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Abstract: - Mechanical stress has a significant influence on the residing cells in the intervertebral disc and we 

can nominate it as one of the principle fields of researches in tissue engineering. So it is very important to 

propose a suitable model as an infrastructure for a better understanding of the mechanobiology of the 

intervertebral disc. This paper presents a novel finite element formulation which can be used in our predicted 

tissue engineering procedure as a powerful model. After derivation of the governmental equations, the standard 

Galerkin weighted residual method was used to form the finite element model. Then the implicit time 

integration schemes were applied to solve the nonlinear equations. The formulation accuracy and convergence 

for 1D case were examined with Sun's and Simon's analytical solution and also Drost's experimental Data. It is 

shown that the mathematical model is in excellent agreement and has the capability to simulate the 

intervertebral disc response under different types of mechanical and electrochemical loading conditions. At the 

end, to have a short review of the capability of the model, three main exemplary problems are proposed. So in 

this case, investigation of the role of porosity in scaffold manufacturing, effect of FCD and water content on 

mechanical response and also the nutrition criterion in IVD tissue engineering procedure are discussed. 

 

Key-Words: - Finite element modeling, Porous media, Intervertebral disc, Mechanobiology, Tissue engineering  

 

1   Introduction 
Low back pain, which is often caused by disc 

degeneration, is a major health problem [1, 2]. 

Current treatment modalities involve conservative 

management (medication and physical therapy) or 

surgical intervention (spine fusion, total disc 

replacement, or nucleus pulposus replacement) [3, 

4]. Due to the limitations of the mentioned 

treatments for degenerative disc disease, tissue 

engineering methods to repair the diseased disc have 

been proposed. One of the major challenges in 

intervertebral disc tissue engineering is to recreate, 

in vitro, the physiological environment for optimal 

culturing of cells seeded in scaffolds constructs [5]. 

According to the important influence of the 

mechanical stress on the residing cells in the 

intervertebral disc, it is vital to propose a suitable 

mechanical model as an infrastructure for a better 

understanding of the mechanical behavior of this 

soft tissue [6, 7].  

In general, intervertebral disc is basically formed 

from a fibrous network of structure proteins, 
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abundant interstitial water, soluble electrolytes, and 

cells residing in the interstitial space [8]. So it can 

be described as a charged, hydrated and permeable 

material which is comprised largely of collagen and 

elastic fibers embedded in a proteoglycan gel to 

form a solid matrix. During the last decade, several 

researches have been proposed the multiphasic 

computational models to study mechanics of the soft 

tissues (such as articular cartilage, intervertebral 

disc, vascular vessel and skin). Mow et al. [9] first 

presented the biphasic theory in which the material 

was modeled as a mixture of two distinct phases and 

later it was extended by Suh et al. [10-13]. On the 

basis of the Biot theorem, Simon et al. [14, 15] 

considered the soft tissues in the spinal motion 

segment as poroelastic material which was later 

extended by Yang et al. [16]. Since significant 

deformations resulting from loading and inherent 

swelling mechanisms in the soft tissues have been 

described, Lai et al. [17] developed a triphasic 

model to consider the effects of swelling and 

transport in descriptions of soft tissue mechanics. 

Then Gu et al. [18] and Sun et al. [19] extended 

triphasic theory to model the mechano-

electrochemical behaviors of charged hydrated soft 

tissues containing electrolytes. Later, Simon et al. 

[20, 21] and Laible et al. [22, 23] extended 

poroelastic model to poroelastic transport swelling 

model which includes chemical effects.  

It is so clear that all these models tried to 

incorporate the features of actual biological tissue 

but there are some limitations that should be 

improved for better understanding of the 

intervertebral disc biomechanics. Except for the 

model of Simon [14, 15] and Yang [16], the 

previous models are quasi static which means that 

the inertia is ignored. Actually, the inertia terms can 

be significant when the external forces vary rapidly. 

Additionally, some limited models considered the 

chemical and electrical effects (Sun [19], Simon 

[20, 21] and Iatridis [23]), which is so important for 

us in our predicted tissue engineering procedure. So 

based on the work of Sun, Simon and Yang, this 

paper presents a novel mixed finite element 

formulation including the chemical behaviour and 

inertia terms which can simulate intervertebral disc 

response regarding to the different types of 

mechanical, electrical and physicochemical loading 

conditions.  

