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Abstract: We have developed a parameter estimation routine that uses genetic algorithms to systematically 
identify stiffness and damping properties that can accurately predict spine segment motions associated with 
forces applied during chiropractic manipulation. Enhancements to the current computer simulation and 
visualization capabilities established are made. The ensuing computer simulation and modeling program is 
tested with experimental displacement-time and acceleration-time spine motion data. Experimentally-optimized 
stiffness and damping properties derived from the model are used to characterize the normal and pathologic 
spine. This study provides a tool for diagnosis of spinal disorders and will assist chiropractic clinicians and 
researchers in understanding the mechanical response of the human spine to mechanical forces. 
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1  Introduction 
Without resorting to invasive spine measurements 
techniques, precise assessment of clinically relevant 
variables, such as vertebral and inter-vertebral 
displacements and stiffness, is very difficult to 
obtain [1]. Mathematical models are therefore often 
used to quantify the forces and moments acting on 
the spine. The mechanical response of the spine to 
externally applied static and dynamic forces is 
dependent on the complex interaction between the 
flexible joint structures (FJS) and rigid structures 
that comprise the function spinal unit. The inherent 
mechanical and geometric complexity of the spine 
makes the precise description of vertebral body 
movements a modeling challenge.  
   Previous research has demonstrated that the static 
and dynamic response of the lumbar spine to 
external forces can be studied using lumped 
parameter analytical models [2]. In these models, 
the vertebral body structures were represented as 
rigid masses and the FJS were represented elastic 
and viscous mechanical elements (springs and 
dampers). Using elastic stiffness coefficients 
derived from the literature and viscous damping 
defined by modal damping ratios, these authors 
found that their analytical model predictions 
showed general agreement with in vivo 
experimental studies of the posteroanterior (PA) 
motion response (natural frequency of vibration and 
peak-to-peak displacement behavior) of prone-lying 
subjects. However, their analytical models were 
limited to predicting the vertebral (segmental) and 
inter-vertebral (inter-segmental) motion responses 
with three or fewer displacement degrees of 
freedom, and did not accurately represent the multi-

axial coupling behavior of the spine. Moreover, 
other than parametric variation of model stiffness 
and modal damping coefficients, these studies did 
not include a systematic optimization of these 
coefficients. 
   Lee & Evans (1994) [3] were perhaps the first 
investigators to develop a mathematical model to 
specifically study the lumbar spine’s response to 
posterior-anteriorly directed forces.  Lee et al. 
(1995) [4] developed a three-dimensional finite 
element model of the spine, ribcage, and pelvis, 
which was used to predict static segmental 
displacement responses of the lumbar vertebrae to 
PA forces.  They validated their model by 
comparing predictions to low frequency (<1 Hz) PA 
oscillatory force-displacement data observed in 
human subjects and found generally good 
agreement with the mean responses. 
    Evans et al. (2005) [5] carried out right rotational 
mobilization. The initial starting position adopted 
was left side–lying with flexion of both hips and 
knees. Rotational mobilization was then performed 
by pushing the pelvis in an oscillatory manner. The 
spine was twisted further into the range by rotating 
the thorax to the left. Counter pressure was applied 
to the right shoulder by the shoulder fixation pad 
while the pelvis was pushed. The measured angular 
rotation and applied moments were used to predict 
angular stiffness of the current model. The results 
are matching the data to some extend due to the 
model linearity limitation.  
Ralph et. al. (2005) [7] measured the dynamic 
force-displacement curves of an L2-3 cadaveric 
lumbar motion segment. A comparison of the 
resulting model with these data shows good 
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agreement with the linear slope of the curve (least-
squares fit) and small percentage error with the 
range of motion.  
Although we have limited our test cases to the 
displacement response resulting from static and 
dynamic forces delivered to a single segment due to 
data shortage, the response to forces distributed 
over several segments can be modeled easily by 
directly applying forces and moments to specific 
vertebrae. Additional experimental data is needed to 
assess the model response to more complex loading 
conditions. 
There are inherent limitations of the current model. 
First, in specifying a single linear set of elastic 
coefficients for vertebral segment, the response to 
larger deformations can’t be guaranteed. The 
normal lumbar spine is nonlinear in both passive 
structures (ligaments, cartilage) and active 
structures (skeletal muscle) that contribute to the 
biomechanical behavior. As currently formulated, 
the model is limited to examination of the general 
linear, static and dynamic mechanical responses of 
the spine. Second, the model does not take into 
account the complex geometry of the spine, which 
can introduce other nonlinearities like contacting 
and sliding between vertebrae. In addition, in this 
model we have considered coupling of forces and 
moments between two axes when, in fact, forces 
and moments are coupled in all axes. All these 
limitations are considered in future work. 
 
