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Abstract: - Circular foundation pits often appear in civil engineering. In order to obtain the critical depth of the 
non-supported circular foundation pit, the upper-bound method in plasticity mechanics was employed. The 
assumed slip surface in analysis was the rotational logspiral surface. The kinematically admissible velocity 
field was obtained according to the associated flow rule for Coulomb material, and the optimization model of 
the critical depth was established and solved with SQP optimization algorithm. The variations of the critical 
depth with the slope angle, the ratio of depth to radius of pit and the internal friction angle of soil were studied. 
The arch effect of the circular foundation pit makes the critical depth larger than the critical height of the plane 
slope; however, when the ratio of depth to radius of pit approaches zero, the upper-bound solution of the former 
approaches that of the latter. If the ratio of depth to diameter of pit is less than 10, the arch effect may be 
ignored and the foundation pit can be analyzed as the plane slope with the method of slices. Comparisons 
between upper-bound solution(UBS), the solution from approximate slip line theory(SLS) and finite 
difference solution(FDS) showed that UBS is less than SLS and larger slightly than  FDS. 
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1 Introduction 
Limit analysis theory is an important branch of 
plastic mechanics. It was developed from the metal 
plastic theory and has already been extended to rock 
and soil mechanics now. Limit analysis was used to 
solve some engineering problems, such as slope 
stability and limit load[1-8]. It contains two kinds of 
basic methods, i.e. the upper-bound method and the 
lower-bound method. Based on upper-bound 
theorem, the upper-bound method needs to establish 
the kinematically admissible failure mechanism and 
velocity field in advance. The velocity field must 
meet motion boundary conditions and associated 
plastic flow rule. Based on lower-bound theorem, 
the lower-bound method needs to set up statically 
admissible stress field which must satisfy 
equilibrium equation, stress boundary condition and 
not disobey the failure criterion which is Mohr-
Coulomb failure criterion for rock and soil. 

Limit analysis can give the definite bounds of 
some problems such as the slope critical height and 
the pile bearing capacity[1-8]. However, the 
solution from rigid limit equilibrium method, which 
is another analysis method used extensively in 

geomechanics, is difficult to tell that it is an upper-
bound solution or lower-bound solution. 

For Some failure mechanisms used in limit 
equilibrium method, the corresponding 
kinematically admissible velocity fields for limit 
analysis can be obtained according to virtual work 
principle. So the limit equilibrium solutions from 
these failure mechanisms are upper-bound 
solutions, just as the Sarma method which is an 
important method solving the safety factor of slope. 
But for Some failure mechanisms used frequently in 
limit equilibrium method, the corresponding 
kinematically admissible velocity field can’t be set 
up, so the limit equilibrium solutions aren’t upper-
bound solutions, just as the vertical slices method 
and the circular slide method used for the stability 
analysis of slope. For vertical slices method, inter-
slice force can’t satisfy Mohr-Coulomb failure 
criterion. For Coulomb material obeying associated 
flow rule, the angle between velocity jump vector 
and the tangent of the slip surface should be equal to 
the internal friction angle of material, but for the 
circular rigid slide mechanism, we can’t set up any 
velocity field satisfying this. 
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In addition, the limit equilibrium solutions can’t 
be used as the lower-bound solution because the 
stress field in rigid body is not known. 

The upper-bound method is applied more 
extensively than the lower-bound method because 
the establishment of statically admissible stress field 
is rather difficult. While solving the problem with 
the upper-bound method, a valid failure mechanism 
is assumed firstly, and then the internal energy 
dissipation rate and the work done by external 
loads are calculated respectively and equated with 
each other. Thus a serial of upper-bound solutions 
corresponding to the specific mechanism are 
obtained, and finally, the optimum upper-bound 
solution can be gotten by employing optimization 
technology[8]. Donald I and Chen Z Y studied the 
stabilities of plan strain and three-dimension slopes 
using rigid blocks translational failure 
mechanism[1-2]. Murff obtained the lateral bearing 
capacity of pile with three-dimensional deforming 
mechanism[3]. However, limit analysis hasn’t be 
used to solve the axisymetrical problem as yet. 
Axisymetrical problems appear frequently in 
geotchnical engineering such as the stabilities of 
circular foundation pit and most in-situ tests such as 
CPT and SPT. The aim of  this paper is to solve the 
non-supported critical depth of the circular 
foundation pit to demonstrate  the application of 
upper-bound method to  axisymetrical problem. The 
circular foundation pit is often analyzed as the plane 
strain problem when the ratio of depth to radius of 
pit is large enough. When the ratio of depth to 
radius of pit is small, however, the plane strain 
solution is not accurate because the arch effect of 
soil mass largely enhances the stability of the pit. 