 

 

2   Mathematical Model 
This mathematical model considers a charged 

hydrated tissue engineered intervertebral disc as a 

mixture consisting of: (1) a porous, permeable, 

charged solid phase; (2) an incompressible fluid 

phase; and (3) ion phase with two ion species, i.e., 

anion and cation (Fig. 1).  

 

 
Fig.1: Schematic diagram of the triphasic model of 

the intervertebral disc (Solid/ Fluid/ Ions) 

 

According to the Biot theory, derivation of the 

governing equation of the fluid was based on 

empirical evidence that the fluid flow in porous 

media obeys Darcy’s law [21]. By the way, this 

model is strictly based on the laws of continuum 

mechanics [24]. 

 

 

2.1 Porous Model 
There are different forces on the solid phase which 

are the frictional force between solid and fluid, body 

force, fluid pressure and the pressure due to the 

chemical potential. So the momentum conservation 

law for the porous solid in the absence of body force 

can be written as Eq.1 (More details are mentioned 

in appendix). 
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As the model satisfies the Darcy equation, the 

momentum conservation laws for the pore fluid in 
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the absence of body force can be written as Eq.2 

(More details are mentioned in appendix). 
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Where p
c
 can be described as Eq.3, 

)2(0 FCDcRTBp fwf
c ++−= φµρζ                (3) 

The storage due to compressibility of the solid and 

of the fluid should be equal to the dilation of the 

fluid and of the solid (On the basis of the mass 

conservation law). So the fluid pressure can be 

expressed as Eq.4 [14]. 
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Where: Q and α are as Eqs.5 and 6. 
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2.2 Electrochemical Model 
On the basis of Sun's work [19] (in the absence of 

the magnetic and gravitational effects), the 

governmental equations can be derived from the 

momentum equations, continuity equations and 

electrical current condition as Eqs.7 and 8. 
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We can rewrite the Eqs.9 and 10 in Eqs.11 and 12 

by nominating α
βk  as Eqs.13-16 
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3   FE Formulation of the Model 
Using the standard Galerkin weighted residual 

method [25], the finite element formulation is 

constructed [24]. 

Multiply the Eqs.1, 2, 4, 7 and 8 by the weight 

function W, and integrating over the domain of the 

problem, gives Eqs.17-21. 
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Choosing the shape functions as the weight 

functions, separating the integrals, applying Green’s 

theorem for Eqs.17 and 19 and also divergence 

theorem for Eq.21, yields:  
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So finally, Eqs.22-26 can be classified in matrix 

form as Eqs.27-29. 
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Where, the mentioned parameters are defined 

according to the Eqs.30-42. 
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4   Numerical Solution 
The implicit Newmark integration scheme [25, 26] 

was applied to solve Eq.27. In this method 

assumptions are as Eqs.43 and 44. 
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Where α  and δ  are parameters that can be 

determined to obtain integration accuracy and 

stability. A very common technique used is the 

trapezoidal rule, which is Newmark method with 

2

1
=δ  and

4

1
=α , and we used this method to 

demonstrate the basic additional consideration 

involved in a nonlinear analysis.  

So we can rewrite the Eqs.43 and 44 as Eqs.45 

and 46, 
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At time tt ∆+ , we can write Eq.47 for a dynamic 

system. 
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Elimination X&&tt ∆+  and X&tt ∆+  by using Eqs.45 to 47, 

gives Eq.48 
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So the term X&tt ∆+  and X&&tt ∆+ can be updated as 

Eq.49 and 50.  
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It is clear that X&t  and X&&t  are known from the 

previous step of the calculations. So if Xtt ∆+  is 

determined from Eq.48, X&tt ∆+  and X&&tt ∆+ can be 

obtained from equations 49 and 50. So, the main 

point of this problem is to solve Eq.48. The Newton 

method was used for solving Eq.48. 

The implicit backward-Euler method [25, 26] 

was applied to solve Eqs.28 and 29. This method 

approximates the derivative as Eqs.51 
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So Eqs.28 and 29 become as Eqs.52 and 53, 
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The Newton method was used for solving Eqs.52 

and 53. 

 

 

5   Validation 
To investigate the validation of the porous model, 

Simon's one-dimensional poroelastic problem with 

analytical solution [14, 15] was used. This problem 

represents the motion of a porous elastic material 

along the x-axis with a step load at the free top 

surface. The material properties, initial and 

boundary conditions are referred to Simon's work 

[14, 15]. 

