane cases by Cecchi et 

al. [8] and Cecchi et al. [9][10]. 

Governing equations in the non-linear case are 

formally identical to equation (2), provided that a 

non linear stress-strain law for the constituent 

materials is assumed. 

 

 

3 Homogenization in the rigid-plastic 

case 
Limit analysis approaches (de Buhan and de 

Felice [11] and Milani et al. [5][12]) are based on 

the assumption of a perfectly plastic behavior with 

associated flow rule for the constituent materials. In 

this framework, Suquet [13] proved that both static 

and kinematic approaches can be used in order to 

obtain an upper or lower bound estimation of the 

homogenized failure surface of a periodic 

arrangement of rigid plastic materials. 

In Fig. 2 (see also Fig. 1) a masonry wall Ω  

constituted by a periodic arrangement of bricks and 

mortar disposed in running bond texture is shown, 

together with a rectangular periodic R.V.E. As 

stated in [13], homogenization techniques combined 

with limit analysis can be applied for an estimation 

of the homogenized strength domain homS  of 

masonry. 

 

Fig. 2: Homogenized elementary cell for a running bond 
texture and meaning of outward versor n . 

 

In this framework, bricks and mortar are 

assumed rigid-perfectly plastic materials with 

associated flow rule. As the lower bound theorem of 

limit analysis states and under the hypotheses of 

homogenization, hom
S  can be derived by means of 

the following (non-linear) optimization problem: 
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where [ ][ ]σ  is the jump of micro-stresses across 

any discontinuity surface of normal int
n . Conditions 

(a) and (d) are derived from periodicity, condition 

(b) imposes the micro-equilibrium and condition (e) 

represents the yield criteria for the components 

(brick and mortar). The averaged quantity 

representing the macroscopic stress tensors Σ  is 

given by ω
ω

d
A ∫

>==< σσΣ
1

, where A stands for the 

area of the elementary cell on 03 =y , σ  stand for 

the local stress quantity and <*> is the averaging 

operator. 

 

Fig. 3: Adopted division in sub-domains, subdivision and 
geometrical characteristics of one-fourth of the 

elementary cell. 

The proposed solution approach involves a 

simple and numerically suitable model for solving 

the optimization problem. As shown in Fig. 3, one-

fourth of the R.V.E. is sub-divided into nine 

geometrical elementary entities (sub-domains), so 

that all the cell is sub-divided into thirty-six sub-

domains. The subdivision adopted is the coarser (for 

¼ of the cell) that can be obtained using rectangular 

geometries for every sub-domain. The macroscopic 

behavior of masonry strongly depends on the 

mechanical and geometrical characteristics of both 

units and vertical/horizontal joints. For this reason, 

the subdivision adopted seems to be also 

particularly attractive, giving the possibility to 

characterize separately every component inside the 

elementary cell. For each sub-domain, polynomial 

distributions of degree m are a priori assumed for 

the stress components. Since stresses are polynomial 

expressions, the generic ij
th
 component can be 

written as follows: 

( ) kT

ij

k

ij Yσ ∈= ySyX
)(  (5) 

Where ( ) [ ]K
2

221

2

1211 yyyyyy=yX  and 

[ ]K
)6()5()4()3()2()1(

ijijijijijijij SSSSSS=S  is a 

vector of length ( N
~

) (
( )( )

2

21~ ++
=

mm
N ) 

representing the unknown stress parameters ( k
Y  

represents the k
th
 sub-domain). 

The polynomial degree can be increased ad 

libitum, but at least a cubic interpolation is 

recommended for a reliable estimation of masonry 

homogenized failure surfaces. Details on 

equilibrium and anti-periodicity conditions, and 

validation of the approach are reported in Milani et 

al. [5]. Extensions of the formulation to out-of-plane 

behavior and combined in- and out-of-plane loads 

can be found in [12] and [3] respectively. 

 

 

4 Structural examples 
The homogenized failure surface obtained with 

the above approach has been coupled with finite 

element limit analysis and applied to an example of 

technical relevance. Both upper and lower bound 

approaches have been developed, with the aim to 

provide a complete set of numerical data for the 

design and/or the structural assessment of complex 

structures. The finite element lower bound analysis 

is based on the equilibrated triangular element by 

Sloan [14], while the upper bound is based on a 

modified version of the triangular element with 

discontinuities of the velocity field in the interfaces 

by Sloan and Kleeman [15]. The modification takes 

into account the actual shape of the yield surface for 

the homogenized material in the interfaces. Several 

numerical simulations have been carried out in 

Milani et al. [16] in order to test the accuracy of the 

results obtained using homogenized finite element 

limit analysis. 