In this paper, limit analysis method will be 
employed to solve the critical depth of the circular 
foundation pit. Based on the work of Верезанцев 
Г[9], limit equilibrium solution was also obtained 
and compared with upper-bound solution. In 
analysis, soil is assumed homogeneous and isotropic, 
and the failure is axisymetrical. 

В 

 
 
2 Problem Formulation 
 
 
2.1 Upper-bound Theorem 
When a slope sliding mass above a potential slip 
surface is in a plastic limit state (Fig.1), and when 
any kinematically admissible velocity field is 
introduced to the sliding mass, based on upper-
bound theorem, the energy dissipation within the 

sliding mass and along the slip surface is less than 
the work rate done by the external loads. 

∗∗∗
ΓΓ ΓΩ

+≤Γ+Ω ∫∫ TVWVdd* εσεσ ijij         (1) 

where ijσ  and Γσ  denote a set of stresses within 
the sliding mass region Ω  and on a potential slip 
surface Γ  in a plastic limit state. ,  and  
denote a set of kinematically admissible strain rates 
within the sliding mass, on the potential slip surface 

∗
ijε ∗

Γε ∗V

Γ  and the velocity field of the mass, respectively. 
 and  are the weight of sliding mass and the 

external forces acting on the sliding mass, 
respectively. 

W T

 

Fig.1 Sliding mass of slope 
 

 
2.2 Failure Mechanism 
As a kind of slope, the common failure surface of 
circular foundation pit is logspiral surface, just as 
shown in fig.2. The rotating center of failure face is 
on the axis of foundation pit. The function of 
logspiral surface is: 

                                                                   (2) φθθ tan)(
0

0−= err

Where φ  is internal friction angle of soil,  is 
polar radius of point b  where 

0r

0θθ = . 
 

 
Fig.2 Failure mechanism of circular foundation pit 
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The shape of foundation pit can be described 

with the ratio of depth to bottom radius and 
slope angle 

RD /
α of foundation pit, as shown in fig.2. 

Once they are known, the dimension of the whole 
failure zone can be determined by two independent 
variables: the characteristic angle 0θ and the depth 
of foundation pit . D

In Fig.2, L  is the length of ab ; β  is defined as 
split angle that is the angle between slip surface and 
pit wall at slope toe. Let 0/ rDA =  and 0/ rLB = . 
Then equations (3)-(5) can be derived from Fig.1: 

0
tan)( sinsin 0 θθ φθθ −⋅= −heA h                  

(3) 

αθθ φθθ cotcoscos tan)(
0

0 ⋅−⋅−= − AeB h
h

             
(4) 

2/παφθβ −+−= h                             
(5) 

The function of the line  is: ab

                      0
0

sin
sin

rr
θ
θ

=                                      

(6) 

The function of the line  is: ac

0
00

costansin
)(costansin

r
B

r
θαθ

θαθ
⋅+

−⋅+
=                  

(7) 

The polar angle of the point  is: a

             
0

0

sin
cos

cot
θ

θ
θ

B
arca

−
=                            

(8) 

According to geometrical relationship, hθ  can be 
obtained from the following equation: 

0
tan)(

tan)(

sinsin
cossin

0

0

θθ
θθ

φθθ

φθθ

−
= −

−

h

h
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2.3 Velocity Field 

rV ,  and  are radial, tangential and 
circumferential velocity components in spherical 
coordinate system 

θV ψV

),,( ψθr , respectively. 
According to the associated plastic flow rule, 

0== ψVVr  on the logspiral failure surface. Here 

we assume further that  in the whole 

deforming region.  can be determined according 
to the associated plastic flow rule. In spherical 
coordinates, tensor- strain-rates are written as: 

0== ψVVr

θV
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(10) 

Because 0== θψψ γγ r , ψε is principal strain 

rate. According to the normality of rε , θε  and ψε , 

we know rε  and θε  are also principal strain rates. 
Subsequently we can know: 

0)(
2
1

=−
∂

∂
=

r
V

r
V

r
θθ

θγ                

(11) 

For Coulomb material matching associated flow 
rule, Chen W F gave the following equation[8]: 

0=+⋅ ∑∑ ctT εε                   
(12) 

where )(tan 24
2 φπ −=T , and are the 

summation of principal tensional strain rates and 
the summation of principal compressive strain 
rates, respectively. Note that tensional strain rates 
are positive in this paper. 