 
2  Methods: The Simulator 
  The overall objective of this study was to develop 
a mathematical model capable of describing the 
three-dimensional static and dynamic motion 
response of the lumbar spine. A robust parameter 
estimation routine was developed to identify FJS 
stiffness and damping properties using available 
displacement-time data obtained from in vivo 
impulsive force experiments. Coefficients derived 
from this analysis were subsequently used to 
independently validate the model response to static 
and steady-state motion responses. The dynamic 
motion response is subsequently characterized using 
a three-dimensional visualization routine. 
  The lumbar spine vertebrae were modeled as five 
rigid bodies representing vertebral segments L1 to 
L5. Each vertebra was treated as a rigid-body mass 
possessing six displacement degrees of freedom: 
three components of translation and three 
components of rotation. All other flexible joint 
structures (i.e. ligaments, disc, muscles, tendons, 
and cartilage) or FJS were modeled as massless 
springs (elastic elements) and dampers (viscous 

elements) constraining the motion of the vertebrae 
in the six degrees of freedom. The flexible 
connections to the upper and lower part of the spine 
(thorax and pelvis) were also represented as spring-
dashpot mechanical elements. To simulate the 
dynamic motion response of the lumbar spine a 
program was created that consisted of four custom 
Matlab (The Mathworks, Natick, MA) modules: 
Initialization, Ordinary Differential Equation 
Solver, Rigid-body Dynamics Routine, and 
Visualization. Each module is explained in detail in 
the following sections. The initialization module 
inputs each of the required vertebral mass, inertia 
and center of mass parameters. Vertebral masses are 
taken from reference [2] and moments of inertia are 
calculated using cad program from the 3D model 
found in (free 3D models) Input data are 
summarized in Table 1. 
 

Table 1. Vertebrae mass and inertia properties  
Property L1 L2 L3 L4 L5 

Mass (kg) 0.17 0.17 0.114 0.114 0.114 
Ixx  (10-6) 

kgm2 
26.7 24.5 16.5 14.8 22.5 

Iyy  (10-6) 

kgm2 
34.2 31 17.4 20.4 31 

Izz  (10-6) 

kgm2 
36.8 36 22.2 26.5 40.3 

Ixz  (10-6) 