In this section, a comparison between the method 

proposed and a pushover analysis is presented for 

the two storey masonry wall shown in Fig. 4. The 

wall thickness is assumed to be cm30 . Vertical 

loads (first floor 42 kN/m second floor 37 kN/m) are 

assumed acting in correspondence of the floors, 

whereas a distributed horizontal force simulating 

earthquake actions and depending on the λ  load 

multiplier is applied in correspondence of the first 

and second level (see Fig. 4). Vertical distribution of 

horizontal actions is taken according to the the 

Italian Code requirements. 

It is worth underlining that a comparison with a 

non-linear static pushover analysis is very attractive 

for a practical point of view, because the recent 

advent of performance based design has brought this 

approach to the forefront. Its importance has been 

already receipted by many national codes of 

practice, which can require, in specific cases, 

pushover analyses (see for details reports ATC-40 

[17] and FEMA-273 [18]). Pushover analysis is a 
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static, non-linear procedure in which the magnitude 

of the loads is increased in accordance with a 

predefined pattern. With the increase in the 

magnitude of the loading, weak links and failure 

modes of the structure are found, by means of the 

introduction of plastic/brittle hinges. 

At present, standard pushover analyses 

specifically dedicated to masonry structures can be 

conducted by means of commercial codes. 
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Fig. 4: -a: Two storey masonry wall, geometry (in cm), 

mesh utilized and seismic load applied for the lower bound 

analysis. –b: Homogenized masonry failure surface in the 

space of homogenized membrane stresses. 

 

In this Section, the commercial code Aedes® is 

used for the comparison. In such a package, 

brickwork structural elements are substituted by 

means of the introduction of an equivalent frame, 

with mechanical non-linear behavior of the 

beams/columns very similar to that implemented in 

the SAM method [19]. Nevertheless, in comparison 

with SAM approach, the simplified assumption of 

perfectly plastic force-deformation criteria for 

hinges is adopted. Such simplification leads to treat 

a relatively simple and manageable incremental 

elastic-plastic equivalent frame. 

On the other hand, for what concerns the 

homogenized limit analysis approach, the wall is 

supposed constituted only by masonry (for the sake 

of simplicity, no RC beams are introduced in 

correspondence of floors). Furthermore, mortar 

thickness is neglected, reducing the joints to 

interfaces. A frictional-type yield surface with cap 

in compression is chosen for joints, while for units a 

linear cut-off failure criterion in compression is 

adopted. Numerical values adopted for joints and 

bricks are reported in Table 1. The homogenized 

failure surface obtained using the micro-mechanical 

model proposed is shown in Fig. 4-b. Vertical loads 

and masonry self weight are applied in 

correspondence of the floors. 

 

-a 

Fig. 5: -a: Principal 

stress distribution at 

collapse, lower 

bound limit 

analysis. –b: 

Velocity fields at 

collapse from the 

upper bound 

analysis with and 

without jump of 

displacements on 

discontinuities 

between adjoining 

elements. 
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Table 1: Comparison with a pushover analysis. 

Mechanical properties of joints and bricks. For joints, a 

Mohr-Coulomb failure criterion with tension cut-off and 

linearised cap in compression is adopted, see previous 

Chapter. Here, 
tf  is the tensile strength, 

cf  is the 

compressive strength, c  is the cohesion, 
1Φ  is the 

friction angle and 
2Φ  represents the linearised shape of 

the compressive cap (see [16] for a detailed description of 

the model). For bricks 
cf  is the compressive strength 

(Rankine criterion in compression). 

]/[ 2
mmNc  0.2 

]/[ 2mmNf t  ( )1tan/ Φc  
]/[ 2mmNf c  5 

1Φ  37° 

Joints 

2Φ  90° 

Bricks ]/[ 2mmNf t  12 
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In Fig. 5-a, the principal stress distribution at 

collapse from the lower bound analysis is reported. 

It is particularly evident the failure of the piers of 

the first-storey due to shear actions. On the other 

hand, in Fig. 5-b, fields of velocities at collapse 

from the upper bound analysis with and without 

discontinuities are reported. The failure mode of the 

structure is particularly evident in both cases.  

The lower bound analysis gives a total shear at 

the base of kN174 , whereas the upper bound 

approach gives a collapse load of kN4.193  and 

kN1.209  for the model with and without 

discontinuities, respectively. 

The pushover analysis, in which averaged 

mechanical properties are assumed for masonry in 

order to fit as better as possible homogenized data 

of Fig. 4, gives a horizontal load near collapse of 

about kN200 , in good agreement with limit 

analysis. Finally in Fig. 6, the total horizontal 

force/horizontal displacement obtained with the 

pushover analysis is reported. The agreement of the 

failure mechanism with respect to the homogenized 

limit analysis approach is worth noting. 
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Fig. 6: Results of the pushover analysis (equivalent 
frame model) and comparison with the limit analysis 

model proposed. 
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