∑ tε ∑ cε

If 0=φ , the following equation can be obtained 
from Eq.(12): 

0=+ ∑∑ ct εε                 (13) 
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Eq.(13) reflects the incompressibility of Tresca 
material and it’s suited for undrained case of 
saturated soil mass. 

Because 0=rε , we know from equation (12) 
that there is a maximum strain rate maxε   and a 

minimum strain rate minε  in θε  and ψε . In order to 
obtain velocity field, we studied the following two 
cases. 

(1) maxεεψ = , minεεθ =  

From Eq.(10) and Eq.(12), we obtain: 

0cot =
∂
∂

+
θ

θ θ
θ

V
VT

                     
(12) 

From Eq.(11) and Eq.(12), we obtain: 

0cot =
∂
∂

+
∂

∂
⋅

θ
θ θθ V

r
V

rT                   

(13) 

The partial differential equations above can be 
solved using the variable separation method. Let 

)()( rgfV ⋅= θθ , and substitute it into Eq.(13) and 
obtain: 

1
tan

)(
)(

)(
)( C

Tg
g

rf
rfr

=
′

−=
′ θ

θ
θ

              

(14) 

where  is a constant. 1C
Solving the two ordinary differential equations in 

Eq.(14), and)(rf )(θg  can be obtained. The final 
expression of  is: θV

θθθ
11 sin)()( TCCCrgrfV −==             

(15) 

where  is a constant. C
Substituting Eq.(15) into Eq.(11) or Eq.(12) 

leads to , thus Eq.(15) can be written as 11 =C

θθ
TCrV −= sin                             

(16) 

Because 0max >= εεψ , we can know  
after substituting Eq.(16) into Eq.(10).  At the same 

time, 

0>C

20 πθ << . So we can know . This 
indicates that soil mass slides down and doesn’t 
disobey the true physical case. 

0>θV

(2) maxεεθ = , minεεψ =  

Using the same methods, we obtain: 

θθ
TCrV
1

sin −=                          (17) 

Because 0min <= εεψ , can be known 
after substituting Eq.(17) into Eq.(10).  At the same 
time, 

0<C

20 πθ << . So we can know 0<θV . This 
implies that soil mass slides up and disobeys the 
true physical condition. 

Now we know that the maximum and minimum 
principal strain rate are ψε and θε , respectively, and 

 is determined uniquely by Eq. (16). θV
 
 

2.4 Internal Energy Dissipation Rate and 
External Force Work Rate 

Energy dissipation occurs on the slip surface and in 
the deforming zones. Here work is done by gravity 
of soil only because there are no other external 
forces. 
 
 
2.4.1 Energy Dissipation Rate 
The internal energy dissipation rates include those 
on failure surface and in plasticity deforming zone. 
According to the literature [8], the energy 
dissipation rate of unit area on failure surface is 
calculated with the following equation: 

scVE =1                             
(18) 

where is cohesion of soil; is tangential 
velocity jump across the failure surface. 

c sV

The total energy dissipation rate  on failure 
surface is obtained by integrating Eq.(18) along the 
surface that is gotten by rotating the logspiral line 

about the axes of foundation pit, as shown in 
Fig.2: 

1D

bc

∫= h ErD bc

θ

θ
θφθπ

0

dcot/cos2 1
2

1             (19) 

where  is obtained by Eq.(2). bcr
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Literature [8] also gave the expression of the 
internal energy dissipation rate of unit volume in 
plasticity deforming zone: 

∑= tTcE ε22                         
(20) 

Once velocity field is known, strain rate field can 
be obtained according to geometric equations. But 
it’s difficult to obtain the analytic expression of 
principal strain rates and this limits the application 
of Eq.(20). 