kgm2 
-7.8 -6.9 -2.8 1.4 2.12 

 
Two solvers are implemented in the simulator. For 
parameter estimations, a first order finite difference 
procedure is implemented to speed up calculations. 
For the simulator a fourth order Runge-Kutta 
procedure is implemented for high accuracy. The 
lumbar spine vertebrae were modeled as five rigid 
bodies (L1 to L5) with six degrees of freedom. Each 
degree of freedom was mathematically represented 
using a single, second order ordinary differential 
equation or two first ordinary differential equations 
[6]. Thus, each body was characterized by a total of 
12 first order differential equations, and the 
complete system was comprised of 60 first order 
differential equations. The rigid body kinematic and 
dynamic equations are given in equations (1): 
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The FJS spring and coupling coefficients were 
computed using a parameter optimization routine 
described later. 
    A Matlab script was written to visualize the 
model simulation of the lumbar spine motion. The 
procedure is based on center of gravity and Euler 
angles. At time t each vertebra is defined by its 
center of gravity (c.g.) and orientation angles (Euler 
angles). For visualization purposes, a 3D lumbar 
spine model was adapted from a 3D studio model 
found on the internet (free 3D models). The model 
was edited and reformatted to work under Matlab. 
Each vertebra was modeled by surface triangular 
patches defined by node matrix (vertices) and 
connectivity matrix. The vertebral node coordinate 
(x,y,z) origin was located at the vertebral body 
center of mass in order to simplify the coordinate 
transformation. All vertebra surface coordinates are 
therefore known relatively to the center of gravity. 
At each time step these points were transformed 
using Euler angles and then translated to the new 
position using the new center of gravity. An MPEG 
encoder was used to produce moving picture 
experts group standard video coded compressed 
format (MPEG) movie files. 
    The cost function used in the optimization 
module was error based. Depending on the data 
available (i.e., flexion–extension (FE) rotation, axial 
(AX) cranial-caudal, and posteroanterior (PA) 
motions, etc.), the cost function is simply the 
integration over time of the difference error 
between the value the variable (displacement, 
rotation, etc.) from experiment and the value of the 
same variable from the proposed model. For a 
single variable, this can be written as 
  

),t(V)t(V)t(e where

dt )t(e (f) functioncost 

elmodexp −=

= ∫  

 
Vexp(t) is the value of an experimentally-derived 
variable (or numerically-calculated from a high 
fidelity model) as a function of time and Vmodel (t) is 
the value of the lumbar spine model variable as a 
function of time. 
 
For multiple variables, such as displacement-time 
histories for different axes, the total cost function is 
just the summation of cost function of each variable 
with weighting constants as follows: 
 

∫∫∫ +++

=+++=

dt (t)ew....dt (t)ewdt (t)e     w                    
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where wi are weighting constants. In this work these 
weights are assumed unity. 
 
Test Case 1 
Six displacement-time histories were used for 
parameter estimation [2]. These data represent the 
posteroanterior (PA or X-axis) displacement, axial 
(AX or Z-axis) displacement, and flexion extension 
(FE) rotation (about Y-axis) for the L3 and L3-L4 
vertebral segments subjected to an impulsive force 
of 100 N applied to the L3 vertebra of a 36 year old, 
185 cm, 82 kg male volunteer. Displacement-time 
histories, with equal time steps (0.2 msec.) were 
obtained from Keller’s model [2]. The cost function 
is given by 

4ModelKeller6

3ModelKeller5

4ModelKeller4

3ModelKeller3

4ModelKeller2

3ModelKeller1

6

1
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  (F)function cost  Total

∑
∑
∑
∑
∑
∑

∑

−=ε

−=ε

−=ε

−=ε

−=ε

−=ε

ε=
=

FEFE

FEFE

PAPA

PAPA

axialaxial

axialaxial
where

i
i

 
Test Case 2 
Three displacement-time histories were used for 
parameter estimation [4]. These data represent 
typical moment and movement pattern of the 
lumbar spine 
in the 3 anatomical planes during right rotational 
mobilization of a 30-year-old woman.. The cost 
function is given by 

3

1

1 Tsung Model 3

2 Tsung Model

3 Tsung Model

Total cost function (F)   

   

   for L

    for L

  

i
i

where

( axial rotation axial rotation )
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( flextion extension flextion extension )

ε

ε

ε

ε

=

=

= −

= −

= −

∑

∑
∑

3 for L∑
3

  
The FJS spring and dashpot coefficients were 
derived from displacement-time data using a 
parameter estimation procedure comprised of two 
modules: a simulator with variable parameters and 
an optimizer. The parameter estimation algorithm 
proceeds as follows: 
1- Initialize parameters (spring and dashpot 
coefficients). 
2- Run the simulator with known input-output data 
pairs. 