The shape functions used in this one-dimensional 

problem are isoparametric linear function (Ten 

elements). Fig.2 shows how the solid and fluid 

displacements vary with time at x=0. 
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Fig.2: Validation of the model with Simon's work 

 

 To validate the mechano-electrochemical 

phenomenon of charged, hydrated intervertebral 

disc, a transient free swelling problem was studied 

using our finite element formulation in compare 

with Sun's results [19]. Assuming a frictionless 

lateral boundary, only axial motion is possible and 

the problem is reduced to a 1-D problem. The shape 

functions used in this one-dimensional problem are 

isoparametric linear functions (five elements). 

Initially tissue sample was at equilibrium with the 

external bathing solution. At t=0
+
, the concentration 

of external solution at top decreases linearly 

according to Fig. 3. 

 

 
Fig.3: Change of the external solution concentration 

in the transient free swelling problem  

 

The lowering of concentration causes the tissue to 

swell to a new equilibrium state. In this free 

swelling test, the material properties, initial and 
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boundary conditions are referred to Sun's work [19]. 

Fig.4 shows the history of the solid displacement at 

the surface. 

 

0

0.005

0.01

0.015

0.02

0.025

0.03

0 200 400 600 800 1000
Time (s)

u
/h

 (
a
t 

x
/h

=
1
) 

FEM Results Sun's Analytical Results

 
Fig.4: Validation of the model with Sun's work 

(Free swelling problem) 

 

After validation of the FEM results with analytical 

solutions, our model was used to simulate the load 

displacement response as obtained by Drost et al. 

[27]. That study considered the compression of the 

canine annulus under chemical and mechanical 

loading. Using our FEM model, the mentioned 

experimental test was simulated in following load 

stages: 

(1) Conditioning, c=0.6 M, P= 0.08 MPa 

(2) Swelling, c=0.2 M, P=0.08 MPa 

(3) Consolidation, c=0.2 M, P=0.20 MPa. 

Fig.5 shows how the Displacement of annulus 

fibrosus specimen varies with time and compares 

theoretical results with experimental data (by Drost 

et al. [27]). 
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Fig.5: Validation of the model with Drost's 

experimental data 

 

However, the formulation accuracy and 

convergence for 1D case were examined and it is 

clear that the FEM results are in excellent agreement 

with analytical and experimental works. 

Comparison with Simon's [14, 15] and Sun's [19] 

analytical solutions respectively confirms the 

validity of our dynamic poroelastic and mechano-

electrochemical model. Also agreement of the 

results of our mathematical model with Drost's [27] 

experimental data validates our model for 

application in studying the biomechanics of the 

intervertebral disc as a hydrated soft tissue. 

 

 

6 Exemplary Applications of the 

Model in IVD Tissue Engineering and 

Related Results 
As it mentioned, the main purpose of developing 
this mathematical model is devoted to study the 
intervertebral disc mechanobiology during the tissue 
engineering procedure. On the basis of this 
infrastructure model we can gain the capability of 
optimizing the design parameters of porous 
scaffolds and prediction of the stress distribution in 
different stages of the tissue engineering. To have a 
short review of three main exemplary problems, we 
can mention to the investigation of the role of 
porosity in scaffold manufacturing, effect of fixed 
charge density and water content on mechanical 
response and studying the nutrition criterion in IVD 
tissue engineering procedure. 
 
 

6.1 Investigation of the role of porosity 
Porosity is the most important morphological 

parameter of the scaffold which must meet some 

specific requirements. A high porosity and an 

adequate pore size are necessary to facilitate cell 

seeding and diffusion throughout the whole 

structure of both cells and nutrients. On the other 

hand it causes very low stiffness and strength which 

can lead to failure in compare with natural 

biological tissue. So it is necessary to understand the 

link between the forces applied to a scaffold and its 

porosity.  

We considered a homogenous two dimensional 

version of our mathematical model, to analyze a 

simple sagittal slice of the disc. In the model, we 

assumed that the bottom surface of the sagittal slice 

is impermeable, frictionless, insulated, and rigid so 

that there is no vertical flow. The top edge was 

loaded with pressure P. In order to compare the 

difference between different porosity, a long 

duration (200s) was applied, and the value of P was 

chosen as a ramp from zero to 2 � 10
6
 Pa in test 

duration (0~200s). The material properties and 

requisite parameters were selected as Table 1. 

Fig.6 shows the displacement at top with 

different porosity in mentioned 2-D model. With 
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increasing time, the differences in the displacement 

at top between different cases increase. Fig.6 also 

indicates that the displacement at top increases with 

increasing the porosity. 