In orthogonal coordinates system , if  { zyx ,, }
{ }zyx VVV ,,  of deforming region is known, the 

plastic normal strain rate field { }zyx εεε ,,  can be 
obtained according to geometry equations. For 
orthogonal coordinates system, there is: 

∑∑ +=

++=++=

ct

zyxV

εε

εεεεεεε 321
            (21) 

where )3,2,1( =iiε  are principal plastic strain 

rates, Vε  is the bulk strain rate, ∑  and tε ∑ cε  
are as shown in Eq.(12). 

From Eq.(12) and Eq.(21), ∑  and tε ∑ cε  
can be obtained: 

T
V

t −
=∑ 1

ε
ε                           (22) 

T
V

c /11−
=∑ ε

ε                       (23) 

From Eq.(20) and Eq.(22), a new expression of 
the energy dissipation rate per unit volume can be 
obtained: 

VcE εφcot=                          (24) 

Eq.(24) implies that the energy dissipation rate 
per unit volume can be expressed with the function 
of plastic bulk stain rate. In Eq.(24), φcotc  is the 
coordinate of vertex of the right hexagonal pyramid 
whose surface represents Mohr-Coulomb yield 
surface in principal stress space. When 0→φ , 
Coulomb material will tend to Tresca material, 

∞→φcotc  and  0→Vε . 

For Tresca material, the internal energy 
dissipation rate per unit volume is: 

max2 2 εcE =                             (25) 

Comparing Eq.(24) with Eq.(25), the following 
equation can be obtained: 

max0
2cotlim εεφ

φ
=

→ V                       (26) 

Because the plastic bulk stain rate can be 
obtained directly from velocity field and geometry 
equations, Eq.(24) provides a general solving 
method of the energy dissipation rate per unit 
volume. The method simplifies the solving process 
of the energy dissipation rate. 

The energy dissipation rate of unit volume in 
deforming region of circular pit can be obtained 
from Eq.(10) and Eq.(24): 

θθφ TTCcE −−= sincotcot)1(2              
(27) 

The total internal energy dissipation rate in 
deforming region  can be calculated by 
integrating Eq.(27) in the annular domain that is 
obtained by rotating the area abc  about the axes of 
foundation pit, as shown in Fig.2: 

2D

∫ ∫

∫ ∫
+

=

h

a

cd

ac

a bd

ab

r

r

r

r

rEr

rErD

θ

θ

θ

θ

θθπ

θθπ

ddcos2

ddcos2

2
2

2
2

2
0               (29) 

where  and   are obtained by Eq.(6) and 
Eq.(7), respectively,  and  are obtained by 
Eq.(2). 

abr acr

bdr cdr

 
 
2.4.2 External Force Work Rate 

For the foundation pit studied in this paper, the 
gravity of soil is the only external force. The gravity 
work rate of unit volume soil is expressed: 

θγ θ cosVw =                             
(30) 

where γ  is soil bulk density. 
The total gravity work rate of soil mass W  can 

be obtained by integrating Eq.(30) in the annular 
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domain that is obtained by rotating the area abc  
about the axes of foundation pit, as shown in Fig.2: 

∫ ∫

∫ ∫
+

=

h

a

cd

ac

a bd

ab

r

r

r

r

rwr

rwrW

θ

θ

θ

θ

θθπ

θθπ

ddcos2

ddcos2

2

2

0               (31) 

where  and   are obtained by Eq.(6) and 
Eq.(7), respectively,  and  are obtained by 
Eq.(2). 

abr acr

bdr cdr

The integrations above have no analytic solution, 
so we need to employ numerical methods to solve 
them. 

 
 

2.5 Mathematic Model 
According to upper-bound theorem, there is 

WDD =+ 21                            
(32) 

The critical depth of foundation pit can be 
expressed as: 

)( 0θ
γ

fcDcr =                             

(33) 

In order to obtain the minimum upper-bound 
solution of critical depth, we need to solve the 
minimum of function )( 0θf . Let )(min 0θfN s = , 
where  is a dimensionless variable, independent 
of and

sN
c γ  and only related to φ , α  and . 

The mathematic model used to solve the minimum 
upper-bound solution of critical depth of foundation 
pit is as follows: 

RD /

⎭
⎬
⎫

≥
=

0
)(min 0

B
fN s θ

                       

(34) 

The constraint condition in Eq.(34) makes sure 
that point b  is on the right of point ，as shown in 
Fig.2. 

a

Base on SQP optimization algorithm, we used 
matlab software to solve the minimum upper-bound 
of critical depth of circular foundation pit. 