3- Calculate the simulator output and compare it 
with the actual spine output and calculate the error 
function. 
4- Repeat steps 1-3 through the optimizer to 
minimize the error function till reaching minimum. 
5- End. 
The optimizer uses a robust optimization procedure 
based on a Monte Carlo procedure followed by 
genetic algorithm (GA).Parameter estimates for the 
spring, damper and coupling coefficients are not 
generally available, or are highly variable. Hence, a 
Monte Carlo technique was employed to obtain 
candidate solutions to start a genetic algorithm 
(GA). The Monte Carlo technique implemented in 
the optimizer is as follows: 
1- Generate the unknown parameters randomly. 
2- Substitute into the cost function and calculate the 
error. 
3- Repeat step 1 and 2 (n) times. 
4- Keep the best m trails with the minimum error. 
5- Pass these trials to the GA algorithm. 
 
The GA proceeds with the initial population taken 
from the Monte Carlo procedure. Alternatively, if 
initial spring, damper and coupling parameters 
estimates are available, then an optimization 
technique such as steepest decent is employed. The 
cost function used in the optimization module was 
error based. Depending on the data available (i.e., 
flexion–extension (FE) rotation, axial (AX) cranial-
caudal, and posteroanterior (PA) motions, etc.), the 
cost function is simply the integration over time of 
the difference error between the value the variable 
(displacement, rotation, etc.) from experiment and 
the value of the same variable from the proposed 
model.  
 
3  Results 
Figure 1 graphically illustrates the experimental [2] 
and parameter optimized axial (AX), transverse 
(PA), and FE rotation displacement-time histories. 
Coefficients derived from the impulsive force 
optimization procedure were used to simulate the 
PA static and oscillatory force response (100 N 
peak amplitude). The model predictions compare 
favorably with experimental results.  
Figure 2 shows comparison between experimental 
work of [5] and current model for movement 
pattern of the lumbar spine in the 3 anatomical 
planes (axial rotation, lateral bending and flextion-
extension) during right rotational mobilization 
movement with respect to the initial starting 
positions.  
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Figure 1: L3-L4 displacement-time responses (PA, Axial, 
and FE rot) to a 100 N impulsive force delivered to the 
L3 segment. Solid and dashed lines illustrate the model 
predictions and Keller’s  response, respectively 
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Figure 2: Typical movement pattern of the lumbar spine 
in the 3 anatomical planes during right rotational 
mobilization movement with respect to the initial starting 
positions [Evans et al. experimental work [5] (dotted 
line), Model (continuous line)] 
  
Figure 3 compares between Ralph et. al. (2005) [7] 
work and the current model for the FE response for 
cyclic excitation with magnitude 5N.m . A least-
squares linear fit is also ploted which agrees with 
the model predection. 
   A number of improvements to the existing lumbar 
spine mathematical model will be made, including: 
• Addition of rigid masses and FJS representative of 
the pelvis and thorax. In the prone-lying position 
used to treat patients, the thorax and pelvis support 
the lumbar spine and play an important role in load 

transmission and damping. Additional degrees of 
freedom will be added to the constraint and 
coupling equations consistent with a recently 
published lumbar spine lumped parameter model. 
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Figure 3: Flexion-Extension angular response due to 
sinusoidal input  
 
• Generalization of the model to include both 
anterior and posterior elements of the vertebrae. 
The existing model lumps the anterior (centrum) 
and posterior (facet joints) columns of the spine into 
a single structure and therefore does not accurately 
simulate the inherently non-linear axial, transverse 
(PA) and rotational load-displacement behavior of 
the vertebral column. Additional degrees of 
freedom will be added to the constraint and 
coupling equations. 
 
• Ability to model forces distributed over more than 
one vertebral segment. During manual 
manipulation, forces are often applied in a manner 
that involves direct loading of more than one spine 
segment. The input force and moment constraint 
equations will therefore be generalized to 
accommodate more complex loading conditions 
consistent with chiropractic practice. 