On the basis of this exemplary application of our 

mathematical model and extracting other 

morphological parameters [28], we gain different 

range of porosity which is suitable for adjustments 

of the instrumentation setups for various types of 

scaffold manufacturing. 
 
Table 1: Material properties and parameters of 2-D 

model 

Parameter Amount and Unit 

c 0.2 (M) 

Bf 5 × 10
5
 (N/m

2
) 

E  2 × 10
6
 (N/m

2
)

 

FCD 0.2 (M) 

f+- / f-+ 1 × 10
10

 (N-s/m
4
) 

fsf 1 × 10
15

 (N-s/m
4
) 

fs+  1 × 10
10

 (N-s/m
4
) 

fs- 1 × 10
10

 (N-s/m
4
) 

ff+  5.0039 × 10
14

 (N-s/m
4
) 

ff-  7.6021 × 10
14

 (N-s/m
4
) 

k  1 × 10
-14

 (m
4
/N-s) 

Q 2 × 10
8
 (N/m

2
) 

R 8.31878 × 10
3
 (m-mN/mol-K) 

T  310 (K) 

µ0 0.1 (N-m/Kg) 

ρf  1000 (Kg/m
3
) 

ρs  1026 (Kg/m
3
) 

ζw 0.75 

φ 0.5 

υ 0.48 

 

 

 
Fig.6: Displacement at top with different porosity 

 

 

6.2 Effect of fixed charge density and 

water content on mechanical response of 

engineered tissue 
Due to the coupling of mechanical and electrical 

effects, the measured hydraulic permeability of 

charged tissues, such as intervertebral disc tissues, 

also depends on the electrical current flow [29-32]. 

So it is important to investigate the effect of fixed 

charge density and water content in a natural 

intervertebral disc to optimize the related design 

parameters in tissue engineering procedure. 

As we predicted, our infrastructure model is 

capable for this study. A homogenous two 

dimensional version of this mathematical model, 

can analyze the effect of fixed charge density in a 

simple sagittal slice of the disc. For the compression 

creep problem, σ0=10 KPa was applied to the 2-D 

intervertebral disc model. The related parameters, 

initial and boundary conditions were selected as 

Table 2. 
 

Table 2: Material properties and parameters of 2-D 
model, Initial and boundary conditions 

Parameter Amount and Unit 

c 0.2 (M) 

Bf 5 × 10
5
 (N/m

2
) 

E  2 × 10
6
 (N/m

2
)

 

f+- / f-+ 1 × 10
10

 (N-s/m
4
) 

fsf 1 × 10
15

 (N-s/m
4
) 

fs+  1 × 10
10

 (N-s/m
4
) 

fs- 1 × 10
10

 (N-s/m
4
) 

ff+  5.0039 × 10
14

 (N-s/m
4
) 

ff-  7.6021 × 10
14

 (N-s/m
4
) 

k  1 × 10
-14

 (m
4
/N-s) 

n 0.5 

Q 2 × 10
8
 (N/m

2
) 

R 8.31878 × 10
3
 (m-mN/mol-K) 

T  310 (K) 

µ0 0.1 (N-m/Kg) 

ρf  1000 (Kg/m
3
) 

ρs  1026 (Kg/m
3
) 

ζw 0.8 

φ 0.5 

υ 0.48 

Initial Condition 

At t=0: u=0 

Boundary Condition  

At Y=0: u=0 

 

The effect of fixed charge density on creep 

deformation was investigated with three different 

amounts (FCD= 0.1, 0.2 and 0.3) and plotted in 
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Fig.7. 

 

 
Fig.7: Effect of fixed charge density on the creep 

behavior 

 

In next step, by selecting the parameters and 

conditions according to Table 2 and fixed charge 

density equal to 0.2 M, the effect of water content 

on creep deformation was investigated with three 

different amounts (ζw= 0.7, 0.8 and 0.9) and plotted 

in Fig.8. 

 

 
Fig.8: Effect of water content on the creep behavior 

 
Fig.7 shows that increasing the fixed charge density 

lead to decreasing the displacement. It means that 

with increasing the fixed charge density, the tissue 

becomes stiffer. Fig.8 shows that with increasing 

water content, the time to reach creep equilibrium 

decreases. However, changes in water content do 

not affect the equilibrium strain significantly.  

 

6.3 Investigation of the nutrition criterion 

in IVD tissue engineering procedure 
The disc is regarded as the largest avascular 

structure in the body and the cells of adult lumbar 

discs may be up to 8mm away from the nearest 

blood supply. Diffusion of solutes across 

concentration gradients is the principal mechanism 

by which the disc receives its nutrition. So it is so 

important to study the biomechanics of this 

phenomenon in tissue engineering. 