 
 

3 Results and Analysis 
 
 
3.1 Critical Height 
When  is equal to 0.1 and 1.0, respectively, 
the variations of with

RD /
sN φ  and α are showed in 

Fig.3.  increases with the increment of sN φ . 
Moreover, the bigger φ  is, the more rapidly 

varies.  decreases with the increment of sN sN α , 
furthermore, the smaller α  is, the more rapidly 

varies. sN
Fig.4 shows variations of with  andsN RD / φ  

when .  increases with the increment of 
. Moreover, when is very small, the 

variation of is also small. This shows that the 
arch effect of soil mass largely enhances the 
stability of the foundation pit. 

90=α sN
RD / RD /

sN

 

φ / (°) 

D/R = 1 

(a)  D/R = 1 

N
s 

D/R = 0.1 

N
s 

φ / (°) 

(b)  D/R = 0.1 

Fig.3  Varying curves of Ns with φ  and α  
 

 

WSEAS TRANSACTIONS on
APPLIED and THEORETICAL MECHANICS

Cui Xinzhuang, Yao Zhanyong, Jin Qing
 and Wu Shimei

ISSN: 1991-8747 279 Issue 12, Volume 2, December 2007



 
 

Fig.5 shows variations of characteristic 
angle 0θ with φ and α . 0θ  increases with the 
increments of φ  and α . Once 0θ  and  are 
known, other characteristic angles

sN

aθ and hθ  and 
characteristic dimensions such as  ,0r L and so on 
can all be obtained. Thus the location and shape of 
the slip surface can be decided. 

When  is very small, the circular 
foundation pit can be analyzed as the plane slope. In 
limit analysis of plane slope, two kinds of failure 
mechanisms are usually used, i.e. rigid blocks 
translational and rotational mechanisms,  as shown 
in fig.6 and fig.7, respectively. In table 1, of 
vertical circular foundation pit with 

RD /

sN
001.0/ =RD  

and vertical plane slope from different failure 
mechanisms are given, respectively. When  is 
very small, it can be found that  of circular 
foundation pit approximates that of plan slope from 
rigid blocks translational mechanism, and both of 
them are slightly greater than that from rigid blocks 
rotational mechanism. 

RD /
sN

 

 
 

 
 
 

 
 
According to the results computed with the 

method proposed in this paper, we also know that 
hθθ →0 when . This implies that the 

rotational logspiral surface degenerates to the 
circular truncated surface. At the same time, the 
critical slip angle

0/ →RD

crβ corresponding to  is the 
same as the critical value of 

crD
β   shown in Fig.5 and 

both are equal to )2/4/( φπ − . But this doesn’t 
imply that the plasticity deforming region 
degenerates to rigid region because internal energy 
dissipation rate expressed by Eq.(24) isn’t equal to 
zero. 
 
Table 1  Ns obtained from some failure mechanisms 

Ns

φ 

Plane slope 
with rigid 

blocks 
translational 

failure 
mechanism 

Plane slope 
with rigid 

blocks 
rotational 

failure 
mechanism 

Circular 
foundation pit 
of D/R=0.001 

with 
axisymetrical 

failure 
mechanism  

0° 4.000 3.8300 4.0021 

10° 4.7666 4.5925 4.7685 

20° 5.7115 5.5116 5.7229 

30° 6.9261 6.6935 6.9289 

40° 8.5741 8.3330 8.5785 

α 
φ 

Vθ

Rigid zone 

Logspiral surface 

Fig.7  Rigid blocks rotational failure mechanism 

Rigid zone 

φ 

V 

Rigid zone 

Rigid zone 

Failure surface 

N
s 

Fig.4  Varying curves of Ns with D/R and φ 

α = 90° 

D/R 

β 

Fig.6 Rigid blocks translational failure mechanism 

θ  
0/(

°)
 

φ /(°) 

D/R = 1 

Fig.5  Varying curves of  θ 0 with φ and α 
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The stability of plane slope often is analyzed 

with vertical slices method, e.g. Janbu method. For 
plan slope, when ,  from Janbu method 
is equal to 6.01. It is very similar to the upper limit 
solution of circular foundation pit whose  is 
0.2. So the arch effect of the foundation pit may be 
ignored and it can be regarded as plan slope and 
analyzed with the slices method when the ratio of 
depth to diameter of pit is less than 10. 