 
The suggested changes present an efficient multi-
resolution approach to model the Lumbosacral 
section of the spine for clinical evaluation. It poses 
two algorithms. The first algorithm (see figure 4) 
models the Lumbosacral section globally, with low 
level of details, as three-dimensional, beam–column 
model [1]. This algorithm studies the overall motion 
response of the whole lumbar spine (L1-sacrum) 
under the influence of gravitational and active 
muscle loads. Such a continuum spine model can 
simulate the overall motion response of the human 
spine provided the model utilizes appropriate 
flexural rigidity values. Such modeling 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS Ayman Kassem, Ahmed Sameh 

1991-8747
117

Issue 5, Volume 2, May 2007



methodology has been used successfully in the past 
[2.3.4].  We will compare this to the modified 
version of our rigid body (static equilibrium and 
add the sacrum vertebra) above. 

 
 

 
Figure 4:This is a figure for two dimensions spine model 
as a beam (we will have similar view in the other plane) 
 
The second algorithm models the Lumbosacral 
section locally, with high level of details (see figure 
5). It uses mass-spring-damper system or finite 
elements to model a spinal motion segment (two 
vertebrae and a disc). The algorithm uses the 
position and orientation results from algorithm one 
and calculate the stresses and deflection in the disc, 
and spinal cord compression. 
 

 
Figure 5: Finite element model of a motion segment (we 
will use a model for L5-S1) 

 
 
4  Conclusion 
This research provides quantitative tools for 
diagnosis of spinal disorders and will assist 
chiropractic clinicians and researchers in 
understanding the mechanical response of the 
human spine to mechanical forces. Parameter 
optimized model simulations showed good 
agreement with the test data, and subsequent 

independent validation of the static and oscillatory 
displacement response demonstrated that impulsive 
force and rotational mobilization test data can be 
used to predict the lumbar spine motion response 
during other types of loading conditions. Lumped 
parameter models, therefore, provide an efficient 
and effective method to determine the vertebral 
and/or inter-vertebral displacement-time history 
response of the lumbar spine to static, dynamic and 
impact forces. The ability to characterize spine 
motion and to systematically identify spine stiffness 
and damping characteristics will provide clinicians 
(Chiropractors, Orthopaedic Surgeons) and 
researchers with important biomechanical 
information and visualization tools that can be used 
to assist in the diagnosis and treatment of spinal 
disorders, including low back pain.  
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	Without resorting to invasive spine measurements techniques, precise assessment of clinically relevant variables, such as vertebral and inter-vertebral displacements and stiffness, is very difficult to obtain [1]. Mathematical models are therefore often used to quantify the forces and moments acting on the spine. The mechanical response of the spine to externally applied static and dynamic forces is dependent on the complex interaction between the flexible joint structures (FJS) and rigid structures that comprise the function spinal unit. The inherent mechanical and geometric complexity of the spine makes the precise description of vertebral body movements a modeling challenge.  
	   Previous research has demonstrated that the static and dynamic response of the lumbar spine to external forces can be studied using lumped parameter analytical models [2]. In these models, the vertebral body structures were represented as rigid masses and the FJS were represented elastic and viscous mechanical elements (springs and dampers). Using elastic stiffness coefficients derived from the literature and viscous damping defined by modal damping ratios, these authors found that their analytical model predictions showed general agreement with in vivo experimental studies of the posteroanterior (PA) motion response (natural frequency of vibration and peak-to-peak displacement behavior) of prone-lying subjects. However, their analytical models were limited to predicting the vertebral (segmental) and inter-vertebral (inter-segmental) motion responses with three or fewer displacement degrees of freedom, and did not accurately represent the multi-axial coupling behavior of the spine. Moreover, other than parametric variation of model stiffness and modal damping coefficients, these studies did not include a systematic optimization of these coefficients. 
	  The overall objective of this study was to develop a mathematical model capable of describing the three-dimensional static and dynamic motion response of the lumbar spine. A robust parameter estimation routine was developed to identify FJS stiffness and damping properties using available displacement-time data obtained from in vivo impulsive force experiments. Coefficients derived from this analysis were subsequently used to independently validate the model response to static and steady-state motion responses. The dynamic motion response is subsequently characterized using a three-dimensional visualization routine. 