For determination of the effect of mechanical 

loading regimes in nutrition of the intervertebral 

disc metabolism, we calculated the influence of the 

cycle length and amplitude of the dynamic loading 

in a two-dimensional model. Similarly, we 

considered a simple homogenous sagittal model, 

and the endplates and vertebral bodies were 

assumed to be incompressible. The dynamic loading 

was chosen as square wave to represent loads 

experienced by the intervertebral disc for a person 

who is alternating between activity and rest [33, 34]. 

So the dynamic loading was defined as a square 

wave with amplitude of 1MPa. Also the material 

properties and requisite parameters were selected as 

Table 1. 

In this case first we derived two fluid exchange 

factors. The first one is the volume of fluid 

exchange per cycle, which represents the volume of 

disc included in the fluid exchange region. So we 

calculated this factor by dividing the final total 

volume of fluid exchange by the total number of 

cycle which occurred during the dynamic loading 

simulation. The second one is the volume of fluid 

exchange between the disc and the surrounding 

media per unit time. So we calculated this factor by 

dividing the final total volume of fluid exchange by 

the total duration of the dynamic loading simulation.  

After definition of these two factors, we 

calculated the results of our mathematical mode by 

changing cycle length from zero to 12 hours in 

dynamic loading. Fig.9 shows how these factors 

vary with cycle length in a normalized scale. 

 

 
Fig.9: Variations of the Factor 1 (the volume of 

fluid exchange per loading cycle) Factor 2 (the 

volume of fluid exchange per unit time) with cycle 

length. 
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To derive a criterion in fluid transport study, we 

maximized these two mentioned fluid factors and 

normalized it to define a nutrition index. Fig.10 

shows how this criterion changes regarding to 

different cycle lengths. 

 

 
Fig.10: Variations of the nutrition criterion with 

cycle length 

 

The results show that as the cycle length increase, 

the volume of fluid exchange per cycle increases but 

in opposite the volume of fluid exchange per unit 

time decreases. By maximizing these results, the 

nutrition criterion shows a peak for a cycle length 

approximately equal to 4 hours. So our model shows 

that the optimum balance of these factors occurs for 

an alternating spinal load every 2 hours. 

In next step, we repeated these results for four 

different amplitudes of loading. Fig.11 shows the 

comparison of nutrition criterion in these different 

amplitudes.  

 

 
Fig.11: Comparison of the nutrition criterion in 

different rang of compressive loading with cycle 

length 

 

As it was predicted, decreasing the amplitude 

decreases the nutrition criteria but does not change 

the trend of normalized results regarding to the 

cycle length. So this model suggests that increasing 

the amplitude of loading has an effective response 

on disc nutrition supply. However, an optimum 

magnitude of compressive loading in tissue 

engineering would be also constrained by other 

biological factors which should be included in 

future analyses. 
 

 

7   Conclusion 
One of the major challenges in the intervertebral 

disc tissue engineering is to recreate, in vitro, the 

physiological environment for optimal culturing of 

cells seeded in scaffolds constructs. So it is 

necessary to understand the link between the forces 

applied to this soft tissue and its biological response. 

Based on the importance of considering the inertia 

terms and electro chemical behaviour in modeling 

the biomechanical responses of the tissue 

engineering procedure, this novel mathematical 

model is constructed. The standard Galerkin 

weighted residual method was used for providing 

numerical solution to this problem (which is 

intractable to analytic solution) and then implicit 

time integration schemes are applied to solve the 

nonlinear equations. 

Our model was verified by comparison of the 

derived finite element results for one dimensional 

model with analytical solution and also 

experimental data. Comparison with Simon's [14, 

15] and Sun's [19] analytical solutions respectively 

confirms the validity of our dynamic poroelastic and 

mechano-electrochemical model. Also agreement of 

the results of our mathematical model with Drost's 

[27] experimental data validates our model for 

application in studying the biomechanics of the 

intervertebral disc as a hydrated soft tissue. No 

locking and spurious modes such as checkerboard 

phenomenon are found in the calculation. Through 

these sample cases, it is shown that our finite 

element model is capable of solving the complex 

triphasic problems of charged hydrated soft tissues 

under different types of mechanical, electrical and 

physicochemical loading conditions.  

Based on this mathematical model, as examples, 

we investigated the role of porosity in scaffold 

manufacturing, effect of fixed charge density and 

water content on mechanical response and also the 

nutrition criterion in intervertebral disc tissue 

engineering procedure.  