20=φ sN

RD /

 
 

3.2 Slip Surfaces 
Knowing 0θ  and hθ , the shape and location of slip 
surface can be obtained. Here, assume that d  and 

 are the horizontal and vertical distance of any 
point on slip surface from foundation pit wall toe, 
just as point c shown in Fig.2. In order to plot slip 
surfaces from different cases on a diagram, 
normalize  and  with  and obtain 
dimensionless variables   and , 
respectively. 

h

d h crD

crDd / crD/h

Fig.8 shows the effect of  on slip surface 
of cylindrical foundation pit when . With 
the increase of , slip surface shrink inward. 

RD /
20=φ

RD /

 
 

Fig.8  Effect of   on slip surface RD /
 

Fig.9 shows the effect of φ  on slip surface of 
cylindrical foundation pit when . With 
the increase of 

8.0/ =RD
φ , slip surface shrink inward. 

 
Fig.9  Effect of  φ  on slip surface 

 
 
4 Discussions 
 
 
The solution form slip-line theory (SLS) and the 
solution from finite difference method (FDS) were 
computed to compared with the upper-bound 
solution (UBS). 
 
 
4.1 Comparison of UBS with SLS 
Using axisymetrical slip-line theory, Верезанцев В 
Г obtained the approximate active earth pressure on 
retaining wall of cylindrical foundation pit [9], as 
shown in the following equation: 

T
Z
Rc

Z
RTRpa

λλ φ
λ

γ )(cot])(1[
1

1 +−
−

= −        ( 35) 

where  γ  is soil bulk density, φ  and  are internal 
friction angle and cohesion of soil, respectively, R 

is radius of cylindrical pit, 

c

)
24

(tan 2 φπ
−=T ，

T/tan2 φλ = , TzRZ +=   and  is the 
depth under ground, as shown in Fig.10. 

z

 

xO  

z  

Fig.10  Cylindrical foundation pit 
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Let , we can obtain: ∞→R

TczTpa 2−= γ                        (36) 

From Eq.(36), the expression of active earth 
pressure is seen to be the same as Rankin formula 
for plane problem when R  is very large. 

In order to solve the critical depth of cylindrical 
foundation pit, following transaction method of 
Terzaghi and peck[10], the active earth pressure is 
intergrated along the depth and equating the integral 
zero: 

0
0

=∫ dzpcrD

a                            (37) 

From Eq.(35) and Eq.(37), we can obtain: 

0)(

)])(1()2([

)]1()2([
)1)(2)((

1 =
+

×

+−+−+

−+−−
−−−

−λ

λλ

λλ
λλ

RDT
R

RDTARBT

RABT
DTBA

cr

cr

cr

    (38) 

where 
1−

=
λ

γ TRA , φcotcB = . 

SLS of critical depth of cylindrical foundation pit 
can be obtained by solving Eq.(38) with numerical 
method. 

Comparison was made between UBS and SLS, as 
shown in Fig.7. For cylindrical foundation pit, it can 
be seen that UBS is slightly greater than SLS when 

0=φ , however, in other cases, the former is always 
less than the latter.  
 

 
 

Assuming that  and  are UBS and SLS of 
, respectively,  the relation of   and   

can be established. For cylindrical foundation pit, 

1sN 2sN

sN 1sN 2sN

),,,( φγ RcfDcr =                         
(39) 

Normalize two sides of  Eq.(39) and we can 
obtain: 
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c
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D
N cr

s ==                     

(40) 

From Eq.(33) and Eq.(34), we know 
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From Eq.(40) and Eq.(41), we can obtain 
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2 φ
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s =                           

(42) 

Eq.(42) gives the relation between  and 
. For 

1sN

2sN 0.1~1.0/ =RD , the relation between 
 and  is 1sN 2sN
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Fig.12 shows the fitting effective of Eq.(43). The 
relation between  and   can be expressed 
well with Eq.(43). 
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Fig.11  Comparison between UBS and SLS 
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Fig.12   Fitting effective diagram 
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4.2 Comparison of UBS with FDS 
FLAC/SLOPE program was used to compute the 
numerical solution of . This program is a mini-
version of FLAC(Fast Lagrangian Analysis of 
Continua) that is provided by Itasca Consulting 
Group, Inc. FLAC/Slope is designed specifically to 
perform factor-of-safety calculations for slope 
stability analysis. Besides two-dimensional plane-
strain analysis, axisymmetric analysis can also be 
performed with FLAC/Slope. 

sN

FLAC/Slope provides an alternative to traditional 
limit equilibrium programs to determine factor of 
safety. Limit equilibrium codes use an approximate 
scheme - typically based on the method of slices -in 
which a number of assumptions are made (e.g., the 
location and angle of interslice forces). Several 
assumed failure surfaces are tested, and the one 
giving the lowest factor of safety is chosen. 
Equilibrium is only satisfied on an idealized set of 
surfaces. In contrast, FLAC/Slope provides a full 
solution of the coupled stress/displacement, 
equilibrium and constitutive equations, just as 
FEM[11-13]. Given a set of properties, the system is 
determined to be stable or unstable. By 
automatically performing a series of simulations 
while changing the strength properties (shear 
strength reduction technique), the factor of safety 
can be found to correspond to the point of stability, 
and the critical failure surface can be located. 

According to strength reduction technique, 
strength parameters used in stability analysis can be 
written as: 

sF
cc =′ ,   

sF
φφ tantan =′                    (44) 

where  is safety factor, c  and sF ′ φ ′  are mobile  
cohesion and mobile internal friction angle of soil, 
respectively. 

When critical failure happens under c  and′ φ ′ , 
 can be obtained from Eq.(44). In order to obtain 

the critical depth of cylindrical pit, change the 
depth gradually and obtain the corresponding 
safety factor. When the safety factor is 
approximately 1.0, the depth is the critical one. 
Fig.13 illustrates the computing process in which 
safety factor varies with depth. In Fig.13, 

sF

γ =20 
kN/m3, c =10kPa, φ =30° and R =2.5m.  

 

 
 

Fig.13   D-Fs curve 
 

From Eq.(33) and Eq.(34), we obtain 

c
D

N cr
s

γ
=                               (45) 

 Some numerical results of critical depth of 
cylindrical pit were listed in table 2 and compared 
with UBS. It can be seen that UBS of Ns is larger 
slightly than FDS. 
 

Table 2  Comparison of UBS with FDS 
Ns

φ D/R 
FDS UBS 

26.00 130.0 134.1 

1.00 30.0 35.2 30° 

0 6.5 6.7 

4.08 20.4 28.7 

0.35 10.4 11.9 20° 

0 5.4 5.51 

5.40 10.8 12.4 

0.21 6.2 7.1 10° 

0 4.3 4.6 

 
Failure surface can be obtained along with Dc r. 

For the case of γ =20 kN/m3, =10kPa, c φ =20° and 
R =2.5m, the failure of pit is illustrated in Fig.14. 
The failure surface is seen to approach the rotational 
logspiral surface assumed in limit analysis in this 
paper. 
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FLAC/SLOPE (Version 5.00)    
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Fig.14   Failure surface 

 
 
5 Conclusion 
Assuming that soil mass is homogeneous and 
isotropic and the failure model of circular 
foundation pit is axisymetrical, kinematically 
admissible failure mechanism and velocity field 
were established according to associated plastic 
flow rule. Using them, the stability of the circular 
foundation pit was analyzed and the limit upper-
bound solution of critical height was obtained. The 
following are some important conclusions: 
(1) Critical depth increases with the decrement of 

slope angle of foundation pit and the increment 
of the ratio of depth to radius and internal 
friction angle of soil. 

(2) The arch effect of circular foundation pit makes 
its critical depth greater than the critical height 
of plane slope. However, the arch effect is 
unconspicuous when the ratio of depth to 
diameter of pit is less than 10. 

(3) When the ratio of depth to radius is very small, 
the upper-bound solution of circular 
foundation pit is very close to the one of plane 
slope obtained from rigid blocks translational 
failure mechanism. Moreover, on the 
axisymetrical surface, the rotational logspiral 
failure line degenerates to straight line, and the 
critical slip angle is the same as plane slope 
from rigid blocks translational mechanism, 
however, the plasticity deforming zone isn’t 
rigid yet. 

(4) UPS of the critical depth is less than SLS and 
larger slightly than FDS. 

In this paper, the critical depth of the non-
supported circular foundation pit was studied; 
however, further researches are urgent on the 
stability of circular pit reinforced, for example, by 
soil nails. 
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