Different results of this infrastructure model can 
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lead in logical algorithms in intervertebral disc 

tissue engineering in order to reduce trial and errors. 

However, designing an optimum algorithm in this 

case would be also constrained by other biological 

factors and it is the reason that we devote our future 

works to develop this model with combination of 

the biological experiments in details. We will trace 

our future researches in order to gain a complete 

understanding of IVD mechanobiology and the 

procedure of the tissue differentiation to finalize the 

setups of the instrumentations for tissue 

engineering. 

  

 

8   Appendix 
The momentum conservation law for the porous 

solid in the absence of body force has been derived 

in Eulerian form by Simon et al. [21] as Eq.54. 

uσLw &&& )1()()1( npRpn s
Tc

s −=′+∇−+∇− ρ            (54)  

Where:  

)2(0 FCDcRTBp
w

fwf
c ++−= φµρζ                    (55)  
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The momentum conservation law for the pore fluid 

in the absence of body force has been formed by 

Simon et al. (in Eulerian form) [21] as Eq.58 

(According to the Darcy theory) 

wuw &&&&& fluidfluid
c

s nnpRpn ρρ +=∇+−∇                  (58)  

Multiplying Eq.58 by 
n

1
 yields a generalized Darcy 

law as Eq.59 

wuw &&&&& fluidfluid

c

n

p

k

n
p ρρ +=

∇
+−∇                       (59)  

Where, 

sR

n
k

2

=                                                                  (60)  

From Eq.54 and 58, we can derive Eq.61 

wuσL &&&& fluid
T

np ρρ +=′+∇ )(                                   (61)  

We can rewrite the Eq.61 as Eq.62 by means of 

Eqs.63. 

wuσL &&&& fluid
T

nρρ +=                                              (62)  

pmσσ +′=                                                            (63) 

Where, 



























=

0

0

0

1

1

1

m                                                                 (64) 

In Lagrangian form we can rewrite the Eq.62 and 59 

as Eqs.65 and 66 

wFuTL &&&& )()(
1

0
−+= Jn fluid

T ρρ                                 (65) 

wFu

wFFF

&&&&

&

)(

)()(

1

1
0

1
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1

T
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T
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J

J
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n
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p
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−−−
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ρρ

                  (66)  

Where, 
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σFT ⋅= −1                                                             (69)  

X

x
J

∂

∂
= det                                                           (70) 

Multiplying Eq.66 by F yields Eq.71 
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wFF

uFw

&&

&&&

⋅⋅+

⋅=−+∇

− )(

)(

1

0

T
fluid

fluid

c

J

k

n

n

p
p

ρ

ρ
                              (71) 

Where the permeability in lagrangian form (k) is as 

Eq.72, 

IFFk kkJ T =⋅= −− 1                                               (72) 

Eq.65 and 71 in tensor form can be written as Eq.73 

and 74 which were mentioned directly in main part 

of the paper: 

0)( 1 =
∂

∂
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ρ
                                (74) 

 
 
Nomenclature: 

c  Concentration of the ion phase  

Bf Coupling coefficient in the chemical 

potential 

E Strain Tensor 

E Modulus of elasticity 

F       Deformation gradient 

FCD Fixed charge density 

f+-/ f-+  Frictional coefficients between positive and 

negative ions 

f+sf Summation of the frictional coefficients 

between positive ion and solid phase and the 

frictional coefficients between positive ion and fluid 

phase 

 f-sf Summation of the frictional coefficients 

between negative ion and solid phase and the 

frictional coefficients between negative ion and 

fluid phase 

J Jacobean Matrix 

J
+ 

/ J
-

  Positive / negative ion flux   

k  Permeability  

Ks / Kf Bulk module for the solid / fluid phases 

k Permeability in Lagrangian form 

K  Stiffness matrix  

n  Porosity  

N
i
  Shape functions  

P  Fluid pressure  

p
c
  Pressure due to the chemical potential  

R Universal gas constant 

Rs Isotropic resistivity 

T  Stress Tensor 

T Absolute temperature 

t
i 
 Pressure at the boundary  

u  Displacement of solid  

v
α
  Velocity of α component  

w  Relative displacement of fluid  

µ
+
/ µ

−
  Electrochemical potentials for Cation / 

Anion  

µ0  Reference chemical potential  

ρα  Mass density of α component 

ζw Variation of water content 

φ Osmotic coefficient 

υ  Poisson ratio 

∇  Gradient operator 
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